


PRACTICAL
SOFTWARE
TESTING



Springer
New York
Berlin
Heidelberg
Hong Kong
London
Milan
Paris
Tokyo



PRACTICAL
SOFTWARE
TESTING

A
PROCESS-ORIENTED

APPROACH

I LENE BURNSTEIN



Ilene Burnstein
Department of Computer Science
Illinois Institute of Technology
10 West 31 Street
Chicago, IL 60616
USA
burnstei@babbage2.cs.iit.edu

Library of Congress Cataloging-in-Publication Data
Burnstein, Ilene.

Practical software testing : a process-oriented approach / Ilene Burnstein.
p. cm.

Includes bibliographical references and index.
ISBN 0-387-95131-8 (hc : alk. paper)

1. Computer software—Testing. I. Title.
QA76.76.T48 B87 2002 2002024164
005.1�4–dc21

ISBN 0-387-95131-8 Printed on acid-free paper.

� 2003 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly anal-
ysis. Use in connection with any form of information storage and retrieval, electronic adapta-
tion, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

Capability Maturity Model and CMM are registered trademarks of the Software Engineering
Institute and Carnegie Mellon University. Testing Maturity Model and TMM are service marks
of Illinois Institute of Technology.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10779083

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science�Business Media GmbH



C O N T E N T S

Preface xv

1
I N T RODUCT I ON TO T E S T I N G
A S AN ENG I N E E R I N G ACT I V I T Y
1.0 The Evolving Profession of Software Engineering 1

1.1 The Role of Process in Software Quality 4

1.2 Testing as a Process 6

1.3 Overview of the Testing Maturity Model (TMM) 8

1.3.1 TMM Levels 10

List of Key Terms 16

Exercises 16

References 17

2 T E S T I N G FUNDAMENTA L S
2.0 Introduction 19

2.1 Basic Definitions 19



vi | Contents

2.2 Software Testing Principles 26

2.3 The Tester’s Role in a Software Development Organization 34

List of Key Terms 36

Exercises 36

References 37

3 D E F ECTS , H Y POTH E S E S , A ND T E S T S

3.0 Origins of Defects 39

3.1 Defect Classes, the Defect Repository, and Test Design 43

3.1.1 Requirements and Specification Defects 44

3.1.2 Design Defects 46

3.1.3 Coding Defects 48

3.1.4 Testing Defects 51

3.2 Defect Examples: The Coin Problem 51

3.3 Developer/Tester Support for Developing a Defect Repository 57

List of Key Terms 58

Exercises 58

References 59

4 S TRAT EG I E S AND METHODS FOR T E S T CAS E D E S I GN I

4.0 Introduction to Testing Design Strategies 61

4.1 The Smart Tester 62

4.2 Test Case Design Strategies 63

4.3 Using the Black Box Approach to Test Case Design 66

4.4 Random Testing 66

4.5 Equivalence Class Partitioning 67

4.6 Boundary Value Analysis 72

4.7 An Example of the Application of Equivalence Class Partitioning and

Boundary Value Analysis 73

4.8 Other Black Box Test Design Approaches 76

4.8.1 Cause-and-Effect Graphing 78

4.8.2 State Transition Testing 82

4.8.3 Error Guessing 85



vi iContents |

4.9 Black Box Testing and Commercial Off-the-Shelf
Components (COTS) 86

4.10 Black Box Methods and TMM Level 2 Maturity Goals 88

List of Key Terms 91
Exercises 92
References 95

5 S TRAT EG I E S AND METHODS FOR T E S T CAS E D E S I GN I I

5.0 Using the White Box Approach to Test Design 97
5.1 Test Adequacy Criteria 98
5.2 Coverage and Control Flow Graphs 101
5.3 Covering Code Logic 103
5.4 Paths: Their Role in White Box–Based Test Design 108
5.5 Additional White Box Test Design Approaches 111

5.5.1 Data Flow and White Box Test Design 111
5.5.2 Loop Testing 115
5.5.3 Mutation Testing 116

5.6 Evaluating Test Adequacy Criteria 118
5.7 White Box Testing Methods and the TMM 124

List of Key Terms 127
Exercises 127
References 130

6 L E V E L S O F T E S T I N G

6.0 The Need for Levels of Testing 133

6.0.1 Levels of Testing and Software Development Paradigms 135

6.1 Unit Test: Functions, Procedures, Classes, and Methods as Units 137
6.2 Unit Test: The Need for Preparation 138
6.3 Unit Test Planning 139
6.4 Designing the Unit Tests 141
6.5 The Class as a Testable Unit: Special Considerations 142
6.6 The Test Harness 148
6.7 Running the Unit Tests and Recording Results 150



vi i i | Contents

6.8 Integration Test: Goals 152

6.9 Integration Strategies for Procedures and Functions 153

6.10 Integration Strategies for Classes 158

6.11 Designing Integration Tests 159

6.12 Integration Test Planning 162

6.13 System Test: The Different Types 163

6.13.1 Functional Testing 166

6.13.2 Performance Testing 167

6.13.3 Stress Testing 169

6.13.4 Configuration Testing 171

6.13.5 Security Testing 172

6.13.6 Recovery Testing 175

6.14 Regression Testing 176

6.15 Alpha, Beta, and Acceptance Tests 176

6.16 Summary Statement on Testing Levels 178

6.17 The Special Role of Use Cases 179

6.18 Levels of Testing and the TMM 181

List of Key Terms 184

Exercises 184

References 186

7 T E S T GOA L S , P O L I C I E S , P L ANS , A ND DOCUMENTAT I ON

7.0 Introductory Concepts 189

7.1 Testing and Debugging Goals and Policies 191

7.2 Test Planning 197

7.3 Test Plan Components 200

7.4 Test Plan Attachments 216

7.4.1 Test Design Specifications 217

7.4.2 Test Case Specifications 218

7.4.3 Test Procedure Specifications 220

7.5 Locating Test Items: The Test Transmittal Report 221

7.6 Reporting Test Results 221

7.7 The Role of the Three Critical Groups in Test Planning and

Policy Development 226



ixContents |

7.8 Process and the Engineering Disciplines: The Role of the

Individual as a Process Facilitator 230

List of Key Terms 231

Exercises 231

References 232

8 TH E T E S T ORGAN I Z A T I ON

8.0 Introducing the Test Specialist 235

8.1 Skills Needed by a Test Specialist 237

8.2 Building a Testing Group 240

8.3 The Structure of the Testing Group 242

8.4 The Technical Training Program 247

8.5 Career Paths for Testers: An Industry Example 250

8.6 Tester Certification 252

8.7 Integrating Testing Activities in the Software Life Cycle 253

8.8 The Test Organization, Technical Training Program, and Test Integration:

Support from the Three Critical Views 257

Exercises 261

References 262

9
CONTRO L L I N G AND MON I TOR I NG
TH E T E S T I N G PROC E S S
9.0 Defining Terms 263

9.1 Measurements and Milestones for Controlling and Monitoring 266

9.1.1 Measurements for Monitoring Testing Status 271

9.1.2 Measurements for Monitoring Tester Productivity 275

9.1.3 Measurements for Monitoring Testing Costs 276

9.1.4 Measurements for Monitoring Errors, Faults and Failures 277

9.1.5 Monitoring Test Effectiveness 279

9.2 Status Meetings, Reports, and Control Issues 283

9.3 Criteria for Test Completion 289

9.4 Software Configuration Management 292



x | Contents

9.5 Controlling and Monitoring: Three Critical Views 296

List of Key Terms 300

Exercises 300

References 302

10 R E V I EWS AS A T E S T I N G ACT I V I T Y

10.0 Expanding the Testing Activity Umbrella 303

10.1 Types of Reviews 307

10.1.1 Inspections as a Type of Technical Review 308

10.1.2 Walkthroughs as a Type of Technical Review 310

10.2 Developing a Review Program 311

10.3 The Need for Review Policies 313

10.4 Components of Review Plans 314

10.4.1 Review Goals 315

10.4.2 Preconditions and Items to be Reviewed 315

10.4.3 Roles, Participants, Team Size, and Time Requirements 317

10.4.4 Review Procedures 320

10.4.5 Review Training 320

10.4.6 Review Checklists 324

10.5 Reporting Review Results 333

10.6 Review, Rework, and Follow-Up 337

10.7 Review Metrics 337

10.8 Support from the Extended/Modified V-Model 340

10.9 The Self-Check or Personal Review 340

10.10 Reviews and the TMM Critical Views 343

List of Key Terms 345

Exercises 345

References 347

11
A MEASUR EMENT PROGRAM TO SUPPORT
PRODUCT AND PROC E S S QUA L I T Y
11.0 The Need for a Formal Test Measurement Program 349

11.1 Some Measurement-Related Definitions 353



xiContents |

11.2 Initiating a Measurement Program 354

11.3 Software Quality Evaluation 364

11.4 Measurement and TMM Levels 372

11.4.1 Measurements for TMM Level 1 373

11.4.2 Measurements for TMM Level 2 375

11.4.3 Measurements for TMM Level 3 377

11.4.4 Measurements for TMM Level 4 381

11.4.5 Measurements for TMM Level 5 383

11.5 A Test Measurement Program, Software Quality Valuations
and the Three Critical Views 386

List of Key Terms 389

Exercises 389

References 391

12
E V A LUAT I NG SO F TWAR E QUA L I T Y :
A QUANT I T A T I V E A P PROACH

12.0 Review of Quality Concepts 393

12.1 Quality Costs 395

12.2 What Is Quality Control? 397

12.3 The Role of Operational Profiles and Usage Models in
Quality Control 399

12.4 Support for Quality Control: Statistical Testing 407

12.5 Software Reliability 410

12.5.1 Measurements for Software Reliability 413

12.6 Reliability, Quality Control, and Stop-Test Decisions 414

12.6.1 Applying Reliability Models 417

12.7 Confidence Levels and Quality Control 422

12.8 Usability Testing and Quality Control 424

12.9 An Approach to Usability Testing 425

12.9.1 Exploratory Usability Testing 426

12.9.2 Assessment Usability Testing 427

12.9.3 Validation Usability Testing 427

12.9.4 Comparison Test 429

12.9.5 Usability Testing: Resource Requirements 429

12.9.6 Usability Tests and Measurements 430



xi i | Contents

12.10 Software Quality Control and the Three Critical Views 433

List of Key Terms 436
Exercises 436
References 437

13 D E F ECT ANA L Y S I S AND PR E V ENT I ON

13.0 Processes and Defects 439
13.1 History of Defect Analysis and Prevention 441
13.2 Necessary Support for a Defect Prevention Program 444
13.3 Techniques for Defect Analysis 447
13.4 Defect Causal Analysis 450
13.5 The Action Team: Making Process Changes 454
13.6 Monitoring Actions and Process Changes 457
13.7 Benefits of a Defect Prevention Program 459
13.8 Defect Prevention and the Three Critical Views 460

Exercises 462
References 463

14 TH E T E S T E R S ’ WORKB ENCH

14.0 Goals for the Testers’ Workbench 465
14.1 Evaluating Testing Tools for the Workbench 467
14.2 Tool Categories 470

14.2.1 Maturity Goals for TMM Level 1-Initial 472
14.2.2 Tools for TMM Level 1 472
14.2.3 TMM Level 2: Maturity Goals for Phase Definition 474
14.2.4 Tools for Phase Definition 475
14.2.5 TMM Level 3: Maturity Goals for Integration 478
14.2.6 Tools for Integration 480
14.2.7 TMM Level 4: Maturity Goals for Management and

Measurement 487
14.2.8 Tools for Management and Measurement 489
14.2.9 TMM Level 5: Maturity Goals for Optimization/Defect

Prevention/Quality Control 492
14.2.10 Tools for Optimization/Defect Prevention/Quality

Control 494



xi i iContents |

14.3 The Testers’ Workbench and the Three Critical Views 498

Exercises 500

References 501

15 PROC E S S CONTRO L AND OPT IM I Z A T I ON

15.0 TMM Maturity Goals: Support for a Quality Testing Process 503

15.1 Process Engineering and Quality Control 504

15.2 Fundamentals of Quantitative Process Control 509

15.3 Activities for Quantitative Test Process Control 512

15.4 Examples of the Application of Statistical Process Control 516

15.5 Test Process Optimization: The Role of a Process Improvement
Group 518

15.6 Technology Transfer 523

15.7 Process Reuse 526

15.7.1 Templates for Reusable Processes 529

15.7.2 Procedures for Process Reuse 531

15.8 Activities, Tasks and Responsibilities for Test Process
Control and Optimization 533

Exercises 535

References 536

16
TH E T E S T I N G MATUR I T Y MOD E L AND
T E S T PROC E S S A S S E S SMENT
16.0 The Need for a Testing Maturity Model 537

16.1 Approach to Model Development 538

16.2 Process Improvement Model Representation 543

16.3 The TMM Structure: The Testing Maturity Levels 545

16.4 The TMM Assessment Model: Design Approach 548

16.5 The TMM Assessment Model Components 549

16.5.1 Assessment Team Selection and Training 549

16.5.2 The Assessment Procedure 551

16.5.3 The TMM Assessment Questionnaire 556

16.6 The TMM Ranking Procedure 558

16.7 Forms and Tools for Assessment Support 562



xiv | Contents

16.8 Relationship of the TMM to Other Process Improvement Models 563

16.9 Industrial Applications of the TMM 569

16.9.1 TMM Application I: Evaluating the Usability of the TMM
Questionnaire 569

16.9.2 TMM Application II: Identifying Test Problem Areas and
Risks 572

16.9.3 TMM Application III: Software Test Consulting 573

16.9.4 TMM Application IV: Role of Human Factors in Process
Assessment 576

16.9.5 Lessons Learned from the TMM Studies 581

References 583

A P P END I X I : T E S T - R E L A T E D R E F E R ENC E S 5 8 7

A P P END I X I I : S AMP L E T E S T P L AN 6 1 1

A P P END I X I I I : T E S T I N G MATUR I T Y MOD E L 6 3 3

Part 1: The TMM Questionnaire 633

Section 1. Instructions for the Respondent 634

Section 2. Respondent Identification and Background 635

Section 3. Organizational Background 637

Section 4. The TMM Questions 639

Section 5. Testing Tool Questions 659

Section 6. Testing Trends Questions 662

Section 7. Comments from Respondents 663

Section 8. Glossary of TMM-Related Terms 663

Part 2: TMM Activities, Tasks and Responsibilities 670

Index 701



P R E F A C E

oftware development is evolving into an engineering discipline. Indica-S tions of this new direction can be found, for example, in the ‘‘Software
Engineering Body of Knowledge (SWEBOK)’’ and the code of ethics that
have been developed recently through the efforts of joint IEEE/ACM task
forces [1,2]. Licensing procedures for software engineers are also under
development. Software testing is a subdiscipline in this emerging field.
The software industry is actively seeking and promoting professionals
who are educated and trained in the areas of testing and quality assurance,
and who will promote the development of high-quality software.

Graduate schools have slowly been responding to this industry need,
and a growing number are offering courses focused on software testing
and quality assurance as part of advanced degree programs in software
engineering. To support these programs, as well as the educational needs
of practicing professionals in the industry, a new type of book on software
testing is needed. The book should have an engineering/process orienta-
tion, and promote the growth and value of software testing as a profes-
sion. This text was developed to meet these needs. It has been designed
to serve as (i) a text for students enrolled in a graduate-level testing/quality
assurance class, and (ii) a knowledge source and learning tool for profes-
sionals currently working in the field.



xvi | Preface

The text is unique in its approach to presenting the field of software
testing. It introduces testing concepts that are managerial, technical, and
process-oriented in nature. Process is emphasized because of its essential
role in all engineering disciplines. The widespread application of the Ca-
pability Maturity Model (CMM)� and other process improvement mod-
els attests to the importance of process in today’s software development
industry. Unfortunately, discussions of this topic are lacking in the ma-
jority of books on software testing.

The author makes use of the Testing Maturity Model (TMM)SM,which
was developed to support organizations in assessing and improving their
testing processes, as a guiding framework for presenting testing concepts,
and as a context for introducing the reader to test process issues. The text
uses TMM levels and goals to support a structured presentation of fun-
damental and advanced test-related concepts to the reader. The TMM
structure highlights the important relationshipsbetween the testingprocess
and key players such as managers, testers, and client groups. The reader
should note that adaptation of the Testing Maturity Model is not a nec-
essary condition for using this text to learn about software testing. Using
this text, you can learn about good testing practices and test process issues
and apply them in the context of your individual and organizational needs.

Finally, the author believes that educational material developed for
software engineers should be guided by the contents of the Software En-
gineering Body of Knowledge (SWEBOK). In this context this text en-
deavors to cover many of the topics outlined in the ‘‘Software Testing’’
chapter of the SWEBOK. It also covers material from the chapters on
‘‘Software Quality’’ and ‘‘Software Engineering Process’’

G o a l s

In view of the growth of the software engineering profession, the educa-
tional requirements of a software testing specialist, and the need for em-
phasis on process issues, the author’s goals for this text are to:

• introduce testing concepts, techniques, and best practices in a system-
atic way that reflects an orderly evolution of testing process growth
on both an individual and organizational level;



xvi iPreface |

• introduce a view of testing as a process that goes through a set of
evolutionary stages to an optimal state of continuous improvement;

• introduce software quality concepts, standards, measurements, and
practices that support the production of quality software;

• enable a software professional to build an individual testing process
of the highest caliber that is integratable with an organizational test-
ing process;

• enable a software professional to serve as an agent for change
when an organization decides that its overall testing process needs
improvement;

• introduce the concepts of test process evaluation and improvement
and their importance to the software industry;

• support the growth of the profession of software test specialist by
providing the educational background necessary for a professional in
that field.

O r g a n i z a t i o n a n d F e a t u r e s

Each chapter in this text covers a managerial, technical and/or process-
related topic related to testing. The topics are designed to support the
reader’s growth as a test specialist. Within each chapter, the relationship
of chapter contents to one or more TMM maturity goals is described.
The first nine chapters contains basic material that allows the reader to
master fundamental testing concepts on the technical level, and to learn
about basic managerial concepts that promote a repeatable and defined
testing process. These chapters also highlight the importance of an inde-
pendent test group, and promote monitoring and controlling of the testing
process. Maturity goals at levels 2 and 3 of the TMM are integrated into
the chapter material .

Chapters 10–15 cover more advanced topics related to levels 4 and
5 of the TMM. These chapters support reviews as a testing activity, and
the automation of testing activities with tools. They also promote quali-
tative and quantitative evaluation of the test process and its continuous
evolution. Qualitative and quantitative evaluation of the software prod-
uct under test is also addressed. Chapter 16 provides a discussion of test



xvi i i | Preface

process assessment using the TMM Assessment Model, and describes
some applications of the TMM in industry.

The last sections of the text are its appendices. Appendix I, called
‘‘Supplementary References,’’ contains a collection of test-related refer-
ences which the reader will find useful to supplement the material in the
text. In this appendix a complete bibliography, organized alphabetically
by author is presented that includes all references in the book chapters.
It also contains a listing of additional textbooks, papers and Internet sites
that are rich sources of material for the test specialist. They support
continual professional growth in a rapidly evolving field. Appendix II
contains a sample test plan to illustrate the typical contents of such a
document. Appendix III contains the TMM Questionnaire, ranking al-
gorithms, and the full set of TMM Activities, Tasks, and Responsibilities
(ATRs) for those readers interested in test process assessment.

Other features to note in this text include definitions of key terms in
each chapter which are shown in italics. At the end of most of the chapters
the reader will find exercises that will help him/her to learn the concepts
that are discussed. Some exercises provide hands-on experience in apply-
ing the concepts. A set of references is included at the end of each chapter
for the reader who would like a more in-depth discussion of the topics.

This text is one of the tools you can use to develop as a professional
software tester. To use the text effectively you should have a background
in basic software engineering concepts, and some experience in software
development. The best approach to learning the material is to read the
chapters carefully and work out the exercises in the back of each chapter.
Feedback from an instructor with respect to homework exercises and
examinations is also very valuable. Discussions with instructors, class-
mates, and/or colleagues will also help you to integrate and clarify con-
cepts. It is the author’s objective to assist you in accumulating the knowl-
edge and expertise you need to develop as a professional software tester.

I n t e n d e d A u d i e n c e

Readers who would benefit from this text are senior undergraduates and
graduate students in computer science and software engineering pro-
grams, and software professionals who are interested in improving their
testing skills and learning more about testing as a process. For students,



xixPreface |

the text is a tool that can be used to develop the testing skills necessary
to become a professional software tester. For those in the software in-
dustry it can help to enhance testing skills, and provide guidelines for
evaluating and improving organizational testing processes. To use the text
effectively, readers should have a background in basic software engineer-
ing concepts and some experience in developing software.

N o t e s t o E d u c a t o r s

This text can be used for several types of graduate courses including those
in software testing, software quality assurance, software verification and
validation, and systems engineering. It can also be used as a text for an
undergraduate two-semester software engineering course.

For educators using this book as a text for a one-semester course in
software testing, covering the first ten chapters and Chapter 14, will give
your students a solid foundation in testing fundamentals so that they can
develop into professional software testers. Chapters covering more ad-
vanced topics, including the TMM, can be discussed if time permits. Stu-
dents should be assigned homework problems from the chapters and re-
ceive feedback on their results. A suggested team project for the course is
the development of a system test plan with attachments for a simple soft-
ware system. Students will need a requirements and/or design description
depending on the nature of the requested test plan.

For software professionals using this text, there is much material that
can help to enhance your knowledge of the testing field. The material
relating to the TMM can be applied to evaluate and make changes in your
testing process in a manner consistent with organizational goals.

P e r m i s s i o n s

IEEE term definitions, test plan components, and steps in a software qual-
ity metrics methodology reprinted with permission from:

IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990), copyright 1990 by IEEE

IEEE Standard for Software Test Documentation (ANSI/IEEE Std
829–1983), copyright 1983 by IEEE.



xx | Preface

IEEE Standard for a Software Quality Metrics Methodology (IEEE Std
1061–1992), copyright 1993, by IEEE.

The IEEE disclaims any responsibility or liability resulting from the place-
ment and use in the described manner.

Pearson Education has granted permission for use of material from
‘‘Software Metrics: Establishing a Company-Wide Program’’ by Grady
and Caswell.
[1] A. Abran, J. Moore, P. Bourque, R. Dupuis, editors, ‘‘Guide to the Software Engineering
Body of Knowledge, Trial Version,’’ IEEE Computer Society Press, Los Alamitos, CA, 2001.

[2] D. Gotterbarn, K. Miller, S. Rogerson, ‘‘Computer Society and ACM Approve Software
Engineering Code of Ethics,’’ IEEE Computer, Vol. 32, No. 10, 1999, pp. 84–88.

A c k n o w l e d g m e n t s

In preparing this text I have had support from many people including
family, colleagues, students, and publishers. The support has been in
many different forms. I would first like to thank my university, Illinois
Institute of Technology, for granting me a sabbatical leave that enabled
me to complete a good portion of this text. Colleagues who have been
supportive of my work include Professor Anneliese A. Andrews,
(Colorado State University), Professor Robert Carlson (Illinois Institute
of Technology), and Professor Martha Evens (Illinois Institute of
Technology).

I have used drafts of this text in my ‘‘Software Testing and Quality
Assurance’’ class over the last two years and I would like to thank the
students in these classes (CS 589) for their comments about the text. Ms.
Yachai Limpiyakorn, who was the teaching assistant for the course, has
also provided useful comments.

I would like to acknowledge the major contributions of Drs. Taratip
Suwannasart, and Ariya Homyen (Wichitnuntakorn) to the development
of the Testing Maturity Model during the course of their doctoral studies.
The model provided the framework for the development of this text.
My editors at Springer-Verlag, in particular, Wayne Wheeler and Wayne
Yuhasz, have been very patient, and have provided suggestions and useful
comments that I have incorporated into the text. Anonymous reviewers
have also been very helpful in suggesting changes that improved the text
quality.



xxiPreface |

Finally, I would like to thank my husband, Ray Burnstein for his
encouragement, and advice in the writing of this text, and for always
‘‘being there’’ for me. I would like to thank my sons Kenneth and Jona-
than who have expressed enthusiasm for this authoring project. Thank
you one and all!

Ilene Burnstein



This page intentionally left blank 



1
I N T R O D U C T I O N T O

T E S T I N G A S A N

E N G I N E E R I N G A C T I V I T Y

1 . 0 The Evolving Profession of Software Engineer ing

This is an exciting time to be a software developer. Software systems are
becoming more challenging to build. They are playing an increasingly
important role in society. People with software development skills are in
demand. New methods, techniques, and tools are becoming available to
support development and maintenance tasks.

Because software now has such an important role in our lives both
economically and socially, there is pressure for software professionals to
focus on quality issues. Poor quality software that can cause loss of life
or property is no longer acceptable to society. Failures can result in cat-
astrophic losses. Conditions demand software development staffs with
interest and training in the areas of software product and process quality.
Highly qualified staff ensure that software products are built on time,
within budget, and are of the highest quality with respect to attributes
such as reliability, correctness, usability, and the ability to meet all user
requirements.



2 | Introduction to Testing as an Engineer ing Activ ity

In response to the demand for high-quality software, and the need
for well-educated software professionals, there is a movement to change
the way software is developed and maintained, and the way developers
and maintainers are educated. In fact, the profession of software engi-
neering is slowly emerging as a formal engineering discipline. As a new
discipline it will be related to other engineering disciplines, and have as-
sociated with it a defined body of knowledge, a code of ethics, and a
certification process. The movement toward this new profession is the
focus of the entire November/December 1999 issue of IEEE Software.

The education and training of engineers in each engineering discipline
is based on the teaching of related scientific principles, engineering pro-
cesses, standards, methods, tools, measurement and best practices as
shown in Figure 1.1. As a reflection of the movement toward a software
engineering profession, and these educational needs, the IEEE Computer
Society and the Association of Computing Machinery (ACM), the two
principal societies for software professionals, have appointed joint task
forces. The goals of the task force teams are to define a body of knowledge
that covers the software engineering discipline, to discuss the nature of
education for this new profession, and to define a code of ethics for the
software engineer [1]. Foreseeing the emergence of this new engineering
discipline, some states are already preparing licensing examinations for
software engineers [2].

This text is based on the philosophy that software development
should be viewed and taught as an engineering discipline and that quality
in both the process and the product are of prime importance to profes-
sionals in this field. Using an engineering approach to software develop-
ment implies that:

• the development process is well understood;

• projects are planned;

• life cycle models are defined and adhered to;

• standards are in place for product and process;

• measurements are employed to evaluate product and process quality;

• components are reused;



31.0 The Evolving Profession of Software Engineer ing |

Processes

Standards

Measurements

Tools

Methods

Best practices

Code of ethics

Body of
knowledge

Electrical
engineering

Mechanical
engineering

Chemical
engineering

Civil engineering
Computer

engineering

Software engineering

Testing

Work in progress

Basic principles

FIG. 1.1

Elements of the engineering disciplines.

• validation and verification processes play a key role in quality
determination;

• engineers have proper education, training, and certification.

The aim of this text is to support the education of a software profes-
sional called a test specialist. A test specialist is one whose education is
based on the principles, practices, and processes that constitute the soft-
ware engineering discipline, and whose specific focus is on one area of
that discipline—software testing. A test specialist who is trained as an
engineer should have knowledge of test-related principles, processes, mea-
surements, standards, plans, tools, and methods, and should learn how
to apply them to the testing tasks to be performed.



4 | Introduction to Testing as an Engineer ing Activ ity

This text aims to educate the reader in the testing discipline. Testing
concepts, instead of being presented as an isolated collection of technical
and managerial activities will instead be integrated within the context of
a quality testing process that grows in competency and uses engineering
principles to guide improvement growth. In this way all of the elements
of the testing discipline emerge incrementally, and allow the tester to add
knowledge and skills that follow a natural evolutionary pattern. The in-
tegrating framework for presenting testing concepts in this text is the
Testing Maturity Model (TMM)SM [3–7].* An explanation of the value
of this process-oriented approach to presenting the discipline of software
testing follows in the succeeding sections of this chapter.

1 . 1 The Role of Process in Software Qual ity

The need for software products of high quality has pressured those in
the profession to identify and quantify quality factors such as usability,
testability, maintainability, and reliability, and to identify engineering
practices that support the production of quality products having these
favorable attributes. Among the practices identified that contribute to the
development of high-quality software are project planning, requirements
management, development of formal specifications, structured design
with use of information hiding and encapsulation, design and code reuse,
inspections and reviews, product and process measures, education and
training of software professionals, development and application of CASE
tools, use of effective testing techniques, and integration of testing activ-
ities into the entire life cycle. In addition to identifying these individual
best technical and managerial practices, software researchers realized that
it was important to integrate them within the context of a high-quality
software development process. Process in this context is defined below,
and is illustrated in Figure 1.2.

Process, in the software engineering domain, is the set of methods, practices,

standards, documents, activities, policies, and procedures that software engineers

use to develop and maintain a software system and its associated artifacts, such

as project and test plans, design documents, code, and manuals.

*Testing Maturity Model and TMM are service marks of Illinois Institute of Technology.



51.1 The Role of Process in Software Qual ity |

Methods and
techniques

Procedures

Standards
and documents

Plans

Policies

Practices

Engineered
process,

version 1.0

Activities

Process evolution

Version
1.1 

Version
2.0

Version
x.x

FIG. 1.2

Components of an engineered process.

It also was clear that adding individual practices to an existing soft-
ware development process in an ad hoc way was not satisfactory. The
software development process, like most engineering artifacts, must be
engineered. That is, it must be designed, implemented, evaluated, and
maintained. As in other engineering disciplines, a software development
process must evolve in a consistent and predictable manner, and the best
technical and managerial practices must be integrated in a systematic way.
Models such as the Capability Maturity Model� (CMM)* and SPICE
were developed to address process issues [8,9]. These models allow an
organization to evaluate its current software process and to capture an
understanding of its state. Strong support for incremental process im-
provement is provided by the models, consistent with historical process
evolution and the application of quality principles. The models have re-

*The Capability Maturity Model and CMM are registered trademarks of the Software Engineering
Institute and Carnegie Mellon University.



6 | Introduction to Testing as an Engineer ing Activ ity

ceived much attention from industry, and resources have been invested in
process improvement efforts with many successes recorded [8].

All the software process improvement models that have had wide
acceptance in industry are high-level models, in the sense that they focus
on the software process as a whole and do not offer adequate support to
evaluate and improve specific software development sub processes such
as design and testing. Most software engineers would agree that testing
is a vital component of a quality software process, and is one of the most
challenging and costly activities carried out during software development
and maintenance. In spite of its vital role in the production of quality
software, existing process evaluation and improvement models such as
the CMM, Bootstrap, and ISO-9000 have not adequately addressed test-
ing process issues [3–7,10]. The Testing Maturity Model (TMM), as de-
scribed throughout this text, has been developed at the Illinois Institute
of Technology by a research group headed by the author, to address de-
ficiencies these areas.

1 . 2 Testing as a Process

The software development process has been described as a series of
phases, procedures, and steps that result in the production of a software
product. Embedded within the software development process are several
other processes including testing. Some of these are shown in Figure 1.3.
Testing itself is related to two other processes called verification and val-
idation as shown in Figure 1.3.

Validation is the process of evaluating a software system or component during, or

at the end of, the development cycle in order to determine whether it satisfies

specified requirements [11].

Validation is usually associated with traditional execution-based testing,
that is, exercising the code with test cases.

Verification is the process of evaluating a software system or component to de-

termine whether the products of a given development phase satisfy the conditions

imposed at the start of that phase [11].



71.2 Testing as a Process |

Requirements
analysis
process

Product
specification
process 

Design process

Testing process

Verification
process

Validation
process

Software Development Process

FIG. 1.3

Example processes embedded in the

software development process.

Verification is usually associated with activities such as inspections and
reviews of software deliverables. Testing itself has been defined in several
ways. Two definitions are shown below.

Testing is generally described as a group of procedures carried out to evaluate

some aspect of a piece of software.

Testing can be described as a process used for revealing defects in software, and

for establishing that the software has attained a specified degree of quality with

respect to selected attributes.

Note that these definitions of testing are general in nature. They cover
both validation and verification activities, and include in the testing do-
main all of the following: technical reviews, test planning, test tracking,
test case design, unit test, integration test, system test, acceptance test,
and usability test. The definitions also describe testing as a dual-purpose
process—one that reveals defects, as well as one that is used to evaluate
quality attributes of the software such as reliability, security, usability,
and correctness.

Also note that testing and debugging, or fault localization, are two
very different activities. The debugging process begins after testing has
been carried out and the tester has noted that the software is not behaving
as specified.



8 | Introduction to Testing as an Engineer ing Activ ity

Debugging, or fault localization is the process of (1) locating the fault or defect,

(2) repairing the code, and (3) retesting the code.

Testing as a process has economic, technical and managerial aspects.
Economic aspects are related to the reality that resources and time are
available to the testing group on a limited basis. In fact, complete testing
is in many cases not practical because of these economic constraints. An
organization must structure its testing process so that it can deliver soft-
ware on time and within budget, and also satisfy the client’s requirements.

The technical aspects of testing relate to the techniques, methods,
measurements, and tools used to insure that the software under test is as
defect-free and reliable as possible for the conditions and constraints un-
der which it must operate. Testing is a process, and as a process it must
managed. Minimally that means that an organizational policy for testing
must be defined and documented. Testing procedures and steps must be
defined and documented. Testing must be planned, testers should be
trained, the process should have associated quantifiable goals that can
be measured and monitored. Testing as a process should be able to evolve
to a level where there are mechanisms in place for making continuous
improvements.

1 . 3 An Overview of the Testing Matur ity Model

Several important test-related issues have emerged from the previous dis-
cussion. We have learned that

1. there is a demand for software of high quality with low defects;
2. process is important in the software engineering discipline;
3. software testing is an important software development sub process;
4. existing software evaluation and improvement models have not ad-

equately addressed testing issues.

An introduction to the Testing Maturity Model is now presented to the
reader as a framework for discussion of these issues, and as a means for
addressing them. The model is discussed in more detail in later chapters
of this text. The focus of the TMM is on testing as a process in itself that



91.3 An Overview of the Testing Matur ity Model |

can be evaluated and improved. In the testing domain possible benefits
of test process improvement are the following:

• smarter testers

• higher quality software

• the ability to meet budget and scheduling goals

• improved planning

• the ability to meet quantifiable testing goals

Test process improvement is supported by the set of levels and maturity
goals in the TMM. Achievement of the maturity goals results in incre-
mental improvement of an organization’s testing process. The TMM As-
sessment Model supports test process evaluation. Section 1.3 gives the
reader an overview the set of levels and maturity goals. The levels and
goals serve as guidelines for the organization of this text and define the
sequence for introduction of testing concepts.

The development of version 1.0 of the TMM was guided by the work
done on the Capability Maturity Model for software (CMM), a process
improvement model that has received widespread support from the soft-
ware industry in the United States [8]. The CMM is classified architec-
turally as staged process improvement model. This type of process im-
provement model architecture prescribes the stages that an organization
must proceed through in an orderly fashion to improve its software de-
velopment process. Other process improvement models can be described
as having a continuous type of architecture, for example, the SPICE
model. In this type of architecture there is no fixed set of levels or stages
to proceed through. An organization applying a continuous model can
select areas for improvement from many different categories.

The CMM has five levels or stages that describe an evolutionary pat-
tern of software process maturity and serve as a guide for improvement.
Each level has a set of Key Process Areas (KPA) that an organization needs
to focus on to achieve maturity at that level. There are also key practices
associated with each level that provide support for implementing im-
provements at that level. The CMM also has an assessment procedure
that allows an organization to evaluate the current state of its software
process and identify process strengths and weaknesses.



10 | Introduction to Testing as an Engineer ing Activ ity

Other input sources to TMM development include Gelperin and
Hetzel’s Evolution of Testing Model [12], which describes the evolution
of the testing process in industry over a 40-year period; Beizer’s testing
model, which describes the evolution of the individual tester’s thinking
[13]; and the Software Testing Practices Survey Report [14], which iden-
tifies best test practices in industry as of 1993. More details relating to
these items as well as the TMM maturity goals and the TMM Assessment
Model are found in later chapters of this text.

1 . 3 . 1 T M M L e v e l s

As in the case of the CMM, the TMM also follows what is called a staged
architecture for process improvement models. It contains stages or levels
through which an organization passes as its testing process evolves from
one that is ad hoc and unmanaged to one that is managed, defined, mea-
sured, and optimizable. The internal structure of the TMM is rich in
testing practices that can be learned and applied in a systematic way to
support a quality testing process that improves in incremental steps. There
are five levels in the TMM that prescribe a maturity hierarchy and an
evolutionary path to test process improvement. The characteristics of each
level are described in terms of testing capability organizational goals, and
roles/responsibilities for the key players in the testing process, the man-
agers, developers/testers, and users/clients.

Each level with the exception of level 1 has a structure that consists
of the following:

• A set of maturity goals. The maturity goals identify testing improve-
ment goals that must be addressed in order to achieve maturity at
that level. To be placed at a level, an organization must satisfy the
maturity goals at that level. The TMM levels and associated maturity
goals are shown in Figure 1.5.

• Supporting maturity subgoals. They define the scope, boundaries and
needed accomplishments for a particular level.

• Activities, tasks and responsibilities (ATR). The ATRs address im-
plementation and organizational adaptation issues at each TMM



111.3 An Overview of the Testing Matur ity Model |

Levels

Testing
capability

Maturity goals

Maturity subgoals

Activities/tasks/responsibilities

indicate contain

supported by

achieved by

address organized by

Critical views

Manager Developer/tester User/client

Implementation
and organizational

adaptation

FIG. 1.4

The internal structure of TMM

maturity levels.

level. Supporting activities and tasks are identified, and responsibili-
ties are assigned to appropriate groups.

Figure 1.4 illustrates the TMM level structure. Each maturity goal at
each TMM level is supported by a set of maturity subgoals. The maturity
subgoals are achieved through a group of activities and tasks with re-
sponsibilities (ATR). Activities and tasks are defined in terms of actions
that must be performed at a given level to improve testing capability; they
are linked to organizational commitments. Responsibilities are assigned
for these activities and tasks to three groups that TMM developers believe
represent the key participants in the testing process: managers, develop-
ers/testers, and users/clients. In the model they are referred to as “the three
critical views (CV).” Definition of their roles is essential in developing a
maturity framework. The manager’s view involves commitment and abil-



12 | Introduction to Testing as an Engineer ing Activ ity

ity to perform activities and tasks related to improving testing capability.
The developer/tester’s view encompasses the technical activities and tasks
that, when applied, constitute quality testing practices. The user’s or cli-
ent’s view is defined as a cooperating, or supporting, view. The devel-
opers/testers work with client/user groups on quality-related activities and
tasks that concern user-oriented needs. The focus is on soliciting cli-
ent/user support, consensus, and participation in activities such as re-
quirements analysis, usability testing, and acceptance test planning.

The maturity goals at each level of the TMM are shown in Figure
1.5. They are fully described in published papers and are also listed below
along with a brief description of the characteristics of an organization at
each TMM level [2–6]. The description will introduce the reader to the
evolutionary path prescribed in the TMM for test process improvement.
Additional details are provided in subsequent text chapters.

Level 1—Initial: (No maturity goals)

At TMM level 1, testing is a chaotic process; it is ill-defined, and not
distinguished from debugging. A documented set of specifications for
software behavior often does not exist. Tests are developed in an ad hoc
way after coding is completed. Testing and debugging are interleaved to
get the bugs out of the software. The objective of testing is to show the
software works (it is minimally functional) [1,5]. Software products are
often released without quality assurance. There is a lack of resources,
tools and properly trained staff. This type of organization would be at
level 1 of the CMM.

Level 2—Phase Definition: (Goal 1: Develop testing and debugging goals;
Goal 2: Initiate a testing planning process; Goal 3: Institutionalize basic
testing techniques and methods)

At level 2 of the TMM testing is separated from debugging and is defined
as a phase that follows coding. It is a planned activity; however, test
planning at level 2 may occur after coding for reasons related to the im-
maturity of the testing process. For example, there may be the perception
at level 2, that all testing is execution based and dependent on the code;
therefore, it should be planned only when the code is complete.

The primary goal of testing at this level of maturity is to show that
the software meets its stated specifications [2,5]. Basic testing techniques



131.3 An Overview of the Testing Matur ity Model |

and methods are in place; for example, use of black box and white box
testing strategies, and a validation cross-reference matrix. Testing is multi-
leveled: there are unit, integration, system, and acceptance levels. Many
quality problems at this TMM level occur because test planning occurs
late in the software life cycle. In addition, defects are propagated from
the requirements and design phases into the code. There are no review

Level 1: Initial

Level 2: Phase Definition 

Institutionalize basic testing techniques and methods
Initiate a test planning process
Develop testing and debugging goals

Level 3: Integration

Control and monitor the testing process
Integrate testing into the software life cycle
Establish a technical training program
Establish a software test organization

Level 4: Management and Measurement

Software quality evaluation
Establish a test measurement program
Establish an organizationwide review program

Level 5: Optimization/Defect Prevention 
and Quality Control

Test process optimization
Quality control
Application of process data for defect prevention

FIG. 1.5

The 5-level structure of the testing

maturity model.



14 | Introduction to Testing as an Engineer ing Activ ity

programs as yet to address this important issue. Postcode, execution-
based testing is still considered the primary testing activity.

Level 3—Integration: (Goal 1: Establish a software test organization;
Goal 2: Establish a technical training program; Goal 3: Integrate testing
into the software life cycle; Goal 4: Control and monitor testing)

At TMM level 3, testing is no longer a phase that follows coding, but is
integrated into the entire software life cycle. Organizations can build on
the test planning skills they have acquired at level 2. Unlike level 2, plan-
ning for testing at TMM level 3 begins at the requirements phase and
continues throughout the life cycle supported by a version of the V-model
(see Section 8.7) [2]. Test objectives are established with respect to the
requirements based on user/client needs, and are used for test case design.
There is a test organization, and testing is recognized as a professional
activity. There is a technical training organization with a testing focus.
Testing is monitored to ensure it is going according to plan and actions
can be taken if deviations occur. Basic tools support key testing activities,
and the testing process is visible in the organization. Although organi-
zations at this level begin to realize the important role of reviews in quality
control, there is no formal review program and reviews do not as yet take
place across the life cycle. A formal test measurement program has not
yet been established to quantify a significant number of process and prod-
uct attributes.

Level 4—Management and Measurement: (Goal 1: Establish an organi-
zationwide review program; Goal 2: Establish a test measurement pro-
gram; Goal 3: Software quality evaluation)

Testing at level 4 becomes a process that is measured and quantified.
Reviews at all phases of the development process are now recognized as
testing/quality control activities. They are a compliment to execution-
based tests to detect defects and to evaluate and improve software quality.
An extension of the V-model as shown in Figure 1.6 can be used to sup-
port the implementation of this goal [6,7]. Software products are tested
for quality attributes such as reliability, usability, and maintainability.
Test cases from all projects are collected and recorded in a test case da-
tabase for the purpose of test case reuse and regression testing. Defects
are logged and given a severity level. Some of the deficiencies occurring



151.3 An Overview of the Testing Matur ity Model |

in the test process are due to the lack of a defect prevention philosophy,
and the porosity of automated support for the collection, analysis, and
dissemination of test-related metrics.

Specify requirements

Execute acceptance test

Execute system test

Requirements
review

System acceptance
test plan review/audit

Specify/design Code

System/acceptance tests

Design Execute integration
tests

Design review Integration test plan
review/audit

Specify/design Code

Integration tests

Code
Execute unit

tests

Code reviews Unit test plan
review/audit

Specify/design Code

Unit tests

FIG. 1.6

The Extended/Modified V-model.



16 | Introduction to Testing as an Engineer ing Activ ity

Level 5—Optimization/Defect Prevention/Quality Control: (Goal 1:
Defect prevention; Goal 2: Quality control; Goal 3: Test process
optimization)

Because of the infrastructure that is in place through achievement of the
maturity goals at levels 1–4 of the TMM, the testing process is now said
to be defined and managed; its cost and effectiveness can be monitored.
At level 5, mechanisms are in place so that testing can be fine-tuned and
continuously improved. Defect prevention and quality control are prac-
ticed. Statistical sampling, measurements of confidence levels, trustwor-
thiness, and reliability drive the testing process. Automated tools totally
support the running and rerunning of test cases. Tools also provide sup-
port for test case design, maintenance of test-related items, and defect
collection and analysis. The collection and analysis of test-related metrics
also has tool support. Process reuse is also a practice at TMM level 5
supported by a Process Asset Library (PAL).

K E Y T E R M S

Debugging

Process

Testing

Validation

Verification

E X E R C I S E S

1. What are the differences between testing and debugging? What specific tasks

are involved in each? Which groups should have responsibility for each of these

processes?

2. What are the differences between verification and validation? How does your

organization handle each of these activities?

3. Using the version of the V-model shown in Figure 1.6, describe the test-related

activities that should be done, and why they should be done, during the following

phases of the software development process: requirements specification, design,

coding, installation.



171.3 An Overview of the Testing Matur ity Model |

4. Identify the members of the three critical groups in the testing process. How

are they represented in the TMM structure?

5. Your organization has worked very hard to improve its testing process. The

most recent test process assessment using the Testing Maturity Model showed

that you are at TMM level 3. How would you describe your current testing process

based on that assessment? What are the maturity goals that you have achieved

at that TMM level?

R E F E R E N C E S

[1] D. Gotterbarn, K. Miller, S. Rogerson, “Computer
Society and ACM Approve Software Engineering Code
of Ethics,” IEEE Computer, Vol. 32, No. 10, Oct.,
1999, pp. 84–88.

[2] J. Speed. “What Do You Mean I Can’t Call Myself
a Software Engineer,” IEEE Software, Nov./Dec.,
1999, pp. 45–50.

[3] I. Burnstein, A. Homyen, T, Suwanassart, G. Sax-
ena, R. Grom, “A Testing Maturity Model for Soft-
ware Test Process Assessment and Improvement,”
Software Quality Professional, American Society for
Quality, Vol. 1, No. 4, Sept. 1999, pp. 8–21.

[4] I. Burnstein, A. Homyen, T, Suwanassart, G. Sax-
ena, R. Grom, “Using the Testing Maturity Model to
Assess and Improve Your Software Testing Process,”
Proc. of International Quality Week Conf. (QW’99),
San Jose, CA, May, 1999.

[5] I. Burnstein, A. Homyen, R. Grom, C. R. Carlson,
“A Model for Assessing Testing Process Maturity,”
CrossTalk: Journal of Department of Defense Soft-
ware Engineering, Vol. 11, No. 11, Nov., 1998,
pp. 26–30.

[6] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a Testing Maturity Model: Part I,” Cross-
Talk: Journal of Defense Software Engineering, Vol. 9,
No. 8, Aug., 1996, pp. 21–24.

[7] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a Testing Maturity Model: Part II,” Cross-
Talk: Journal of Defense Software Engineering, Vol. 9,
No. 9, Sep., 1996, pp. 19–26.

[8] M. Paulk, C. Weber, B. Curtis, M. Chrissis, The
Capability Maturity Model, Addison-Wesley, Reading
MA, 1995.

[9] M. Paulk, M. Konrad, “An Overview of ISO’s
SPICE Project,” American Programmer, Vol. 7, No. 2,
Feb., 1994, pp. 16–20.

[10] L Osterweil, “Strategic Directions in Software
Quality,” ACM Computing Surveys, Vol. 28, No. 4,
1996, pp. 738–750.

[11] IEEE Standard Glossary of Software Engineering
Terminology (Std610.12-1990). Copyright 1990 by
IEEE. All rights reserved.

[12] D. Gelperin, B. Hetzel, “The Growth of Soft-
ware Testing,” CACM, Vol. 31, No. 6, 1988, pp. 687–
695.

[13] B. Beizer, Software Testing Techniques, second
edition, Van Nostrand Reinhold, New York, 1990.

[14] J. Durant, Software Testing Practices Survey Re-
port, Software Practices Research Center, Technical
Report, TR5-93, May 1993.



This page intentionally left blank 



2
T E S T I N G

F U N D A M E N T A L S

2 . 0 In itat ing a Study of Testing

The study of software testing in this text begins with a description of
essential test-related vocabulary items. Knowledge of these basic terms is
essential to insure that the discussions of testing concepts that follow are
based on a common vocabulary that is widely accepted in academia and
industry. A set of execution-based testing principles is also presented here
to support test specialists. They provide a foundation for developing test-
ing knowledge, acquiring testing skills, and developing an essential group
of best practices. This introduction to the field of software testing con-
cludes with a description of the role of the test specialist in a software
development organization.

2 . 1 Basic Definit ions

Below is a set of basic definitions for terms will be used in this text.
Additional definitions appear in subsequent chapters to aid in concept



20 | Testing Fundamentals

understanding. Many of the definitions used in this text are based on the
terms described in the IEEE Standards Collection for Software Engineer-
ing [1]. The standards collection includes the IEEE Standard Glossary of
Software Engineering Terminology, which is a dictionary devoted to de-
scribing software engineering vocabulary [2]. It contains working defi-
nitions of terms that are in use in both the academic and industrial worlds.
Where a definition has been directly adapted from an IEEE standards
document a specific reference is given.

Errors

An error is a mistake, misconception, or misunderstanding on the part of a software

developer.

In the category of developer we include software engineers, programmers,
analysts, and testers. For example, a developer may misunderstand a de-
sign notation, or a programmer might type a variable name incorrectly.

Faults (Defects)

A fault (defect) is introduced into the software as the result of an error. It is an

anomaly in the software that may cause it to behave incorrectly, and not according

to its specification.

Faults or defects are sometimes called “bugs.” Use of the latter term triv-
ializes the impact faults have on software quality. Use of the term “defect”
is also associated with software artifacts such as requirements and design
documents. Defects occurring in these artifacts are also caused by errors
and are usually detected in the review process.

Fai lures

A failure is the inability of a software system or component to perform its required

functions within specified performance requirements [2].

During execution of a software component or system, a tester, developer,
or user observes that it does not produce the expected results. In some
cases a particular type of misbehavior indicates a certain type of fault is



212.1 Basic Definit ions |

present. We can say that the type of misbehavior is a symptom of the
fault. An experienced developer/tester will have a knowledge base of
fault/symptoms/failure cases (fault models as described in Chapter 3)
stored in memory.

Incorrect behavior can include producing incorrect values for output
variables, an incorrect response on the part of a device, or an incorrect
image on a screen. During development failures are usually observed by
testers, and faults are located and repaired by developers. When the soft-
ware is in operation, users may observe failures which are reported back
to the development organization so repairs can be made.

A fault in the code does not always produce a failure. In fact, faulty
software may operate over a long period of time without exhibiting any
incorrect behavior. However when the proper conditions occur the fault
will manifest itself as a failure. Voas [3] is among the researchers who
discuss these conditions, which are as follows:

1. The input to the software must cause the faulty statement to be
executed.

2. The faulty statement must produce a different result than the correct
statement. This event produces an incorrect internal state for the
software.

3. The incorrect internal state must propagate to the output, so that the
result of the fault is observable.

Software that easily reveals its’ faults as failures is said to be more testable.
From the testers point-of-view this is a desirable software attribute. Test-
ers need to work with designers to insure that software is testable. There
are other meanings assigned to the terms “testable” and “testability” that
will be described later on in this chapter.

Test Cases

The usual approach to detecting defects in a piece of software is for the
tester to select a set of input data and then execute the software with the
input data under a particular set of conditions. In order to decide whether



22 | Testing Fundamentals

the software has passed or failed the test, the tester also needs to know
what are the proper outputs for the software, given the set of inputs and
execution conditions. The tester bundles this information into an item
called a test case.

A test case in a practical sense is a test-related item which contains the following

information:

1. A set of test inputs. These are data items received from an external source by

the code under test. The external source can be hardware, software, or human.

2. Execution conditions. These are conditions required for running the test, for

example, a certain state of a database, or a configuration of a hardware device.

3. Expected outputs. These are the specified results to be produced by the code

under test.

The above description specifies the minimum information that should
be found in a test case and is based on the IEEE description for this item
[2]. An organization may decide that additional information should be
included in a test case to increase its value as a reusable object, or to
provide more detailed information to testers and developers. As an ex-
ample, a test objective component could be included to express test goals
such as to execute a particular group of code statements or check that a
given requirement has been satisfied. Developers, testers, and/or software
quality assurance staff should be involved in designing a test case speci-
fication that precisely describes the contents of each test case. The content
and its format should appear in test documentation standards for the
organization. Chapter 7 gives a more detailed description for a test case
and other test-related items.

Test

A test is a group of related test cases, or a group of related test cases and test

procedures (steps needed to carry out a test, as described in Chapter 7).

A group of related tests is sometimes referred to as a test set. A group of
related tests that are associated with a database, and are usually run to-
gether, is sometimes referred to as a test suite [4].



232.1 Basic Definit ions |

Test Oracle

A test oracle is a document, or piece of software that allows testers to determine

whether a test has been passed or failed.

A program, or a document that produces or specifies the expected out-
come of a test, can serve as an oracle [5]. Examples include a specification
(especially one that contains pre- and postconditions), a design document,
and a set of requirements. Other sources are regression test suites. The
suites usually contain components with correct results for previous ver-
sions of the software. If some of the functionality in the new version
overlaps the old version, the appropriate oracle information can be ex-
tracted. A working trusted program can serve as its own oracle in a sit-
uation where it is being ported to a new environment. In this case its
intended behavior should not change in the new environment [4].

Test Bed

A test bed is an environment that contains all the hardware and software needed

to test a software component or a software system.

This includes the entire testing environment, for example, simulators, em-
ulators, memory checkers, hardware probes, software tools, and all other
items needed to support execution of the tests.

Software Qual i ty

Two concise definitions for quality are found in the IEEE Standard Glos-
sary of Software Engineering Terminology [2]:

1. Quality relates to the degree to which a system, system component, or process

meets specified requirements.

2. Quality relates to the degree to which a system, system component, or process

meets customer or user needs, or expectations.

In order to determine whether a system, system component, or pro-
cess is of high quality we use what are called quality attributes. These are
characteristics that reflect quality. For software artifacts we can measure



24 | Testing Fundamentals

the degree to which they possess a given quality attribute with quality
metrics.

A metric is a quantitative measure of the degree to which a system, system com-

ponent, or process possesses a given attribute [2].

There are product and process metrics. A very commonly used example
of a software product metric is software size, usually measured in lines of
code (LOC). Two examples of commonly used process metrics are costs
and time required for a given task. Many other examples are found in
Grady [6]. Appendix I gives additional references that discuss metrics in
depth. Quality metrics are a special kind of metric.

A quality metric is a quantitative measurement of the degree to which an item

possesses a given quality attribute [2].

Many different quality attributes have been described for software, for
example, in IEEE Standards for Software Quality Metrics Methodology
and work by Schulmeyer and Grady [6–8]. Some examples of quality
attributes with brief explanations are the following:

correctness—the degree to which the system performs its intended function

reliability—the degree to which the software is expected to perform its
required functions under stated conditions for a stated period of time

usability—relates to the degree of effort needed to learn, operate, prepare
input, and interpret output of the software

integrity—relates to the system’s ability to withstand both intentional and
accidental attacks

portability—relates to the ability of the software to be transferred from one
environment to another

maintainability—the effort needed to make changes in the software

interoperability—the effort needed to link or couple one system to another.

Another quality attribute that should be mentioned here is testability. This
attribute is of more interest to developers/testers than to clients. It can be
expressed in the following two ways:



252.1 Basic Definit ions |

1. the amount of effort needed to test the software to ensure it performs
according to specified requirements (relates to number of test cases
needed),

2. the ability of the software to reveal defects under testing conditions
(some software is designed in such a way that defects are well hidden
during ordinary testing conditions).

Testers must work with analysts, designers and, developers throughout
the software life system to ensure that testability issues are addressed.

Software Qual i ty Assurance Group

The software quality assurance (SQA) group in an organization has ties
to quality issues. The group serves as the customers’ representative and
advocate. Their responsibility is to look after the customers’ interests.

The software quality assurance (SQA) group is a team of people with the necessary

training and skills to ensure that all necessary actions are taken during the de-

velopment process so hat the resulting software conforms to established technical

requirements.

They work with project managers and testers to develop quality-related
policies and quality assurance plans for each project. The group is also
involved in measurement collection and analysis, record keeping, and re-
porting. The SQA team members participate in reviews (see Chapter 10),
and audits (special types of reviews that focus on adherence to standards,
guidelines, and procedures), record and track problems, and verify that
corrections have been made. They also play a role in software configu-
ration management (see Chapter 10).

Reviews

In contrast to dynamic execution-based testing techniques that can be
used to detect defects and evaluate software quality, reviews are a type
of static testing technique that can be used to evaluate the quality of a
software artifact such as a requirements document, a test plan, a design
document, a code component. Reviews are also a tool that can be applied
to revealing defects in these types of documents. A definition follows.



26 | Testing Fundamentals

A review is a group meeting whose purpose is to evaluate a software artifact or a

set of software artifacts.

The composition of a review group may consist of managers, clients,
developers, testers and other personnel depending on the type of artifact
under review. A special type of review called an audit is usually conducted
by a Software Quality Assurance group for the purpose of assessing
compliance with specifications, and/or standards, and/or contractual
agreements.

2 . 2 Software Testing Principles

Principles play an important role in all engineering disciplines and are
usually introduced as part of an educational background in each branch
of engineering. Figure 1.1 shows the role of basic principles in various
engineering disciplines. Testing principles are important to test special-
ists/engineers because they provide the foundation for developing testing
knowledge and acquiring testing skills. They also provide guidance for
defining testing activities as performed in the practice of a test specialist.
A principle can be defined as:

1. a general or fundamental, law, doctrine, or assumption;
2. a rule or code of conduct;
3. the laws or facts of nature underlying the working of an artificial

device.

Extending these three definitions to the software engineering domain
we can say that software engineering principles refer to laws, rules, or
doctrines that relate to software systems, how to build them, and how
they behave. In the software domain, principles may also refer to rules or
codes of conduct relating to professionals who design, develop, test, and
maintain software systems. Testing as a component of the software en-
gineering discipline also has a specific set of principles that serve as guide-
lines for the tester. They guide testers in defining how to test software
systems, and provide rules of conduct for testers as professionals. Glen-
ford Myers has outlined such a set of execution-based testing principles
in his pioneering book, The Art of Software Testing [9]. Some of these



272.2 Software Testing Principles |

principles are described below. Principles 1–8, and 11 are derived directly
from Myers’ original set. The author has reworded these principles, and
also has made modifications to the original set to reflect the evolution of
testing from an art, to a quality-related process within the context of an
engineering discipline. Note that the principles as stated below only relate
to execution-based testing. Principles relating to reviews, proof of cor-
rectness, and certification as testing activities are not covered.

Principle 1. Testing is the process of exercising a software compo-
nent using a selected set of test cases, with the intent of (i) revealing
defects, and (ii) evaluating quality.

Software engineers have made great progress in developing methods to
prevent and eliminate defects. However, defects do occur, and they have
a negative impact on software quality. Testers need to detect these defects
before the software becomes operational. This principle supports testing
as an execution-based activity to detect defects. It also supports the sep-
aration of testing from debugging since the intent of the latter is to locate
defects and repair the software. The term “software component” is used
in this context to represent any unit of software ranging in size and com-
plexity from an individual procedure or method, to an entire software
system. The term “defects” as used in this and in subsequent principles
represents any deviations in the software that have a negative impact on
its functionality, performance, reliability, security, and/or any other of its
specified quality attributes.

Bertolino, in the Guide to the Software Engineering Body of Knowl-
edge, gives a view of testing as a ‘‘dynamic process that executes a pro-
gram on valued inputs’’ [10]. This view, as well as the definition of testing
given in Chapter 1, suggest that in addition to detecting defects, testing
is also a process used to evaluate software quality. The purpose of the
former has been described in the previous paragraph. In the case of the
latter, the tester executes the software using test cases to evaluate prop-
erties such as reliability, usability, maintainability, and level of perfor-
mance. Test results are used to compare the actual properties of the soft-
ware to those specified in the requirements document as quality goals.
Deviations or failure to achieve quality goals must be addressed.



28 | Testing Fundamentals

The reader should keep in mind that testing can have a broader scope
as described in test process improvement models such as the TMM and
other quality models. Reviews and other static analysis techniques are
included under the umbrella of testing in the models. These techniques,
and how they relate to detecting defects and evaluating quality will be
described in subsequent chapters of this text.

Principle 2. When the test objective is to detect defects, then a good
test case is one that has a high probability of revealing a yet-
undetected defect(s).

Principle 2 supports careful test design and provides a criterion with
which to evaluate test case design and the effectiveness of the testing effort
when the objective is to detect defects. It requires the tester to consider
the goal for each test case, that is, which specific type of defect is to be
detected by the test case. In this way the tester approaches testing in the
same way a scientist approaches an experiment. In the case of the scientist
there is a hypothesis involved that he/she wants to prove or disprove by
means of the experiment. In the case of the tester, the hypothesis is related
to the suspected occurrence of specific types of defects. The goal for the
test is to prove/disprove the hypothesis, that is, determine if the specific
defect is present/absent. Based on the hypothesis, test inputs are selected,
correct outputs are determined, and the test is run. Results are analyzed
to prove/disprove the hypothesis. The reader should realize that many
resources are invested in a test, resources for designing the test cases,
running the tests, and recording and analyzing results. A tester can justify
the expenditure of the resources by careful test design so that principle 2
is supported.

Principle 3. Test results should be inspected meticulously.

Testers need to carefully inspect and interpret test results. Several erro-
neous and costly scenarios may occur if care is not taken. For example:



292.2 Software Testing Principles |

• A failure may be overlooked, and the test may be granted a “pass”
status when in reality the software has failed the test. Testing may
continue based on erroneous test results. The defect may be revealed
at some later stage of testing, but in that case it may be more costly
and difficult to locate and repair.

• A failure may be suspected when in reality none exists. In this case
the test may be granted a “fail” status. Much time and effort may be
spent on trying to find the defect that does not exist. A careful re-
examination of the test results could finally indicate that no failure
has occurred.

• The outcome of a quality test may be misunderstood, resulting in
unnecessary rework, or oversight of a critical problem.

Principle 4. A test case must contain the expected output or result.

It is often obvious to the novice tester that test inputs must be part of a
test case. However, the test case is of no value unless there is an explicit
statement of the expected outputs or results, for example, a specific vari-
able value must be observed or a certain panel button that must light up.
Expected outputs allow the tester to determine (i) whether a defect has
been revealed, and (ii) pass/fail status for the test. It is very important to
have a correct statement of the output so that needless time is not spent
due to misconceptions about the outcome of a test. The specification of
test inputs and outputs should be part of test design activities.

In the case of testing for quality evaluation, it is useful for quality
goals to be expressed in quantitative terms in the requirements document
if possible, so that testers are able to compare actual software attributes
as determined by the tests with what was specified.

Principle 5. Test cases should be developed for both valid and invalid
input conditions.

A tester must not assume that the software under test will always be
provided with valid inputs. Inputs may be incorrect for several reasons.



30 | Testing Fundamentals

For example, software users may have misunderstandings, or lack infor-
mation about the nature of the inputs. They often make typographical
errors even when complete/correct information is available. Devices may
also provide invalid inputs due to erroneous conditions and malfunctions.
Use of test cases that are based on invalid inputs is very useful for re-
vealing defects since they may exercise the code in unexpected ways and
identify unexpected software behavior. Invalid inputs also help developers
and testers evaluate the robustness of the software, that is, its ability to
recover when unexpected events occur (in this case an erroneous input).

Principle 5 supports the need for the independent test group called
for in Principle 7 for the following reason. The developer of a software
component may be biased in the selection of test inputs for the component
and specify only valid inputs in the test cases to demonstrate that the
software works correctly. An independent tester is more apt to select in-
valid inputs as well.

Principle 6. The probability of the existence of additional defects in
a software component is proportional to the number of defects al-
ready detected in that component.

What this principle says is that the higher the number of defects already
detected in a component, the more likely it is to have additional defects
when it undergoes further testing. For example, if there are two compo-
nents A and B, and testers have found 20 defects in A and 3 defects in B,
then the probability of the existence of additional defects in A is higher
than B. This empirical observation may be due to several causes. Defects
often occur in clusters and often in code that has a high degree of com-
plexity and is poorly designed. In the case of such components developers
and testers need to decide whether to disregard the current version of the
component and work on a redesign, or plan to expend additional testing
resources on this component to insure it meets its requirements. This issue
is especially important for components that implement mission or safety
critical functions.

Principle 7. Testing should be carried out by a group that is inde-
pendent of the development group.



312.2 Software Testing Principles |

This principle holds true for psychological as well as practical reasons. It
is difficult for a developer to admit or conceive that software he/she has
created and developed can be faulty. Testers must realize that (i) devel-
opers have a great deal of pride in their work, and (ii) on a practical level
it may be difficult for them to conceptualize where defects could be found.
Even when tests fail, developers often have difficulty in locating the de-
fects since their mental model of the code may overshadow their view of
code as it exists in actuality. They may also have misconceptions or mis-
understandings concerning the requirements and specifications relating to
the software.

The requirement for an independent testing group can be interpreted
by an organization in several ways. The testing group could be imple-
mented as a completely separate functional entity in the organization.
Alternatively, testers could be members of a Software Quality Assurance
Group, or even be a specialized part of the development group, but in the
latter case especially, they need the capability to be objective. Reporting
to management that is separate from development can support their ob-
jectivity and independence. As a member of any of these groups, the prin-
cipal duties and training of the testers should lie in testing rather than in
development.

Finally, independence of the testing group does not call for an ad-
versarial relationship between developers and testers. The testers should
not play “gotcha” games with developers. The groups need to cooperate
so that software of the highest quality is released to the customer.

Principle 8. Tests must be repeatable and reusable.

Principle 2 calls for a tester to view his/her work as similar to that of an
experimental scientist. Principle 8 calls for experiments in the testing do-
main to require recording of the exact conditions of the test, any special
events that occurred, equipment used, and a careful accounting of the
results. This information is invaluable to the developers when the code is
returned for debugging so that they can duplicate test conditions. It is
also useful for tests that need to be repeated after defect repair. The repe-
tition and reuse of tests is also necessary during regression test (the re-
testing of software that has been modified) in the case of a new release



32 | Testing Fundamentals

of the software. Scientists expect experiments to be repeatable by others,
and testers should expect the same!

Principle 9. Testing should be planned.

Test plans should be developed for each level of testing, and objectives
for each level should be described in the associated plan. The objectives
should be stated as quantitatively as possible. Plans, with their precisely
specified objectives, are necessary to ensure that adequate time and re-
sources are allocated for testing tasks, and that testing can be monitored
and managed.

Test planning activities should be carried out throughout the software
life cycle (Principle 10). Test planning must be coordinated with project
planning. The test manager and project manager must work together to
coordinate activities. Testers cannot plan to test a component on a given
date unless the developers have it available on that date. Test risks must
be evaluated. For example, how probable are delays in delivery of soft-
ware components, which components are likely to be complex and dif-
ficult to test, do the testers need extra training with new tools? A test plan
template must be available to the test manager to guide development of
the plan according to organizational policies and standards. Careful test
planning avoids wasteful “throwaway” tests and unproductive and un-
planned “test–patch–retest” cycles that often lead to poor-quality soft-
ware and the inability to deliver software on time and within budget.

Principle 10. Testing activities should be integrated into the software
life cycle.

It is no longer feasible to postpone testing activities until after the code
has been written. Test planning activities as supported by Principle 10,
should be integrated into the software life cycle starting as early as in the
requirements analysis phase, and continue on throughout the software
life cycle in parallel with development activities. In addition to test plan-
ning, some other types of testing activities such as usability testing can



332.2 Software Testing Principles |

also be carried out early in the life cycle by using prototypes. These ac-
tivities can continue on until the software is delivered to the users. Or-
ganizations can use process models like the V-model or any others that
support the integration of test activities into the software life cycle [11].

Principle 11. Testing is a creative and challenging task [12].

Difficulties and challenges for the tester include the following:

• A tester needs to have comprehensive knowledge of the software en-
gineering discipline.

• A tester needs to have knowledge from both experience and education
as to how software is specified, designed, and developed.

• A tester needs to be able to manage many details.

• A tester needs to have knowledge of fault types and where faults of
a certain type might occur in code constructs.

• A tester needs to reason like a scientist and propose hypotheses that
relate to presence of specific types of defects.

• A tester needs to have a good grasp of the problem domain of the
software that he/she is testing. Familiarly with a domain may come
from educational, training, and work-related experiences.

• A tester needs to create and document test cases. To design the test
cases the tester must select inputs often from a very wide domain.
Those selected should have the highest probability of revealing a de-
fect (Principle 2). Familiarly with the domain is essential.

• A tester needs to design and record test procedures for running the
tests.

• A tester needs to plan for testing and allocate the proper resources.

• A tester needs to execute the tests and is responsible for recording
results.

• A tester needs to analyze test results and decide on success or failure
for a test. This involves understanding and keeping track of an enor-



34 | Testing Fundamentals

mous amount of detailed information. A tester may also be required
to collect and analyze test-related measurements.

• A tester needs to learn to use tools and keep abreast of the newest
test tool advances.

• A tester needs to work and cooperate with requirements engineers,
designers, and developers, and often must establish a working rela-
tionship with clients and users.

• A tester needs to be educated and trained in this specialized area and
often will be required to update his/her knowledge on a regular basis
due to changing technologies.

2 . 3 The Tester ’s Role in a Software Development Organizat ion

Testing is sometimes erroneously viewed as a destructive activity. The
tester’s job is to reveal defects, find weak points, inconsistent behavior,
and circumstances where the software does not work as expected. As a
tester you need to be comfortable with this role. Given the nature of the
tester’s tasks, you can see that it is difficult for developers to effectively
test their own code (Principles 3 and 8). Developers view their own code
as their creation, their “baby,” and they think that nothing could possibly
be wrong with it! This is not to say that testers and developers are ad-
versaries. In fact, to be most effective as a tester requires extensive pro-
gramming experience in order to understand how code is constructed,
and where, and what kind of, defects are likely to occur. Your goal as a
tester is to work with the developers to produce high-quality software
that meets the customers’ requirements. Teams of testers and developers
are very common in industry, and projects should have an appropriate
developer/tester ratio. The ratio will vary depending on available re-
sources, type of project, and TMM level. For example, an embedded real-
time system needs to have a lower developer/tester ratio (for example,
2/1) than a simple data base application (4/1 may be suitable). At higher
TMM levels where there is a well-defined testing group, the devel-
oper/tester ratio would tend to be on the lower end (for example 2/1
versus 4/1) because of the availability of tester resources. Even in this case,



352.3 The Tester ’s Role in a Software Development Organizat ion |

the nature of the project and project scheduling issues would impact on
the ratio.

In addition to cooperating with code developers, testers also need to
work along side with requirements engineers to ensure that requirements
are testable, and to plan for system and acceptance test (clients are also
involved in the latter). Testers also need to work with designers to plan
for integration and unit test. In addition, test managers will need to co-
operate with project managers in order to develop reasonable test plans,
and with upper management to provide input for the development and
maintenance of organizational testing standards, polices, and goals. Fi-
nally, testers also need to cooperate with software quality assurance staff
and software engineering process group members. In view of these re-
quirements for multiple working relationships, communication and team-
working skills are necessary for a successful career as a tester.

If you are employed by an organization that is assessed at TMM levels
1 or 2, you may find that there is no independent software test function
in your organization. Testers in this case may be a part of the development
group, but with special assignment to testing, or they may be part of the
software quality assurance group. In fact, even at levels 3 and higher of
the TMM the testers may not necessarily belong to a independent orga-
nizational entity, although that is the ideal case. However, testers should
always have managerial independence from developers as described in
Principle 8, and in the TMM at level 3. Testers are specialists, their main
function is to plan, execute, record, and analyze tests. They do not debug
software. When defects are detected during testing, software should be
returned to the developers who locate the defect and repair the code. The
developers have a detailed understanding of the code, and are the best
qualified staff to perform debugging.

Finally, testers need the support of management. Developers, ana-
lysts, and marketing staff need to realize that testers add value to a soft-
ware product in that they detect defects and evaluate quality as early as
possible in the software life cycle. This ensures that developers release
code with few or no defects, and that marketers can deliver software that
satisfies the customers’ requirements, and is reliable, usable, and correct.
Low-defect software also has the benefit of reducing costs such as support
calls, repairs to operational software, and ill will which may escalate into
legal action due to customer dissatisfaction. In view of their essential role,



36 | Testing Fundamentals

testers need to have a positive view of their work. Management must
support them in their efforts and recognize their contributions to the
organization.

K E Y T E R M S

Error

Failure

Fault

Metric

Quality

metric

Review

Software quality

Software quality assurance group

Test

Test bed

Test case

Test oracle

E X E R C I S E S

1. Review the definitions of terms in this chapter. Be sure to understand the dif-

ferences between errors, faults and, failures.

2. With respect to Principle 3—‘‘test results should be meticulously inspected’’—

why do you think this is important to the tester? Discuss any experiences you

have had where poor inspection of test results has led to delays in your testing

efforts.

3. Give arguments for/against an independent testing group in an organization.

Consider organizational size, resources, culture, and types of software systems

developed as factors in your argument.

4. Given the many challenges facing a tester, what types of skills do you believe

should be required of a person being hired as a test specialist. (You can compare

skill list with the list presented in Chapter 8.)

5. Why, according to Principle 5, is it important to develop test cases for both

valid and invalid input conditions?



372.3 The Tester ’s Role in a Software Development Organizat ion |

R E F E R E N C E S

[1] IEEE Standards Collection for Software Engineer-
ing, 1994 edition, copyright 1994 by IEEE, all rights
reserved.

[2] IEEE Standard Glossary of Software Engineering
Terminology (Std 610.12-1990), copyright 1990 by
IEEE, all rights reserved.

[3] J. Voas, “A Dynamic Failure Model for Propaga-
tion and Infection Analysis on Computer Programs,”
Ph.D. Thesis, College of William and Mary in Virginia,
May 1990.

[4] B. Beizer, Software Testing Techniques, second edi-
tion, Van Nostrand Reinhold, New York, 1990.

[5] W. Howden, “A survey of dynamic analysis meth-
ods,” In Software Testing and Validation Techniques,
second edition, E. Miller, and W. Howden, eds., IEEE
Computer Society Press, Los Alamitos, CA, 1981.

[6] R. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[7] IEEE Standard for a Software Quality Metrics
Methodology (IEEE Std 1061-1992), copyright 1993,
by IEEE, all rights reserved.

[8] G. Schulmeyer, “Software quality assurance met-
rics,” in Handbook of Software Quality Assurance, G.
Schulmeyer and J. McManus, eds., Van Nostrand
Reinhold, New York, pp. 318–342.

[9] G. Myers, The Art of Software Testing, John Wiley,
New York, 1979.

[10] A. Bertolino, “Software testing,” in Guide to the
Software Engineering Body of Knowledge, Trial ver-
sion, A. Abran, J. Moore, P. Bourque, R. Dupuis, eds.
IEEE Computer Society Press, Los Alamitos, CA, 2001.

[11] G. Daich, G. Price, B. Ragland, M. Dawood, Soft-
ware Test Technologies Report, August 1994, Soft-
ware Technology Support Center (STSC) Hill Air
Force Base, UT, August 1994.

[12] J. Whittaker, “What is software testing? and why
is it so hard?” IEEE Software, Jan./Feb. 2000,
pp. 70–79.



This page intentionally left blank 



3
D E F E C T S , H Y P O T H E S E S ,

A N D T E S T S

3 . 0 Origins of Defects

The term defect and its relationship to the terms error and failure in the
context of the software development domain has been discussed in Chap-
ter 2. Defects have detrimental affects on software users, and software
engineers work very hard to produce high-quality software with a low
number of defects. But even under the best of development circumstances
errors are made, resulting in defects being injected in the software during
the phases of the software life cycle. Defects as shown in Figure 3.1 stem
from the following sources [1,2]:

1. Education: The software engineer did not have the proper educa-
tional background to prepare the software artifact. She did not un-
derstand how to do something. For example, a software engineer who
did not understand the precedence order of operators in a particular
programming language could inject a defect in an equation that uses
the operators for a calculation.

2. Communication: The software engineer was not informed about
something by a colleague. For example, if engineer 1 and engineer 2



40 | Defects, Hypotheses, and Tests

Lack of Education
Poor communication
Oversight
Transcription
Immature process

Defect sources

Poor-quality software
User dissatisfaction

Impact on software artifacts

Impact from user’s views

Errors

Faults (defects)

Failures

FIG. 3.1

Origins of defects.

are working on interfacing modules, and engineer 1 does not inform
engineer 2 that a no error checking code will appear in the interfacing
module he is developing, engineer 2 might make an incorrect as-
sumption relating to the presence/absence of an error check, and a
defect will result.

3. Oversight: The software engineer omitted to do something. For ex-
ample, a software engineer might omit an initialization statement.

4. Transcription: The software engineer knows what to do, but makes
a mistake in doing it. A simple example is a variable name being
misspelled when entering the code.

5. Process: The process used by the software engineer misdirected her
actions. For example, a development process that did not allow suf-
ficient time for a detailed specification to be developed and reviewed
could lead to specification defects.

When defects are present due to one or more of these circumstances,
the software may fail, and the impact on the user ranges from a minor
inconvenience to rendering the software unfit for use. Our goal as testers



413.0 Origins of Defects |

is to discover these defects preferably before the software is in operation.
One of the ways we do this is by designing test cases that have a high
probability of revealing defects. How do we develop these test cases? One
approach is to think of software testing as an experimental activity. The
results of the test experiment are analyzed to determine whether the soft-
ware has behaved correctly. In this experimental scenario a tester develops
hypotheses about possible defects (see Principles 2 and 9). Test cases are
then designed based on the hypotheses. The tests are run and results an-
alyzed to prove, or disprove, the hypotheses.

Myers has a similar approach to testing. He describes the successful
test as one that reveals the presence of a (hypothesized) defect [3]. He
compares the role of a tester to that of a doctor who is in the process of
constructing a diagnosis for an ill patient. The doctor develops hypotheses
about possible illnesses using her knowledge of possible diseases, and the
patients’ symptoms. Tests are made in order to make the correct diag-
nosis. A successful test will reveal the problem and the doctor can begin
treatment. Completing the analogy of doctor and ill patient, one could
view defective software as the ill patient. Testers as doctors need to have
knowledge about possible defects (illnesses) in order to develop defect
hypotheses. They use the hypotheses to:

• design test cases;

• design test procedures;

• assemble test sets;

• select the testing levels (unit, integration, etc.)
appropriate for the tests;

• evaluate the results of the tests.

A successful testing experiment will prove the hypothesis is true—that is,
the hypothesized defect was present. Then the software can be repaired
(treated).

A very useful concept related to this discussion of defects, testing, and
diagnosis is that of a fault model.



42 | Defects, Hypotheses, and Tests

A fault (defect) model can be described as a link between the error made (e.g., a

missing requirement, a misunderstood design element, a typographical error), and

the fault/defect in the software.

Digital system engineers describe similar models that link physical
defects in digital components to electrical (logic) effects in the resulting
digital system [4,5]. Physical defects in the digital world may be due to
manufacturing errors, component wear-out, and/or environmental ef-
fects. The fault models are often used to generate a fault list or dictionary.
From that dictionary faults can be selected, and test inputs developed for
digital components. The effectiveness of a test can be evaluated in the
context of the fault model, and is related to the number of faults as ex-
pressed in the model, and those actually revealed by the test. This view
of test effectiveness (success) is similar to the view expressed by Myers
stated above.

Although software engineers are not concerned with physical defects,
and the relationships between software failures, software defects, and
their origins are not easily mapped, we often use the fault model concept
and fault lists accumulated in memory from years of experience to design
tests and for diagnosis tasks during fault localization (debugging) activi-
ties. A simple example of a fault model a software engineer might have
in memory is “an incorrect value for a variable was observed because the
precedence order for the arithmetic operators used to calculate its value
was incorrect.” This could be called “an incorrect operator precedence
order” fault. An error was made on the part of the programmer who did
not understand the order in which the arithmetic operators would execute
their operations. Some incorrect assumptions about the order were made.
The defect (fault) surfaced in the incorrect value of the variable. The prob-
able cause is a lack of education on the part of the programmer. Repairs
include changing the order of the operators or proper use of parentheses.
The tester with access to this fault model and the frequency of occurrence
of this type of fault could use this information as the basis for generating
fault hypotheses and test cases. This would ensure that adequate tests
were performed to uncover such faults.

In the past, fault models and fault lists have often been used by de-
velopers/testers in an informal manner, since many organizations did not
save or catalog defect-related information in an easily accessible form. To



433.1 Defect Classes, the Defect Repository, and Test Design |

increase the effectiveness of their testing and debugging processes, soft-
ware organizations need to initiate the creation of a defect database, or
defect repository. The defect repository concept supports storage and re-
trieval of defect data from all projects in a centrally accessible location.
A defect classification scheme is a necessary first step for developing the
repository. The defect repository can be organized by projects and for
all projects defects of each class are logged, along their frequency of oc-
currence, impact on operation, and any other useful comments. Defects
found both during reviews and execution-based testing should be cata-
loged. Supplementary information can be added to the defect repository,
for example, defect root causes (defect causal analysis is part of the rec-
ommended activities/tasks/responsibilities at higher levels of the TMM).
Staff members can use this data for test planning, test design, and
fault/defect diagnosis. The data can also be used for defect prevention and
process improvement efforts at higher levels of testing process maturity.

For organizations that are initiating the development of a defect re-
pository, there are many sources of information about defects, especially
defect classes, which are useful for cataloging this type of information.
For example, Beizer has an extensive discussion of defects types that he
calls a taxonomy of bugs [6]. He describes many defect types, for example,
requirements, structural, data, coding, interface, and test design defects.
The IEEE Standard Classification for Software Anomalies has a collec-
tion of classes of anomalies from all life cycle phases [7]. Grady describes
a defect classification scheme used at Hewlett-Packard [8]. Kaner et. al.
also contains an extensive listing of what the authors call an “outline
of common software errors” [9]. The defect categories described below
use a combination of these schemes. The focus is mainly on describing
those defect types that have an impact on the design and development of
execution-based tests.

3 . 1 Defect Classes, the Defect Repository, and Test Design

Defects can be classified in many ways. It is important for an organization
to adapt a single classification scheme and apply it to all projects. No
matter which classification scheme is selected, some defects will fit into
more than one class or category. Because of this problem, developers,



44 | Defects, Hypotheses, and Tests

testers, and SQA staff should try to be as consistent as possible when
recording defect data. The defect types and frequency of occurrence
should be used to guide test planning, and test design. Execution-based
testing strategies should be selected that have the strongest possibility of
detecting particular types of defects. It is important that tests for new and
modified software be designed to detect the most frequently occurring
defects. The reader should keep in mind that execution-based testing will
detect a large number of the defects that will be described; however, soft-
ware reviews as described in Chapter 10 are also an excellent testing tool
for detection of many of the defect types that will be discussed in the
following sections.

Defects, as described in this text, are assigned to four major classes
reflecting their point of origin in the software life cycle—the develop-
ment phase in which they were injected. These classes are: requirements/
specifications, design, code, and testing defects as summarized in Figure
3.2. It should be noted that these defect classes and associated subclasses
focus on defects that are the major focus of attention to execution-based
testers. The list does not include other defects types that are best found
in software reviews, for example, those defects related to conformance to
styles and standards. The review checklists in Chapter 10 focus on many
of these types of defects.

3 . 1 . 1 R e q u i r e m e n t s a n d S p e c i f i c a t i o n D e f e c t s

The beginning of the software life cycle is critical for ensuring high quality
in the software being developed. Defects injected in early phases can per-
sist and be very difficult to remove in later phases. Since many require-
ments documents are written using a natural language representation,
there are very often occurrences of ambiguous, contradictory, unclear,
redundant, and imprecise requirements. Specifications in many organi-
zations are also developed using natural language representations, and
these too are subject to the same types of problems as mentioned above.
However, over the past several years many organizations have introduced
the use of formal specification languages that, when accompanied by
tools, help to prevent incorrect descriptions of system behavior. Some
specific requirements/specification defects are:



453.1 Defect Classes, the Defect Repository, and Test Design |

Requirement/Specification
Defect Classes

Functional description
Feature
Feature interaction
Interface description

Design Defect Classes

Algorithmic and processing
Control, logic, and sequence
Data
Module interface description
External interface description

Coding Defect Classes

Algorithmic and processing
Control, logic, and sequence
Typographical data flow
Data 
Module interface
Code documentation
External hardware,

software 

Testing Defect Classes

Test Harness
Test design
Test procedure

Defect Repository

Defect classes
Severity
Occurences

Defect reports/analysis

Defect reports/analysis

Defect reports/analysis

Defect reports/analysis

FIG. 3.2

Defect classes and the defect repository.

1 . Func t i ona l Desc r i p t i on De fec t s

The overall description of what the product does, and how it should
behave (inputs/outputs), is incorrect, ambiguous, and/or incomplete.

2 . Fea tu re De fec t s

Features may be described as distinguishing characteristics of a software com-

ponent or system.



46 | Defects, Hypotheses, and Tests

Features refer to functional aspects of the software that map to functional
requirements as described by the users and clients. Features also map to
quality requirements such as performance and reliability. Feature defects
are due to feature descriptions that are missing, incorrect, incomplete, or
superfluous.

3 . Fea tu re In te rac t i on De fec t s

These are due to an incorrect description of how the features should in-
teract. For example, suppose one feature of a software system supports
adding a new customer to a customer database. This feature interacts with
another feature that categorizes the new customer. The classification fea-
ture impacts on where the storage algorithm places the new customer in
the database, and also affects another feature that periodically supports
sending advertising information to customers in a specific category. When
testing we certainly want to focus on the interactions between these
features.

4 . I n te r face Desc r i p t i on De fec t s

These are defects that occur in the description of how the target software
is to interface with external software, hardware, and users.

For detecting many functional description defects, black box testing
techniques, which are based on functional specifications of the software,
offer the best approach. In Chapter 4 the reader will be introduced to
several black box testing techniques such as equivalence class partition-
ing, boundary value analysis, state transition testing, and cause-and-effect
graphing, which are useful for detecting functional types of detects. Ran-
dom testing and error guessing are also useful for detecting these types of
defects. The reader should note that many of these types of defects can
be detected early in the life cycle by software reviews.

Black box–based tests can be planned at the unit, integration, system,
and acceptance levels to detect requirements/specification defects. Many
feature interaction and interfaces description defects are detected using
black box–based test designs at the integration and system levels.

3 . 1 . 2 D e s i g n D e f e c t s

Design defects occur when system components, interactions between sys-
tem components, interactions between the components and outside soft-



473.1 Defect Classes, the Defect Repository, and Test Design |

ware/hardware, or users are incorrectly designed. This covers defects in
the design of algorithms, control, logic, data elements, module interface
descriptions, and external software/hardware/user interface descriptions.
When describing these defects we assume that the detailed design descrip-
tion for the software modules is at the pseudo code level with processing
steps, data structures, input/output parameters, and major control struc-
tures defined. If module design is not described in such detail then many
of the defects types described here may be moved into the coding defects
class.

1 . A lgo r i t hm ic and Process ing De fec t s

These occur when the processing steps in the algorithm as described by
the pseudo code are incorrect. For example, the pseudo code may contain
a calculation that is incorrectly specified, or the processing steps in the
algorithm written in the pseudo code language may not be in the correct
order. In the latter case a step may be missing or a step may be duplicated.
Another example of a defect in this subclass is the omission of error con-
dition checks such as division by zero. In the case of algorithm reuse, a
designer may have selected an inappropriate algorithm for this problem
(it may not work for all cases).

2 . Con t ro l , Log i c , and Sequence De fec t s

Control defects occur when logic flow in the pseudo code is not correct.
For example, branching to soon, branching to late, or use of an incorrect
branching condition. Other examples in this subclass are unreachable
pseudo code elements, improper nesting, improper procedure or function
calls. Logic defects usually relate to incorrect use of logic operators, such
as less than (�), greater than (�), etc. These may be used incorrectly in
a Boolean expression controlling a branching instruction.

3 . Da ta De fec t s

These are associated with incorrect design of data structures. For exam-
ple, a record may be lacking a field, an incorrect type is assigned to a
variable or a field in a record, an array may not have the proper number
of elements assigned, or storage space may be allocated incorrectly. Soft-



48 | Defects, Hypotheses, and Tests

ware reviews and use of a data dictionary work well to reveal these types
of defects.

4 . Modu le In te r face Desc r i p t i on De fec t s

These are defects derived from, for example, using incorrect, and/or in-
consistent parameter types, an incorrect number of parameters, or an
incorrect ordering of parameters.

5 . Func t i ona l Desc r i p t i on De fec t s

The defects in this category include incorrect, missing, and/or unclear
design elements. For example, the design may not properly describe the
correct functionality of a module. These defects are best detected during
a design review.

6 . Ex te rna l I n te r face Desc r i p t i on De fec t s

These are derived from incorrect design descriptions for interfaces with
COTS components, external software systems, databases, and hardware
devices (e.g., I/O devices). Other examples are user interface description
defects where there are missing or improper commands, improper se-
quences of commands, lack of proper messages, and/or lack of feedback
messages for the user.

3 . 1 . 3 C o d i n g D e f e c t s

Coding defects are derived from errors in implementing the code. Coding
defects classes are closely related to design defect classes especially if
pseudo code has been used for detailed design. Some coding defects come
from a failure to understand programming language constructs, and mis-
communication with the designers. Others may have transcription or
omission origins. At times it may be difficult to classify a defect as a design
or as a coding defect. It is best to make a choice and be consistent when
the same defect arises again.

1 . A lgo r i t hm ic and Process ing De fec t s

Adding levels of programming detail to design, code-related algorithmic
and processing defects would now include unchecked overflow and



493.1 Defect Classes, the Defect Repository, and Test Design |

underflow conditions, comparing inappropriate data types, converting
one data type to another, incorrect ordering of arithmetic operators (per-
haps due to misunderstanding of the precedence of operators), misuse or
omission of parentheses, precision loss, and incorrect use of signs.

2 . Con t ro l , Log i c and Sequence De fec t s

On the coding level these would include incorrect expression of case state-
ments, incorrect iteration of loops (loop boundary problems), and missing
paths.

3 . Typograph i ca l De fec t s

These are principally syntax errors, for example, incorrect spelling of a
variable name, that are usually detected by a compiler, self-reviews, or
peer reviews.

4 . I n i t i a l i za t i on De fec t s

These occur when initialization statements are omitted or are incorrect.
This may occur because of misunderstandings or lack of communication
between programmers, and/or programmers and designers, carelessness,
or misunderstanding of the programming environment.

5 . Da ta - F l ow De fec t s

There are certain reasonable operational sequences that data should flow
through. For example, a variable should be initialized, before it is used
in a calculation or a condition. It should not be initialized twice before
there is an intermediate use. A variable should not be disregarded before
it is used. Occurrences of these suspicious variable uses in the code may,
or may not, cause anomalous behavior. Therefore, in the strictest sense
of the definition for the term “defect,” they may not be considered as true
instances of defects. However, their presence indicates an error has oc-
curred and a problem exists that needs to be addressed.

6 . Da ta De fec t s

These are indicated by incorrect implementation of data structures. For
example, the programmer may omit a field in a record, an incorrect type



50 | Defects, Hypotheses, and Tests

or access is assigned to a file, an array may not be allocated the proper
number of elements. Other data defects include flags, indices, and con-
stants set incorrectly.

7 . Modu le In te r face De fec t s

As in the case of module design elements, interface defects in the code
may be due to using incorrect or inconsistent parameter types, an incor-
rect number of parameters, or improper ordering of the parameters. In
addition to defects due to improper design, and improper implementation
of design, programmers may implement an incorrect sequence of calls or
calls to nonexistent modules.

8 . Code Documenta t i on De fec t s

When the code documentation does not reflect what the program actually
does, or is incomplete or ambiguous, this is called a code documentation
defect. Incomplete, unclear, incorrect, and out-of-date code documenta-
tion affects testing efforts. Testers may be misled by documentation de-
fects and thus reuse improper tests or design new tests that are not ap-
propriate for the code. Code reviews are the best tools to detect these
types of defects.

9 . Ex te rna l Hardware , So f tware In te r faces De fec t s

These defects arise from problems related to system calls, links to data-
bases, input/output sequences, memory usage, resource usage, interrupts
and exception handling, data exchanges with hardware, protocols, for-
mats, interfaces with build files, and timing sequences (race conditions
may result).

Many initialization, data flow, control, and logic defects that occur
in design and code are best addressed by white box testing techniques
applied at the unit (single-module) level. For example, data flow testing
is useful for revealing data flow defects, branch testing is useful for de-
tecting control defects, and loop testing helps to reveal loop-related de-
fects. White box testing approaches are dependent on knowledge of the
internal structure of the software, in contrast to black box approaches,
which are only dependent on behavioral specifications. The reader will
be introduced to several white box–based techniques in Chapter 5. Many
design and coding defects are also detected by using black box testing



513.2 Defect Examples: The Coin Problem |

techniques. For example, application of decision tables is very useful for
detecting errors in Boolean expressions. Black box tests as described in
Chapter 4 applied at the integration and system levels help to reveal ex-
ternal hardware and software interface defects. The author will stress
repeatedly throughout the text that a combination of both of these ap-
proaches is needed to reveal the many types of defects that are likely to
be found in software.

3 . 1 . 4 T e s t i n g D e f e c t s

Defects are not confined to code and its related artifacts. Test plans, test
cases, test harnesses, and test procedures can also contain defects. Defects
in test plans are best detected using review techniques.

1 . Tes t Harness De fec t s

In order to test software, especially at the unit and integration levels,
auxiliary code must be developed. This is called the test harness or scaf-
folding code. Chapter 6 has a more detailed discussion of the need for
this code. The test harness code should be carefully designed, imple-
mented, and tested since it a work product and much of this code can be
reused when new releases of the software are developed. Test harnesses
are subject to the same types of code and design defects that can be found
in all other types of software.

2 . Tes t Case Des ign and Tes t P rocedure De fec t s

These would encompass incorrect, incomplete, missing, inappropriate test
cases, and test procedures. These defects are again best detected in test
plan reviews as described in Chapter 10. Sometimes the defects are re-
vealed during the testing process itself by means of a careful analysis of
test conditions and test results. Repairs will then have to be made.

3 . 2 Defect Examples: The Coin Problem

The following examples illustrate some instances of the defect classes that
were discussed in the previous sections. A simple specification, a detailed
design description, and the resulting code are shown, and defects in each
are described. Note that these defects could be injected via one or more



52 | Defects, Hypotheses, and Tests

of the five defect sources discussed at the beginning of this chapter. Also
note that there may be more than one category that fits a given defect.

Figure 3.3 shown a sample informal specification for a simple pro-
gram that calculates the total monetary value of a set of coins. The
program could be a component of an interactive cash register system
to support retail store clerks. This simple example shows require-
ments/specification defects, functional description defects, and interface
description defects.

The functional description defects arise because the functional
description is ambiguous and incomplete. It does not state that the in-
put, number_of_coins, and the output, number_of_dollars and number
_of_cents, should all have values of zero or greater. The number_of_coins
cannot be negative, and the values in dollars and cents cannot be negative
in the real-world domain. As a consequence of these ambiguities and
specification incompleteness, a checking routine may be omitted from the
design, allowing the final program to accept negative values for the input
number_of_coins for each of the denominations, and consequently it may
calculate an invalid value for the results.

A more formally stated set of preconditions and postconditions
would be helpful here, and would address some of the problems with the
specification. These are also useful for designing black box tests.

A precondition is a condition that must be true in order for a software component

to operate properly.

In this case a useful precondition would be one that states for example:

number_of_coins ��0

A postcondition is a condition that must be true when a software component com-

pletes its operation properly.

A useful postcondition would be:

number_of_dollars, number_of_cents �� 0.

In addition, the functional description is unclear about the largest number
of coins of each denomination allowed, and the largest number of dollars
and cents allowed as output values.



533.2 Defect Examples: The Coin Problem |

FIG. 3.3

A sample specification with defects.

Interface description defects relate to the ambiguous and incomplete
description of user–software interaction. It is not clear from the specifi-
cation how the user interacts with the program to provide input, and how
the output is to be reported. Because of ambiguities in the user interaction
description the software may be difficult to use.

Likely origins for these types of specification defects lie in the nature
of the development process, and lack of proper education and training.
A poor-quality development process may not be allocating the proper
time and resources to specification development and review. In addition,
software engineers may not have the proper education and training to
develop a quality specification. All of these specification defects, if not
detected and repaired, will propagate to the design and coding phases.
Black box testing techniques, which we will study in Chapter 4, will help
to reveal many of these functional weaknesses.

Figure 3.4 shows the specification transformed in to a design descrip-
tion. There are numerous design defects, some due to the ambiguous and
incomplete nature of the specification; others are newly introduced.

Design defects include the following:

Control, logic, and sequencing defects. The defect in this subclass arises
from an incorrect “while” loop condition (should be less than or equal
to six)



54 | Defects, Hypotheses, and Tests

Design Description for Program calculate_coin_values

Program calculate_coin_values
number_of_coins is  integer
total_coin_value is integer
number_of_dollars is integer
number_of_cents is integer
coin_values is array of  six integers representing
each coin value in cents 
initialized to: 1,5,10,25,25,100
begin

initialize total_coin_value to zero
initialize loop_counter to one
while loop_counter is less then six
begin

output "enter number of coins"
read (number_of_coins )
total_coin_value = total_coin_value + 
number_of_coins * coin_value[loop_counter]
increment loop_counter

end
number_dollars =  total_coin_value/100
number_of_cents = total_coin_value - 100 * number_of_dollars
output (number_of_dollars, number_of_cents)
end

FIG. 3.4

A sample design specification with

defects.

Algorithmic, and processing defects. These arise from the lack of error
checks for incorrect and/or invalid inputs, lack of a path where users can
correct erroneous inputs, lack of a path for recovery from input errors.
The lack of an error check could also be counted as a functional design
defect since the design does not adequately describe the proper function-
ality for the program.

Data defects. This defect relates to an incorrect value for one of the
elements of the integer array, coin_values, which should read
1,5,10,25,50,100.



553.2 Defect Examples: The Coin Problem |

External interface description defects. These are defects arising from the
absence of input messages or prompts that introduce the program to the
user and request inputs. The user has no way of knowing in which order
the number of coins for each denomination must be input, and when to
stop inputting values. There is an absence of help messages, and feedback
for user if he wishes to change an input or learn the correct format and
order for inputting the number of coins. The output description and out-
put formatting is incomplete. There is no description of what the outputs
means in terms of the problem domain. The user will note that two values
are output, but has no clue as to their meaning.

The control and logic design defects are best addressed by white box–
based tests, (condition/branch testing, loop testing). These other design
defects will need a combination of white and black box testing techniques
for detection.

Figure 3.5 shows the code for the coin problem in a “C-like” pro-
gramming language. Without effective reviews the specification and de-
sign defects could propagate to the code. Here additional defects have
been introduced in the coding phase.

Control, logic, and sequence defects. These include the loop variable incre-
ment step which is out of the scope of the loop. Note that incorrect loop
condition (i � 6) is carried over from design and should be counted as a
design defect.

Algorithmic and processing defects. The division operator may cause prob-
lems if negative values are divided, although this problem could be elim-
inated with an input check.

Data Flow defects. The variable total_coin_value is not initialized. It is used
before it is defined. (This might also be considered a data defect.)

Data Defects. The error in initializing the array coin_values is carried over
from design and should be counted as a design defect.

External Hardware, Software Interface Defects. The call to the external func-
tion “scanf” is incorrect. The address of the variable must be provided
(&number_of_coins).

Code Documentation Defects. The documentation that accompanies this
code is incomplete and ambiguous. It reflects the deficiencies in the ex-
ternal interface description and other defects that occurred during speci-



56 | Defects, Hypotheses, and Tests

/*****************************************************************
program calculate_coin_values  calculates the dollar and cents 
value of a set of coins of different dominations input by the user
denominations are pennies, nickels, dimes, quarters, half dollars,
and dollars
*****************************************************************/
main ()
{
int total_coin_value;
int number_of_coins = 0;
int number_of_dollars = 0;
int number_of-cents = 0;
int coin_values = {1,5,10,25,25,100};
{
int  i = 1;
while ( i < 6)
{

printf("input number of coins\n");
scanf ("%d", number_of_coins);
total_coin_value = total_coin_value +
 (number_of_coins * coin_value{i]);

}
i = i + 1;
number_of_dollars =  total_coin_value/100;
number_of_cents = total_coin_value - (100 * number_of_dollars);
printf("%d\n", number_of_dollars);
printf("%d\n", number_of-cents);
}

/****************************************************************/

FIG. 3.5

A code example with defects.

fication and design. Vital information is missing for anyone who will need
to repair, maintain or reuse this code.

The control, logic, and sequence, data flow defects found in this ex-
ample could be detected by using a combination of white and black box
testing techniques. Black box tests may work well to reveal the algorith-
mic and data defects. The code documentation defects require a code
review for detection. The external software interface defect would prob-
ably be caught by a good compiler.

The poor quality of this small program is due to defects injected dur-
ing several of the life cycle phases with probable causes ranging from lack
of education, a poor process, to oversight on the part of the designers and



573.3 Developer/Tester Support for Developing a Defect Repository |

developers. Even though it implements a simple function the program is
unusable because of the nature of the defects it contains. Such software
is not acceptable to users; as testers we must make use of all our static
and dynamic testing tools as described in subsequent chapters to ensure
that such poor-quality software is not delivered to our user/client group.
We must work with analysts, designers and code developers to ensure
that quality issues are addressed early the software life cycle. We must
also catalog defects and try to eliminate them by improving education,
training, communication, and process.

3 . 3 Developer/Tester Support for Developing a Defect Repository

The focus of this chapter is to show with examples some of the most
common types of defects that occur during software development. It is
important if you are a member of a test organization to illustrate to man-
agement and your colleagues the benefits of developing a defect repository
to store defect information. As software engineers and test specialists we
should follow the examples of engineers in other disciplines who have
realized the usefulness of defect data. A requirement for repository de-
velopment should be a part of testing and/or debugging policy statements.
You begin with development of a defect classification scheme and then
initiate the collection defect data from organizational projects. Forms and
templates will need to be designed to collect the data. Examples are the
test incident reports as described in Chapter 7, and defect fix reports as
described in Chapter 4. You will need to be conscientious about recording
each defect after testing, and also recording the frequency of occurrence
for each of the defect types. Defect monitoring should continue for each
on-going project. The distribution of defects will change as you make
changes in your processes. The defect data is useful for test planning, a
TMM level 2 maturity goal. It helps you to select applicable testing tech-
niques, design (and reuse) the test cases you need, and allocate the amount
of resources you will need to devote to detecting and removing these
defects. This in turn will allow you to estimate testing schedules and costs.
The defect data can support debugging activities as well. In fact, as Figure
3.6 shows, a defect repository can help to support achievement and con-
tinuous implementation of several TMM maturity goals including con-



58 | Defects, Hypotheses, and Tests

Defect repository

Test planning
and test case
development

Controlling
and monitoring

Defect
prevention

Quality
evaluation
and control

Test
measurement

Test process
improvement

Supports TMM maturity goals

FIG. 3.6

The defect repository, and support for

TMM maturity goals.

trolling and monitoring of test, software quality evaluation and control,
test measurement, and test process improvement. Chapter 13 will illus-
trate the application of this data to defect prevention activities and process
improvement. Other chapters will describe the role of defect data in vari-
ous testing activities.

K E Y T E R M S

Fault model

Feature

Precondition

Postcondition

E X E R C I S E S

1. What are the typical origins of defects? From your own personal experiences

what are the major sources of defects in the software artifacts that you have

developed?



593.3 Developer/Tester Support for Developing a Defect Repository |

2. Programmer A and Programmer B are working on a group of interfacing modules.

Programmer A tends to be a poor communicator and does not get along well with

Programmer B. Due to this situation, what types of defects are likely to surface

in these interfacing modules? What are the likely defect origins?

3. Suppose you are a member of a team that was designing a defect repository.

What organizational approach would you suggest and why? What information do

you think should be associated with each defect? Why is this information useful,

and who would use it?

4. What type of defect classification scheme is used by your university or orga-

nization? How would you compare it to the classification scheme used in this text

for clarity, learnability, and ease of use?

5. Suppose you were reviewing a requirements document and noted that a feature

was described incompletely. How would you classify this defect? How would you

insure that it was corrected?

6. Suppose you are testing a code component and you discover a defect: it cal-

culates an output variable incorrectly. (a) How would you classify this defect?

(b) What are the likely causes of this defect? (c) What steps could have been

taken to prevent this type of defect from propagating to the code?

7. Suppose you are testing a code component and you find a mismatch in the

order of parameters for two of the code procedures. Address the same three items

that appear in question 6 for this scenario.

R E F E R E N C E S

[1] J. Gale, J. Tirso, C. Burchfiled, “Implementing the
defect prevention process in the MVS interactive pro-
gramming organization”, IBM Systems Journal,
Vol. 29, No. 1, 1990.

[2] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.

[3] G. Myers, The Art of Software Testing, John Wiley,
New York, 1979.

[4] M. Abramovici, M. Brever, A. Friedman, Digital
System Testing and Testable Design, Computer Sci-
ence Press, New York, 1990.

[5] B. Wilkins, Principles of Testing in VSLI Circuits
and Systems in Silicon, A. Brown, ed., McGraw-Hill,
New York, 1991, pp. 222–250.

[6] B. Beizer, Software Testing Techniques, second edi-
tion, Van Nostrand Reinhold, New York, 1990.

[7] IEEE Standard Classification for Software Anom-
alies (IEEE Std. 1044-1993), copyright 1994 by IEEE,
all rights reserved.

[8] R. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
Englewoood Cliffs, NJ, 1992.

[9] C. Kaner, J. Falk, H. Nguyen, Testing Computer
Software, second edition, Van Nostrand Reinhold,
New York, 1993.



This page intentionally left blank 



4
S T R A T E G I E S A N D

M E T H O D S F O R T E S T

C A S E D E S I G N I

4 . 0 Introduction to Testing Design Strategies

As a reader of this text, you have a goal to learn more about testing and
how to become a good tester. You might be a student at a university who
has completed some software engineering courses. Upon completing your
education you would like to enter the profession of test specialist. Or you
might be employed by an organization that has test process improvement
as a company goal. On the other hand, you may be a consultant who
wants to learn more about testing to advise your clients. It may be that
you play several of these roles. You might be asking yourself, Where do
I begin to learn more about testing? What areas of testing are important?
Which topics need to be addressed first? The Testing Maturity Model
provides some answers to these questions. It can serve as a learning tool,
or framework, to learn about testing. Support for this usage of the TMM
lies in its structure. It introduces both the technical and managerial aspects
of testing in a manner that allows for a natural evolution of the testing
process, both on the personal and organizational levels.



62 | Strategies and Methods for Test Case Design I

In this chapter we begin the study of testing concepts using the TMM
as a learning framework. We begin the development of testing skills nec-
essary to support achievement of the maturity goals at levels 2–3 of the
Testing Maturity Model. TMM level 2 has three maturity goals, two of
which are managerial in nature. These will be discussed in subsequent
chapters. The technically oriented maturity goal at level 2 which calls for
an organization to “institutionalize basic testing techniques and methods”
addresses important and basic technical issues related to execution-based
testing. Note that this goal is introduced at a low level of the TMM,
indicating its importance as a basic building block upon which additional
testing strengths can be built. In order to satisfy this maturity goal test
specialists in an organization need to acquire technical knowledge basic
to testing and apply it to organizational projects.

Chapters 4 and 5 introduce you to fundamental test-related technical
concepts related to execution-based testing. The exercises at the end of
the chapter help to prepare you for their application to real-world prob-
lems. Testing strategies and methods are discussed that are both basic and
practical. Consistent application of these strategies, methods, and tech-
niques by testers across the whole organization will support test process
evolution to higher maturity levels, and can lead to improved software
quality.

4 . 1 The Smart Tester

Software components have defects, no matter how well our defect pre-
vention activities are implemented. Developers cannot prevent/eliminate
all defects during development. Therefore, software must be tested before
it is delivered to users. It is the responsibility of the testers to design tests
that (i) reveal defects, and (ii) can be used to evaluate software perfor-
mance, usabilty, and reliability. To achieve these goals, testers must select
a finite number of test cases, often from a very large execution domain.
Unfortunately, testing is usually performed under budget and time con-
straints. Testers often are subject to enormous pressures from manage-
ment and marketing because testing is not well planned, and expectations
are unrealistic. The smart tester must plan for testing, select the test cases,
and monitor the process to insure that the resources and time allocated



634.2 Test Case Design Strategies |

for the job are utilized effectively. These are formidable tasks, and to carry
them out effectively testers need proper education and training and the
ability to enlist management support.

Novice testers, taking their responsibilities seriously, might try to test
a module or component using all possible inputs and exercise all possible
software structures. Using this approach, they reason, will enable them
to detect all defects. However an informed and educated tester knows
that is not a realistic or economically feasible goal. Another approach
might be for the tester to select test inputs at random, hoping that these
tests will reveal critical defects. Some testing experts believe that randomly
generated test inputs have a poor performance record [1]. Others disagree,
for example, Duran [2]. Additional discussions are found in Chen [3],
and Gutjahr [4].

The author believes that goal of the smart tester is to understand the
functionality, input/output domain, and the environment of use for the
code being tested. For certain types of testing, the tester must also under-
stand in detail how the code is constructed. Finally, a smart tester needs
to use knowledge of the types of defects that are commonly injected dur-
ing development or maintenance of this type of software. Using this in-
formation, the smart tester must then intelligently select a subset of test
inputs as well as combinations of test inputs that she believes have the
greatest possibility of revealing defects within the conditions and con-
straints placed on the testing process. This takes time and effort, and the
tester must chose carefully to maximize use of resources [1,3,5]. This
chapter, as well as the next, describe strategies and practical methods to
help you design test cases so that you can become a smart tester.

4 . 2 Test Case Design Strategies

A smart tester who wants to maximize use of time and resources knows
that she needs to develop what we will call effective test cases for
execution-based testing. By an effective test case we mean one that has a
good possibility of revealing a defect (see Principle 2 in Chapter 2). The
ability to develop effective test cases is important to an organization
evolving toward a higher-quality testing process. It has many positive
consequences. For example, if test cases are effective there is (i) a greater



64 | Strategies and Methods for Test Case Design I

probability of detecting defects, (ii) a more efficient use of organizational
resources, (iii) a higher probability for test reuse, (iv) closer adherence to
testing and project schedules and budgets, and, (v) the possibility for de-
livery of a higher-quality software product. What are the approaches a
tester should use to design effective test cases? To answer the question we
must adopt the view that software is an engineered product. Given this
view there are two basic strategies that can be used to design test cases.
These are called the black box (sometimes called functional or specifica-
tion) and white box (sometimes called clear or glassbox) test strategies.
The approaches are summarized in Figure 4.1.

Using the black box approach, a tester considers the software-under-
test to be an opaque box. There is no knowledge of its inner structure
(i.e., how it works). The tester only has knowledge of what it does. The
size of the software-under-test using this approach can vary from a simple
module, member function, or object cluster to a subsystem or a complete
software system. The description of behavior or functionality for the
software-under-test may come from a formal specification, an Input/Pro-
cess/Output Diagram (IPO), or a well-defined set of pre and post condi-
tions. Another source for information is a requirements specification doc-
ument that usually describes the functionality of the software-under-test
and its inputs and expected outputs. The tester provides the specified
inputs to the software-under-test, runs the test and then determines if the
outputs produced are equivalent to those in the specification. Because the
black box approach only considers software behavior and functionality,
it is often called functional, or specification-based testing. This approach
is especially useful for revealing requirements and specification defects.

The white box approach focuses on the inner structure of the software
to be tested. To design test cases using this strategy the tester must have
a knowledge of that structure. The code, or a suitable pseudo codelike
representation must be available. The tester selects test cases to exercise
specific internal structural elements to determine if they are working prop-
erly. For example, test cases are often designed to exercise all statements
or true/false branches that occur in a module or member function. Since
designing, executing, and analyzing the results of white box testing is very
time consuming, this strategy is usually applied to smaller-sized pieces of
software such as a module or member function. The reasons for the size



654.2 Test Case Design Strategies |

Test
Strategy

Tester’s
View

Knowledge
Sources Methods

Black box

White box

Requirements
document
Specifications
Domain knowledge
Defect analysis
data

Inputs

Outputs

High-level design
Detailed design
Control flow
graphs
Cyclomatic
complexity

Equivalence class
partitioning
Boundary value analysis
State transition testing
Cause and effect graphing
Error guessing

Statement testing
Branch testing
Path testing
Data flow testing
Mutation testing
Loop  testing

FIG. 4.1

The two basic testing strategies.

restriction will become more apparent in Chapter 5 where the white box
strategy is described in more detail. White box testing methods are es-
pecially useful for revealing design and code-based control, logic and se-
quence defects, initialization defects, and data flow defects.

The smart tester knows that to achieve the goal of providing users
with low-defect, high-quality software, both of these strategies should be
used to design test cases. Both support the tester with the task of selecting
the finite number of test cases that will be applied during test. Neither
approach by itself is guaranteed to reveal all defects types we have studied
in Chapter 3. The approaches complement each other; each may be useful
for revealing certain types of defects. With a suite of test cases designed
using both strategies the tester increases the chances of revealing the many
different type of defects in the software-under-test. The tester will also
have an effective set of reusable test cases for regression testing (re-test
after changes), and for testing new releases of the software.

There is a great deal of material to introduce to the reader relating
to both of these strategies. To facilitate the learning process, the material
has been partitioned into two chapters. This chapter focuses on black box
methods, and Chapter 5 will describe white box methods and how to
apply them to design test cases.



66 | Strategies and Methods for Test Case Design I

4 . 3 Using the Black Box Approach to Test Case Design

Given the black box test strategy where we are considering only inputs
and outputs as a basis for designing test cases, how do we choose a suit-
able set of inputs from the set of all possible valid and invalid inputs?
Keep in mind that infinite time and resources are not available to ex-
haustively test all possible inputs. This is prohibitively expensive even if
the target software is a simple software unit. As a example, suppose you
tried to test a single procedure that calculates the square root of a number.
If you were to exhaustively test it you would have to try all positive input
values. This is daunting enough! But, what about all negative numbers,
fractions? These are also possible inputs. The number of test cases would
rise rapidly to the point of infeasibilty. The goal for the smart tester is to
effectively use the resources available by developing a set of test cases that
gives the maximum yield of defects for the time and effort spent. To help
achieve this goal using the black box approach we can select from several
methods. Very often combinations of the methods are used to detect
different types of defects. Some methods have greater practicality than
others.

4 . 4 Random Testing

Each software module or system has an input domain from which test
input data is selected. If a tester randomly selects inputs from the domain,
this is called random testing. For example, if the valid input domain for
a module is all positive integers between 1 and 100, the tester using this
approach would randomly, or unsystematically, select values from within
that domain; for example, the values 55, 24, 3 might be chosen. Given
this approach, some of the issues that remain open are the following:

• Are the three values adequate to show that the module meets its spec-
ification when the tests are run? Should additional or fewer values be
used to make the most effective use of resources?



674.5 Equivalence Class Part it ioning |

• Are there any input values, other than those selected, more likely to
reveal defects? For example, should positive integers at the beginning
or end of the domain be specifically selected as inputs?

• Should any values outside the valid domain be used as test inputs?
For example, should test data include floating point values, negative
values, or integer values greater than 100?

More structured approaches to black box test design address these issues.
Use of random test inputs may save some of the time and effort that

more thoughtful test input selection methods require. However, the reader
should keep in mind that according to many testing experts, selecting test
inputs randomly has very little chance of producing an effective set of test
data [1]. There has been much discussion in the testing world about
whether such a statement is accurate. The relative effectiveness of random
versus a more structured approach to generating test inputs has been the
subject of many research papers. Readers should refer to references [2–4]
for some of these discussions. The remainder of this chapter and the next
will illustrate more structured approaches to test case design and selection
of inputs. As a final note there are tools that generate random test data
for stress tests. This type of testing can be very useful especially at the
system level. Usually the tester specifies a range for the random value
generator, or the test inputs are generated according to a statistical dis-
tribution associated with a pattern of usage.

4 . 5 Equivalence Class Part it ioning

If a tester is viewing the software-under-test as a black box with well-
defined inputs and outputs, a good approach to selecting test inputs is to
use a method called equivalence class partitioning. Equivalence class par-
titioning results in a partitioning of the input domain of the software-
under-test. The technique can also be used to partition the output domain,
but this is not a common usage. The finite number of partitions or equiv-
alence classes that result allow the tester to select a given member of an
equivalence class as a representative of that class. It is assumed that all
members of an equivalence class are processed in an equivalent way by
the target software.



68 | Strategies and Methods for Test Case Design I

Using equivalence class partitioning a test value in a particular class
is equivalent to a test value of any other member of that class. Therefore,
if one test case in a particular equivalence class reveals a defect, all the
other test cases based on that class would be expected to reveal the same
defect. We can also say that if a test case in a given equivalence class did
not detect a particular type of defect, then no other test case based on
that class would detect the defect (unless a subset of the equivalence class
falls into another equivalence class, since classes may overlap in some
cases). A more formal discussion of equivalence class partitioning is given
in Beizer [5].

Based on this discussion of equivalence class partitioning we can say
that the partitioning of the input domain for the software-under-test using
this technique has the following advantages:

1. It eliminates the need for exhaustive testing, which is not feasible.
2. It guides a tester in selecting a subset of test inputs with a high prob-

ability of detecting a defect.
3. It allows a tester to cover a larger domain of inputs/outputs with a

smaller subset selected from an equivalence class.

Most equivalence class partitioning takes place for the input domain.
How does the tester identify equivalence classes for the input domain?
One approach is to use a set of what Glen Myers calls “interesting” input
conditions [1]. The input conditions usually come from a description in
the specification of the software to be tested. The tester uses the conditions
to partition the input domain into equivalence classes and then develops
a set of tests cases to cover (include) all the classes. Given that only the
information in an input/output specification is needed, the tester can begin
to develop black box tests for software early in the software life cycle in
parallel with analysis activities (see Principle 11, Chapter 2). The tester
and the analyst interact during the analysis phase to develop (i) a set of
testable requirements, and (ii) a correct and complete input/output spec-
ification. From these the tester develops, (i) a high-level test plan, and
(ii) a preliminary set of black box test cases for the system. Both the plan
and the test cases undergo further development in subsequent life cycle
phases. The V-Model as described in Chapter 8 supports this approach.

There are several important points related to equivalence class par-
titioning that should be made to complete this discussion.



694.5 Equivalence Class Part it ioning |

1. The tester must consider both valid and invalid equivalence classes.
Invalid classes represent erroneous or unexpected inputs.

2. Equivalence classes may also be selected for output conditions.
3. The derivation of input or outputs equivalence classes is a heuristic

process. The conditions that are described in the following para-
graphs only give the tester guidelines for identifying the partitions.
There are no hard and fast rules. Given the same set of conditions,
individual testers may make different choices of equivalence classes.
As a tester gains experience he is more able to select equivalence
classes with confidence.

4. In some cases it is difficult for the tester to identify equivalence classes.
The conditions/boundaries that help to define classes may be absent,
or obscure, or there may seem to be a very large or very small number
of equivalence classes for the problem domain. These difficulties may
arise from an ambiguous, contradictory, incorrect, or incomplete
specification and/or requirements description. It is the duty of the
tester to seek out the analysts and meet with them to clarify these
documents. Additional contact with the user/client group may be re-
quired. A tester should also realize that for some software problem
domains defining equivalence classes is inherently difficult, for ex-
ample, software that needs to utilize the tax code.

Myers suggests the following conditions as guidelines for selecting
input equivalence classes [1]. Note that a condition is usually associated
with a particular variable. We treat each condition separately. Test cases,
when developed, may cover multiple conditions and multiple variables.

List of Condit ions

1. ‘‘If an input condition for the software-under-test is specified as a
range of values, select one valid equivalence class that covers the al-
lowed range and two invalid equivalence classes, one outside each
end of the range.’’

For example, suppose the specification for a module says that an
input, the length of a widget in millimeters, lies in the range 1–499;
then select one valid equivalence class that includes all values from 1
to 499. Select a second equivalence class that consists of all values



70 | Strategies and Methods for Test Case Design I

less than 1, and a third equivalence class that consists of all values
greater than 499.

2. ‘‘If an input condition for the software-under-test is specified as a
number of values, then select one valid equivalence class that includes
the allowed number of values and two invalid equivalence classes that
are outside each end of the allowed number.’’

For example, if the specification for a real estate-related module
say that a house can have one to four owners, then we select one valid
equivalence class that includes all the valid number of owners, and
then two invalid equivalence classes for less than one owner and more
than four owners.

3. ‘‘If an input condition for the software-under-test is specified as a set
of valid input values, then select one valid equivalence class that con-
tains all the members of the set and one invalid equivalence class for
any value outside the set.’’

For example, if the specification for a paint module states that
the colors RED, BLUE, GREEN and YELLOW are allowed as inputs,
then select one valid equivalence class that includes the set RED,
BLUE, GREEN and YELLOW, and one invalid equivalence class for
all other inputs.

4. ‘‘If an input condition for the software-under-test is specified as a
“must be” condition, select one valid equivalence class to represent
the “must be” condition and one invalid class that does not include
the “must be” condition.’’

For example, if the specification for a module states that the first
character of a part identifier must be a letter, then select one valid
equivalence class where the first character is a letter, and one invalid
class where the first character is not a letter.

5. ‘‘If the input specification or any other information leads to the belief
that an element in an equivalence class is not handled in an identical
way by the software-under-test, then the class should be further par-
titioned into smaller equivalence classes.’’

To show how equivalence classes can be derived from a specification,
consider an example in Figure 4.2. This is a specification for a module
that calculates a square root.

The specification describes for the tester conditions relevant to the



714.5 Equivalence Class Part it ioning |

Function square_root
message (x:real)
when x >�0.0
reply (y:real)

where y >�0.0 & approximately (y*y,x)
otherwise reply exception imaginary_square_root

end function

FIG. 4.2

A specification of a square root

function.

input/output variables x and y. The input conditions are that the variable
x must be a real number and be equal to or greater than 0.0. The con-
ditions for the output variable y are that it must be a real number equal
to or greater than 0.0, whose square is approximately equal to x. If x is
not equal to or greater than 0.0, then an exception is raised. From this
information the tester can easily generate both invalid and valid equiva-
lence classes and boundaries. For example, input equivalence classes for
this module are the following:

EC1. The input variable x is real, valid.

EC2. The input variable x is not real, invalid.

EC3. The value of x is greater than 0.0, valid.

EC4. The value of x is less than 0.0, invalid.

Because many organizations now use some type of formal or semiformal
specifications, testers have a reliable source for applying the input/output
conditions described by Myers.

After the equivalence classes have been identified in this way, the next
step in test case design is the development of the actual test cases. A good
approach includes the following steps.

1. Each equivalence class should be assigned a unique identifier. A sim-
ple integer is sufficient.

2. Develop test cases for all valid equivalence classes until all have been
covered by (included in) a test case. A given test case may cover more
than one equivalence class.



72 | Strategies and Methods for Test Case Design I

3. Develop test cases for all invalid equivalence classes until all have
been covered individually. This is to insure that one invalid case does
not mask the effect of another or prevent the execution of another.

An example of applying equivalence class partitioning will be shown
in the next section.

4 . 6 Boundary Value Analysis

Equivalence class partitioning gives the tester a useful tool with which
to develop black box based-test cases for the software-under-test. The
method requires that a tester has access to a specification of input/output
behavior for the target software. The test cases developed based on equiv-
alence class partitioning can be strengthened by use of an another tech-
nique called boundary value analysis. With experience, testers soon re-
alize that many defects occur directly on, and above and below, the edges
of equivalence classes. Test cases that consider these boundaries on both
the input and output spaces as shown in Figure 4.3 are often valuable in
revealing defects.

Whereas equivalence class partitioning directs the tester to select test
cases from any element of an equivalence class, boundary value analysis
requires that the tester select elements close to the edges, so that both the
upper and lower edges of an equivalence class are covered by test cases.
As in the case of equivalence class partitioning, the ability to develop high-
quality test cases with the use of boundary values requires experience.
The rules-of-thumb described below are useful for getting started with
boundary value analysis.

1. If an input condition for the software-under-test is specified as a range
of values, develop valid test cases for the ends of the range, and in-
valid test cases for possibilities just above and below the ends of the
range.

For example if a specification states that an input value for a
module must lie in the range between �1.0 and �1.0, valid tests
that include values for ends of the range, as well as invalid test cases
for values just above and below the ends, should be included. This
would result in input values of �1.0, �1.1, and 1.0, 1.1.



734.7 An Example of the Appl icat ion of Equivalence Class Part it ioning |

Equivalence partition

Boundary Boundary

FIG. 4.3

Boundaries of an equivalence

partition.

2. If an input condition for the software-under-test is specified as a num-
ber of values, develop valid test cases for the minimum and maximum
numbers as well as invalid test cases that include one lesser and one
greater than the maximum and minimum.

For example, for the real-estate module mentioned previously
that specified a house can have one to four owners, tests that include
0,1 owners and 4,5 owners would be developed.

The following is an example of applying boundary value analysis
to output equivalence classes. Suppose a table of 1 to 100 values is
to be produced by a module. The tester should select input data to
generate an output table of size 0,1, and 100 values, and if possible
101 values.

3. If the input or output of the software-under-test is an ordered set,
such as a table or a linear list, develop tests that focus on the first and
last elements of the set.

It is important for the tester to keep in mind that equivalence class
partitioning and boundary value analysis apply to testing both inputs and
outputs of the software-under-test, and, most importantly, conditions are
not combined for equivalence class partitioning or boundary value anal-
ysis. Each condition is considered separately, and test cases are developed
to insure coverage of all the individual conditions. An example follows.

4 . 7 An Example of the Appl icat ion of Equivalence Class

Part it ioning and Boundary Value Analysis

Suppose we are testing a module that allows a user to enter new widget
identifiers into a widget data base. We will focus only on selecting equiv-



74 | Strategies and Methods for Test Case Design I

alence classes and boundary values for the inputs. The input specification
for the module states that a widget identifier should consist of 3–15 al-
phanumeric characters of which the first two must be letters. We have
three separate conditions that apply to the input: (i) it must consist of
alphanumeric characters, (ii) the range for the total number of characters
is between 3 and 15, and, (iii) the first two characters must be letters.

Our approach to designing the test cases is as follows. First we will
identify input equivalence classes and give them each an identifier. Then
we will augment these with the results from boundary value analysis.
Tables will be used to organize and record our findings. We will label the
equivalence classes with an identifier ECxxx, where xxx is an integer
whose value is one or greater. Each class will also be categorized as valid
or invalid for the input domain.

First we consider condition 1, the requirement for alphanumeric char-
acters. This is a “must be” condition. We derive two equivalence classes.

EC1. Part name is alphanumeric, valid.

EC2. Part name is not alphanumeric, invalid.

Then we treat condition 2, the range of allowed characters 3–15.

EC3. The widget identifier has between 3 and 15 characters, valid.

EC4. The widget identifier has less than 3 characters, invalid.

EC5. The widget identifier has greater than 15 characters, invalid.

Finally we treat the “must be” case for the first two characters.

EC6. The first 2 characters are letters, valid.

EC7. The first 2 characters are not letters, invalid.

Note that each condition was considered separately. Conditions are
not combined to select equivalence classes. The tester may find later on
that a specific test case covers more than one equivalence class.

The equivalence classes selected may be recorded in the form of a
table as shown in Table 4.1. By inspecting such a table the tester can



754.7 An Example of the Appl icat ion of Equivalence Class Part it ioning |

Condition

Valid equivalence

classes

Invalid equivalence

classes

1 EC1 EC2

2 EC3 EC4, EC5

3 EC6 EC7

TABLE 4 .1

Example equivalence class reporting

table.

confirm that all the conditions and associated valid and invalid equiva-
lence classes have been considered.

Boundary value analysis is now used to refine the results of equiva-
lence class partitioning. The boundaries to focus on are those in the al-
lowed length for the widget identifier. An experienced tester knows that
the module could have defects related to handling widget identifiers that
are of length equal to, and directly adjacent to, the lower boundary of 3
and the upper boundary of 15. A simple set of abbreviations can be used
to represent the bounds groups. For example:

BLB—a value just below the lower bound

LB—the value on the lower boundary

ALB—a value just above the lower boundary

BUB—a value just below the upper bound

UB—the value on the upper bound

AUB—a value just above the upper bound

For our example module the values for the bounds groups are:

BLB—2 BUB—14
LB—3 UB—15
ALB—4 AUB—16

Note that in this discussion of boundary value analysis, values just
above the lower bound (ALB) and just below the upper bound (BUB)



76 | Strategies and Methods for Test Case Design I

were selected. These are both valid cases and may be omitted if the tester
does not believe they are necessary.

The next step in the test case design process is to select a set of actual
input values that covers all the equivalence classes and the boundaries.
Once again a table can be used to organize the results. Table 4.2 shows
the inputs for the sample module. Note that the table has the module
name, identifier, a date of creation for the test input data, and the author
of the test cases.

Table 4.2 only describes the tests for the module in terms of inputs
derived from equivalence classes and boundaries. Chapter 7 will describe
the components required for a complete test case. These include test inputs
as shown in Table 4.2, along with test conditions and expected outputs.
Test logs are used to record the actual outputs and conditions when ex-
ecution is complete. Actual outputs are compared to expected outputs to
determine whether the module has passed or failed the test.

Note that by inspecting the completed table the tester can determine
whether all the equivalence classes and boundaries have been covered by
actual input test cases. For this example the tester has selected a total of
nine test cases. The reader should also note then when selecting inputs
based on equivalence classes, a representative value at the midpoint of the
bounds of each relevant class should be included as a typical case. In this
example, a test case was selected with 9 characters, the average of the
range values of 3 and 15 (test case identifier 9). The set of test cases
presented here is not unique: other sets are possible that will also cover
all the equivalence classes and bounds.

Based on equivalence class partitioning and boundary value analysis
these test cases should have a high possibility of revealing defects in the
module as opposed to selecting test inputs at random from the input
domain. In the latter case there is no way of estimating how productive
the input choices would be. This approach is also a better alternative to
exhaustive testing where many combinations of characters, both valid and
invalid cases, would have to be used. Even for this simple module ex-
haustive testing would not be feasible.

4 . 8 Other Black Box Test Design Approaches

There are alternative methods to equivalence class partitioning/boundary
value analysis that a tester can use to design test cases based on the func-



774.8 Other Black Box Test Design Approaches |

Module name: Insert_Widget

Module identif ier: AP62-Mod4

Date: January 31, 2000

Tester: Michelle Jordan

Test case

identifier

Input

values

Valid

equivalence

classes and

bounds

covered

Invalid

equivalence

classes and

bounds

covered

1 abc1 EC1, EC3(ALB) EC6

2 ab1 EC1, EC3(LB), EC6

3 abcdef123456789 EC1, EC3 (UB) EC6

4 abcde123456789 EC1, EC3 (BUB) EC6

5 abc* EC3(ALB), EC6 EC2

6 ab EC1, EC6 EC4(BLB)

7 abcdefg123456789 EC1, EC6 EC5(AUB)

8 a123 EC1, EC3 (ALB) EC7

9 abcdef123 EC1, EC3, EC6

(typical case)

TABLE 4 .2

Summary of test inputs using equivalence class

partitioning and boundary value analysis for sample

module.

tional specification for the software to be tested. Among these are cause-
and-effect graphing, state transition testing, and error guessing. Equiva-
lence class partitioning combined with boundary value analysis is a
practical approach to designing test cases for software written in both
procedural and object-oriented languages since specifications are usually
available for both member functions associated with an object and tra-
ditional procedures and functions to be written in procedural languages.
However, it must be emphasized that use of equivalence class partitioning
should be complimented by use of white box and, in many cases, other
black box test design approaches. This is an important point for the tester
to realize. By combining strategies and methods the tester can have more



78 | Strategies and Methods for Test Case Design I

confidence that the test cases will reveal a high number of defects for the
effort expended. White box approaches to test design will be described
in the next chapter. We will use the remainder of this section to give a
description of other black box techniques. Additional discussions are
found in Beizer [5,7], Poston [6], Kit [7], and Roper [9]

4 . 8 . 1 C a u s e - a n d - E f f e c t G r a p h i n g

A major weakness with equivalence class partitioning is that it does not
allow testers to combine conditions. Combinations can be covered in
some cases by test cases generated from the classes. Cause-and-effect
graphing is a technique that can be used to combine conditions and derive
an effective set of test cases that may disclose inconsistencies in a speci-
fication. However, the specification must be transformed into a graph
that resembles a digital logic circuit. The tester is not required to have a
background in electronics, but he should have knowledge of Boolean
logic. The graph itself must be expressed in a graphical language [1].

Developing the graph, especially for a complex module with many
combinations of inputs, is difficult and time consuming. The graph must
be converted to a decision table that the tester uses to develop test cases.
Tools are available for the latter process and allow the derivation of test
cases to be more practical using this approach. The steps in developing
test cases with a cause-and-effect graph are as follows [1]:

1. The tester must decompose the specification of a complex software
component into lower-level units.

2. For each specification unit, the tester needs to identify causes and
their effects. A cause is a distinct input condition or an equivalence
class of input conditions. An effect is an output condition or a system
transformation. Putting together a table of causes and effects helps
the tester to record the necessary details. The logical relationships
between the causes and effects should be determined. It is useful to
express these in the form of a set of rules.

3. From the cause-and-effect information, a Boolean cause-and-effect
graph is created. Nodes in the graph are causes and effects. Causes
are placed on the left side of the graph and effects on the right. Logical
relationships are expressed using standard logical operators such as



794.8 Other Black Box Test Design Approaches |

1

2

3AND

Effect 3 occurs if both causes 1 and 2 are present.

1 2

Effect 2 occurs if cause 1 occurs.

1 2

Effect 2 occurs if cause 1 does not occur.

FIG. 4.4

Samples of cause-and-effect graph

notations.

AND, OR, and NOT, and are associated with arcs. An example of
the notation is shown in Figure 4.4. Myers shows additional examples
of graph notations [1].

4. The graph may be annotated with constraints that describe combi-
nations of causes and/or effects that are not possible due to environ-
mental or syntactic constraints.

5. The graph is then converted to a decision table.
6. The columns in the decision table are transformed into test cases.

The following example illustrates the application of this technique.
Suppose we have a specification for a module that allows a user to per-
form a search for a character in an existing string. The specification states
that the user must input the length of the string and the character to search
for. If the string length is out-of-range an error message will appear. If
the character appears in the string, its position will be reported. If the
character is not in the string the message “not found” will be output.

The input conditions, or causes are as follows:



80 | Strategies and Methods for Test Case Design I

C1: Positive integer from 1 to 80

C2: Character to search for is in string

The output conditions, or effects are:

E1: Integer out of range

E2: Position of character in string

E3: Character not found

The rules or relationships can be described as follows:

If C1 and C2, then E2.
If C1 and not C2, then E3.
If not C1, then E1.

Based on the causes, effects, and their relationships, a cause-and-effect
graph to represent this information is shown in Figure 4.5.

The next step is to develop a decision table. The decision table reflects
the rules and the graph and shows the effects for all possible combinations
of causes. Columns list each combination of causes, and each column
represents a test case. Given n causes this could lead to a decision table
with 2n entries, thus indicating a possible need for many test cases. In
this example, since we have only two causes, the size and complexity of
the decision table is not a big problem. However, with specifications hav-
ing large numbers of causes and effects the size of the decision table can
be large. Environmental constraints and unlikely combinations may re-
duce the number of entries and subsequent test cases.

A decision table will have a row for each cause and each effect. The
entries are a reflection of the rules and the entities in the cause and effect
graph. Entries in the table can be represented by a “1” for a cause or
effect that is present, a “0” represents the absence of a cause or effect,
and a “—” indicates a “don’t care” value. A decision table for our simple
example is shown in Table 4.3 where C1, C2, C3 represent the causes,
E1, E2, E3 the effects, and columns T1, T2, T3 the test cases.

The tester can use the decision table to consider combinations of
inputs to generate the actual tests. In this example, three test cases are
called for. If the existing string is “abcde,” then possible tests are the
following:



814.8 Other Black Box Test Design Approaches |

C1

C2

E1

E2

E3

FIG. 4.5

Cause-and-effect graph for the

character search example.

Inputs Length Character to search for Outputs

T1 5 c 3
T2 5 w Not found
T3 90 Integer out of range

One advantage of this method is that development of the rules and
the graph from the specification allows a thorough inspection of the spec-
ification. Any omissions, inaccuracies, or inconsistencies are likely to be
detected. Other advantages come from exercising combinations of test
data that may not be considered using other black box testing techniques.
The major problem is developing a graph and decision table when there
are many causes and effects to consider. A possible solution to this is to
decompose a complex specification into lower-level, simpler components
and develop cause-and-effect graphs and decision tables for these.

Myers has a detailed description of this technique with examples [1].
Beizer [5] and Roper [9] also have discussions of this technique. Again,
the possible complexity of the graphs and tables make it apparent that
tool support is necessary for these time-consuming tasks. Although an
effective set of test cases can be derived, some testers believe that equiv-
alence class partitioning—if performed in a careful and systematic way—



82 | Strategies and Methods for Test Case Design I

T1 T2 T3

C1 1 1 0

C2 1 0 —

E1 0 0 1

E2 1 0 0

E3 0 1 0

TABLE 4 .3

Decision table for character search

example.

will generate a good set of test cases, and may make more effective use
of a tester’s time.

4 . 8 . 2 S t a t e T r a n s i t i o n T e s t i n g

State transition testing is useful for both procedural and object-oriented
development. It is based on the concepts of states and finite-state ma-
chines, and allows the tester to view the developing software in term of
its states, transitions between states, and the inputs and events that trigger
state changes. This view gives the tester an additional opportunity to
develop test cases to detect defects that may not be revealed using the
input/output condition as well as cause-and-effect views presented by
equivalence class partitioning and cause-and-effect graphing. Some useful
definitions related to state concepts are as follows:

A state is an internal configuration of a system or component. It is defined in terms

of the values assumed at a particular time for the variables that characterize the

system or component.

A finite-state machine is an abstract machine that can be represented by a state

graph having a finite number of states and a finite number of transitions between

states.

During the specification phase a state transition graph (STG) may be
generated for the system as a whole and/or specific modules. In object-
oriented development the graph may be called a state chart. STG/state



834.8 Other Black Box Test Design Approaches |

charts are useful models of software (object) behavior. STG/state charts
are commonly depicted by a set of nodes (circles, ovals, rounded rectan-
gles) which represent states. These usually will have a name or number
to identify the state. A set of arrows between nodes indicate what inputs
or events will cause a transition or change between the two linked states.
Outputs/actions occurring with a state transition are also depicted on a
link or arrow. A simple state transition diagram is shown in Figure 4.6.
S1 and S2 are the two states of interest. The black dot represents a pointer
to the initial state from outside the machine. Many STGs also have “er-
ror” states and “done” states, the latter to indicate a final state for the
system. The arrows display inputs/actions that cause the state transfor-
mations in the arrow directions. For example, the transition from S1 to
S2 occurs with input, or event B. Action 3 occurs as part of this state
transition. This is represented by the symbol “B/act3.”

It is often useful to attach to the STG the system or component vari-
ables that are affected by state transitions. This is valuable information
for the tester as we will see in subsequent paragraphs.

For large systems and system components, state transition graphs can
become very complex. Developers can nest them to represent different
levels of abstraction. This approach allows the STG developer to group
a set of related states together to form an encapsulated state that can be
represented as a single entity on the original STG. The STG developer
must ensure that this new state has the proper connections to the un-
changed states from the original STG. Another way to simplify the STG
is to use a state table representation which may be more concise. A state
table for the STG in Figure 4.6 is shown in Table 4.4.

The state table lists the inputs or events that cause state transitions.
For each state and each input the next state and action taken are listed.
Therefore, the tester can consider each entity as a representation of a state
transition.

As testers we are interested in using an existing STG as an aid to
designing effective tests. Therefore this text will not present a discussion
of development and evaluation criteria for STGs. We will assume that the
STGs have been prepared by developers or analysts as a part of the re-
quirements specification. The STGs should be subject to a formal inspec-
tion when the requirement/specification is reviewed. This step is required
for organization assessed at TMM level 3 and higher. It is essential that



84 | Strategies and Methods for Test Case Design I

A/act-1

S1 S2

B/act-3

A/act-2

C/act-5

B/act-4

C/act-6

FIG. 4.6

Simple state transition graph.

testers be present at the reviews. From the tester’s view point the review
should ensure that (i) the proper number of states are represented,
(ii) each state transition (input/output/action) is correct, (iii) equivalent
states are identified, and (iv) unreachable and dead states are identified.
Unreachable states are those that no input sequence will reach, and may
indicate missing transitions. Dead states are those that once entered can-
not be exited. In rare cases a dead state is legitimate, for example, in
software that controls a destructible device.

After the STG has been reviewed formally the tester should plan ap-
propriate test cases. An STG has similarities to a control flow graph in
that it has paths, or successions of transitions, caused by a sequence of
inputs. Coverage of all paths does not guarantee complete testing and
may not be practical. A simple approach might be to develop tests that
insure that all states are entered. A more practical and systematic ap-
proach suggested by Marik consists of testing every possible state tran-
sition [10]. For the simple state machine in Figure 4.6 and Table 4.4 the
transitions to be tested are:

Input A in S1
Input A in S2
Input B in S1
Input B in S2
Input C in S1
Input C in S2

The transition sequence requires the tester to describe the exact inputs
for each test as the next step. For example the inputs in the above tran-



854.8 Other Black Box Test Design Approaches |

S1 S2

Inputs

Input A S1 (act-1) S2 (act-2)

Input B S2 (act-3) S1 (act-4)

Input C S2 (act-5) S2 (act-6)

TABLE 4 .4

A state table for the machine in

Figure 4.6.

sitions might be a command, a menu item, a signal from a device or a
button that is pushed. In each case an exact value is required, for example,
the command might be “read,” the signal might be “hot” or the button
might be “off.” The exact sequence of inputs must also be described, as
well as the expected sequence of state changes, and actions. Providing
these details makes state-based tests easier to execute, interpret, and main-
tain. In addition, it is best to design each test specification so that the test
begins in the start state, covers intermediate states, and returns to the start
state. Finally, while the tests are being executed it is very useful for the
tester to have software probes that report the current state (defining a
state variable may be necessary) and the incoming event. Making state-
related variables visible during each transition is also useful. All of these
probes allow the tester to monitor the tests and detect incorrect transitions
and any discrepancies in intermediate results.

For some STGs it may be possible that a single test case specification
sequence could use (exercise) all of the transitions. There is a difference
of opinion as to whether this is a good approach [5,10]. In most cases it
is advisable to develop a test case specification that exercises many tran-
sitions, especially those that look complex, may not have been tried be-
fore, or that look ambiguous or unreachable. In this way more defects in
the software may be revealed. For further exploration of state-based test-
ing the following references are suggested, [5,10,11].

4 . 8 . 3 E r r o r G u e s s i n g

Designing test cases using the error guessing approach is based on the
tester’s/developer’s past experience with code similar to the code-under-



86 | Strategies and Methods for Test Case Design I

test, and their intuition as to where defects may lurk in the code. Code
similarities may extend to the structure of the code, its domain, the design
approach used, its complexity, and other factors. The tester/developer is
sometimes able to make an educated “guess” as to which types of defects
may be present and design test cases to reveal them. Some examples of
obvious types of defects to test for are cases where there is a possible
division by zero, where there are a number of pointers that are manipu-
lated, or conditions around array boundaries. Error guessing is an ad hoc
approach to test design in most cases. However, if defect data for similar
code or past releases of the code has been carefully recorded, the defect
types classified, and failure symptoms due to the defects carefully noted,
this approach can have some structure and value. Such data would be
available to testers in a TMM level 4 organization.

4 . 9 Black Box Testing and Commercial Off-the-Shelf (COTS)

Components

As software development evolves into an engineering discipline, the reuse
of software components will play an increasingly important role. Reuse
of components means that developers need not reinvent the wheel; instead
they can reuse an existing software component with the required func-
tionality. The reusable component may come from a code reuse library
within their organization or, as is most likely, from an outside vendor
who specializes in the development of specific types of software compo-
nents. Components produced by vendor organizations are known as com-
mercial off-the-shelf, or COTS, components. The following data illustrate
the growing usage of COTS components. In 1997, approximately 25%
of the component portfolio of a typical corporation consisted of COTS
components. Estimates for 1998 were about 28% and during the next
several years the number may rise to 40% [12].

Using COTS components can save time and money. However, the
COTS component must be evaluated before becoming a part of a devel-
oping system. This means that the functionality, correctness, and reli-
ability of the component must be established. In addition, its suitability
for the application must be determined, and any unwanted functionality



874.9 Black Box Testing and Commercial Off-the-Shelf (COTS) Components |

must be identified and addressed by the developers. Testing is one process
that is not eliminated when COTS components are used for development!

When a COTS component is purchased from a vendor it is basically
a black box. It can range in size from a few lines of code, for example, a
device driver, to thousands of lines of code, as in a telecommunication
subsystem. It most cases, no source code is available, and if it is, it is very
expensive to purchase. The buyer usually receives an executable version
of the component, a description of its functionality, and perhaps a state-
ment of how it was tested. In some cases if the component has been widely
adapted, a statement of reliability will also be included. With this limited
information, the developers and testers must make a decision on whether
or not to use the component. Since the view is mainly as a black box,
some of the techniques discussed in this chapter are applicable for testing
the COTS components.

If the COTS component is small in size, and a specification of its
inputs/outputs and functionality is available, then equivalence class par-
titioning and boundary value analysis may be useful for detecting defects
and establishing component behavior. The tester should also use this ap-
proach for identifying any unwanted or unexpected functionality or side
effects that could have a detrimental effect on the application. Assertions,
which are logic statements that describe correct program behavior, are
also useful for assessing COTS behavior [13]. They can be associated with
program components, and monitored for violations using assertion sup-
port tools. Such support tools are discussed in Chapter 14.

Large-sized COTS components may be better served by using random
or statistical testing guided by usage profiles.

Usage profiles are characterizations of the population of intended uses of the

software in its intended environment [14].

More information about usage profiles will be provided in Chapter 12.
Other approaches to testing COTS components have been described, for
example, by J. Voas [15]. These are not strictly black box in nature.

As in the testing of newly developing software, the testing of COTS
components requires the development of test cases, test oracles, and aux-
iliary code called a test harness (described in Chapter 6). In the case of
COTS components, additional code, called glue software, must be devel-
oped to bind the COTS component to other modules for smooth system



88 | Strategies and Methods for Test Case Design I

functioning. This glue software must also be tested. All of these activities
add to the costs of reuse and must be considered when project plans are
developed. Researchers are continually working on issues related to test-
ing and certification of COTS components.

Certification refers to third-party assurance that a product (in our case a software

product), process, or service meets a specific set of requirements.

Some articles on these topics can be found in References 13, 15, and 16.

4 . 1 0 Black Box Methods and TMM Level 2 Matur ity Goals

Since the TMM is the guiding framework for this text, an association
between chapter material and TMM levels will be a feature at the end of
most of the book chapters. Activities, tasks, and responsibilities (ATRs)
for the three critical groups (developers/testers, managers, users/clients)
that bind the chapter material to a given set of maturity goals will be
described.

In this chapter we are particularly interested in exploring the nature
of the association between black box testing methods and the TMM level
2 maturity goal that reads as follows: “Institutionalize basic testing tech-
niques and methods.” The strong association of Chapter 4 material with
this goal arises from the fact that black box testing methods are consid-
ered to be a part of this basic group of techniques and methods. The
methods that were discussed in this chapter provide a systematic approach
to test case design that (i) has roots in testing theory, (ii) supports a be-
havioral view of the software, (iii) is applicable to most levels of testing,
(iv) provides sets of practical repeatable procedures for an organization
to adapt and reuse, and (v) has associated notations that link testing with
other development activities.

An organization that wishes to improve its testing process needs to
adopt and consistently apply black box testing methods to software that
is being developed and/or maintained. This needs to be accomplished
early in the maturity level framework. However, not every black box (or
white box) method needs to be used for every project. In fact, some black
box methods require more in-depth training and sophisticated tools that
the organization may not be ready for at TMM level 2. As the organi-



894.10 Black Box Methods and TMM Level 2 Matur ity Goals |

zation grows in maturity it can adapt those black box methods that meet
both its needs and the needs of its clients.

Black box methods have ties to the other maturity goals at TMM
level 2. For example, use of the methods must be prescribed in the testing
goals/policy statements, applied in test plans, and included in training
material. Use of black box methods also supports achievement of higher-
level TMM maturity goals, for example, integration of testing into the
life cycle, software quality evaluation, and quality control.

We now have determined that there are associations between black
box testing methods and TMM maturity goals at level 2. Now we need
to look at how the key players in the testing process, developers/testers,
managers and users/clients can support achievement of this goal. For the
remainder of this discussion the reader should keep in mind that at TMM
level 2 there is no requirement for an independent test organization. De-
velopers will often take on a dual role of both programmer and tester. As
a consequence, note that the ATRs associated with this TMM level refer
to a critical view called developer/tester.

As a developer/tester, you can play an important role in achieving
satisfaction of maturity goals at TMM level 2. Your activities, tasks, and
responsibilities include attending classes and training sessions, reading
materials, acquiring tools, working with knowledgeable colleagues, and
gaining hands-on experience in the application of the black box testing
methods. After you master the black box methods in this chapter, you
need to insure that a balance of these approaches is used for test design.
The black box methods you select as a tester depend on the type of soft-
ware being tested and the conditions and constraints on testing. For ex-
ample, if the software-under-test is event or command-driven, then
state-based testing should be one of your choices. Object-oriented systems
also benefit from this technique. However individual methods in an ob-
ject/class may also benefit from use of equivalence class partitioning and
boundary value analysis. The latter also works well for standard pro-
cessing systems that are procedural in nature and have well-defined input
domains. Error guessing may be used to augment any of the other black
box approaches. As a developer/tester you need to insure that white box
testing methods are also applied especially for unit and integration test,
and that both black and white-box based test cases are included with the
test plan. White box testing methods will be described in the next chapter.



90 | Strategies and Methods for Test Case Design I

In addition to designing black/white-based test cases, you will also
design test procedures. Both the test cases and test procedures will become
part of the test plan as described in Chapter 7. The test procedures de-
scribe the necessary steps to carry out the tests. When the code is ready
you will be responsible for setting up the necessary test environment,
executing the tests, and observing the results. A part of your test execution
responsibilities is to complete a test log, a detailed record of your obser-
vations during the test. If any anomalous behavior is observed you will
also prepare a problem or test incident report (Chapter 7) which describes
the conditions of the test and the anomalous behavior. In the report you
should also describe how to reproduce the behavior that you have ob-
served. This will help the person who must repair the code duplicate the
conditions. Clues in the test incident report may help to isolate the defect.
A defect/problem fix report is prepared when the code is repaired by a
developer. The defect/problem fix report should contain the following
information:

• project identifier

• the problem/defect identifier

• testing phase that uncovered the defect

• a classification for the defect found

• a description of the repairs that were done

• the identification number(s) of the associated tests

• the date of repair

• the name of the repairer.

The defects found as a result of the testing/debugging processes must be
classified according to the organization’s defect classification scheme and
each should be stored, along with their frequency of occurrence in the
defect repository as described in Chapter 3. Chapter 14 will described
advanced tools that support these activities.

If a problem occurs while the software is in operation, a problem
report issued by the user will be turned over to the development group.



914.10 Black Box Methods and TMM Level 2 Matur ity Goals |

The defect data again is recorded in the defect repository. Your respon-

sibility as a developer/tester is to work with the users to understand the

problem. Rerunning existing tests and designing an additional test set will

provide supplementary information, and give clues to the location of the

defect(s). When the problem/defect is isolated, the necessary repairs can

be made and the modified software retested. The SQA group will keep

track of the problem and fix reports to ensure that all problems are re-

solved. A more detailed description of test procedures, test logs, and test

incident reports can be found in Chapter 7 under test documentation.

Managers provide support for achievement of TMM level 2 technical

goals by insuring that developers/testers have the proper education and

training to understand and apply the black box (and white box) methods

to develop test cases. Developers/testers also need training to learn to

prepare test procedures, test logs, and test incident reports.

Resources to support use of the black/white box methods such as

tools and templates need to be supplied by management. Management

should encourage cooperation between developer/testers and require-

ments analysts since the analysts supply the requirements documentation

and specifications that are necessary for application of black box meth-

ods. Managers should also insure that organization policies and standards

are designed to promote the institutionalization of black/white box meth-

ods. Test plans should include use of black/white box methods, and al-

locate adequate time and resources to design and execute the black/white

box tests, and analyze the test results.

The user/client contribution to the application of black box methods

is to give precise, accurate, and unambiguous descriptions of system re-

quirements and specifications so that system behavior can be correctly

modeled and used for black box test design.

K E Y T E R M S

Certification

Finite state machine

System state

Usage profile



92 | Strategies and Methods for Test Case Design I

E X E R C I S E S

1. Describe the difference between the white box and black box testing strategies.

2. Suppose a tester believes a unit contains a specification defect. Which testing

strategy would be best to uncover the defect and why?

3. Explain the differences between random testing and testing using error

guessing.

4. Define the equivalence classes and develop a set of test cases to cover them

for the following module description. The module accepts a color for a part. Color

choices are {RED, BLUE, YELLOW, VIOLET}.

5. Define the equivalence classes and boundary values and develop a set of test

cases to cover them for the following module description: The module is part of

a public TV membership system. The module allows entry of a contribution from

$0.01 to $99,999.99. It also enters a member status for the contributor that can

be: regular, student/retiree, or studio club.

6. Develop black box test cases using equivalence class partitioning and boundary

value analysis to test a module that is software component of an automated teller

system. The module reads in the amount the user wishes to withdraw from his/

her account. The amount must be a multiple of $5.00 and be less than or equal to

$200.00. Be sure to list any assumptions you make and label equivalence classes

and boundary values that you use.

7. Design a set of black box–based test cases using the coin problem specification

as shown in Chapter 3. Use error guessing, random testing, equivalence class

partitioning, and boundary value analysis to develop your test cases. List any

assumptions you make. For each test case generated by equivalence class parti-

tioning, specify the equivalence classes covered, input values, expected outputs,

and test case identifiers. Show in tabular form that you have covered all the

classes and boundaries. For the other black box testing methods show the test

case identifiers, inputs, and expected outputs also in a tabular format. Implement

the coin problem as shown in the specification in the language of your choice.

Run the tests using your test cases, and record the actual outputs and the defects

you found. Start with the original uncorrected version of the program for each

black box technique you use. Save a copy of the original version for future use.

Compare the methods with respect to their effectiveness in revealing defects.

Were there any types of defects that were not detected by these methods?



934.10 Black Box Methods and TMM Level 2 Matur ity Goals |

8. Draw a state transition diagram for a simple stack machine. Assume the stack

holds n data items where n is a small positive number. It has operations ‘‘push’’

and ‘‘pop’’ that cause the stack pointer to increment or decrement, respectively.

The stack can enter states such as ‘‘full’’ if it contains n items and, ‘‘empty’’ if it

contains no items. Popping an item from the empty stack, or pushing an item on

the full stack cause a transition to an error state. Based on your state transition

diagram, develop a set of black box test cases that cover the key state transitions.

Be sure to describe the exact sequence of inputs, as well as the expected sequence

of state changes and actions.

9. The following is a specification for a software unit.

The unit computes the average of 25 floating point numbers that lie on or

between bounding values which are positive values from 1.0 (lowest allowed

boundary value) to 5000.0 (highest allowed boundary value). The bounding values

and the numbers to average are inputs to the unit. The upper bound must be greater

than the lower bound. If an invalid set of values is input for the boundaries an

error message appears and the user is reprompted. If the boundary values are valid

the unit computes the sum and the average of the numbers on and within the

bounds. The average and sum are output by the unit, as well as the total number

of inputs that lie within the boundaries.

As in the previous problems, derive a set of equivalence classes for the

averaging unit using the specification, and complement the classes using bound-

ary value analysis. Be sure to identify valid and invalid classes. Design a set of

test cases for the unit using your equivalence classes and boundary values. For

each test case, specify the equivalence classes covered, input values, expected

outputs, and test case identifier. Show in tabular form that you have covered all

the classes and boundaries. Implement this module in the programming language

of your choice. Run the module with your test cases and record the actual outputs.

Save an uncorrected version of the program for future use. Provide a defect report

containing all the defects you found using the test cases. The defects should have

an identification number and a description. Classify the defects using the cate-

gories described in Chapter 3 and comment on the effectiveness of your test cases

in finding the different types of defects.

10. For the specification in Problem 9, identify the input and output conditions

and the rules that relate them. Tabularize your findings and draw a cause-and-

effect graph. Develop a decision table and from that table a set of test cases. Run

your original module developed for Problem 9 with these test cases and compare



94 | Strategies and Methods for Test Case Design I

the results to those obtained from equivalence class partitioning. Comment on

your observations.

11. Suppose a program allowed a user to search for part name in a specific group

of part records. The user inputs the record number that is believed to hold the part,

and the part name to search for. The program will inform the user if the record

number is within the legal range of allowed record numbers (1–1000). If it is not,

then an error message will be issued—‘‘record number is out of range.’’ If the record

number is within the range, and the part is found, the program will return ‘‘part

found,’’ else it will report ‘‘part not found.’’ Identify the input and output conditions,

i.e., causes and effects. Draw a ‘‘cause-and-effect’’ graph and a decision table for

this specification. From the table generate a set of test inputs and expected

outputs.

12. Describe the circumstances under which you would apply white box and black

box testing techniques to evaluate a COTS component.

13. Suppose you were developing a simple assembler whose syntax can be de-

scribed as follows :

<statement� :: � �label field� �op code> <address�

<label field> :: � ‘‘none’’ | <identifier> :

<op code> :: � MOVE | JUMP

<address> :: � <identifier> | <unsigned integer>

A stream of tokens is input to the assembler. The possible states for such an

assember are:

S1, prelabel; S2, label; S3, valid op code; S4, valid address; S5, valid numeric ad-

dress. Start, Error, and Done. A table that describes the inputs and actions for the

assembler is as follows:

Inputs Actions

no more tokens A1: Put the label in the symbol table.

identifer A2: Look up the op code and store its binary value in op code

field.

MOVE, JUMP A3: Look up symbol in symbol table and store its value in ad-

dress field.

colon A4: Convert number to binary, and store that value in address

field.



954.10 Black Box Methods and TMM Level 2 Matur ity Goals |

integer A5: Place instruction in the object module, and print a line in

the listing.

A6: Print error message and put all zeroes in the instruction.

Using this information and any assumptions you need to make, develop a state transition diagram

for the assembler. From the state transition diagram develop a set of test cases that will cover all

of the state transitions. Be sure to describe the exact sequence of inputs as well as the expected

sequence of state changes and actions.

14. Describe the role that managers play in institutionalizing basic testing techniques and methods,

such as those described in this chapter.

R E F E R E N C E S

[1] G. Myers, The Art of Software Testing; John Wiley,
New York, 1979.

[2] J. Duran, S. Ntafos, “An evaluation of random test-
ing,” IEEE Trans. SW Engineering, Vol. 10, 1984,
pp. 438–444.

[3] T. Chen, Y. Yu, “On the expected number of fail-
ures detected by subdomain testing and random test-
ing,” IEEE Trans. Software Engineering, Vol. 22,
1996, pp. 109–119.

[4] W. Gutjahr, “Partition testing vs. random testing:
the influence of uncertainty,” IEEE Trans. Software En-
gineering, Vol. 25, No. 5, Sept./Oct. 1999, pp. 661–674.

[5] B. Beizer, Software Testing Techniques, second edi-
tion, Van Nostrand Reinhold, New York, 1990.

[6] R. Poston, Automating Specification-Based Soft-
ware Testing, IEEE Computer Society Press, Los Ala-
mitos, CA, 1996.

[7] B. Beizer, Black Box Testing, John Wiley, New
York, 1995.

[8] E. Kit, Software Testing in the Real World,
Addison-Wesley, Reading, MA, 1995.

[9] M. Roper, Software Testing, McGraw Hill, Lon-
don, 1994.

[10] B. Marick, The Craft of Software Testing, Prentice
Hall, Englewood Cliffs, NJ, 1995.

[11] D. Harel, “Statecharts: a visual formalism for
complex systems,” Science of Computer Program-
ming, Vol. 8, pp. 231–274, 1987.

[12] J. Voas “Certification: reducing the hidden costs
of poor quality,” IEEE Software, July/August, 1999,
pp. 22–25.

[13] B. Korel, I. Burnstein, R. Brevelle, “Post
condition–based stress testing in certification of COTS
components,” Proceedings of the First International
Software Assurance Certification Conference, Wash-
ington, D.C., March 1999.

[14] G. Walton, J. Poore, C. Trammell, “Statistical
testing of software based on a usage model: software—
practice and experience,” Vol. 25, No. 1, 1995,
pp. 97–108.

[15] J. Voas, “Certifying off-the-shelf software com-
ponents,” IEEE Computer, June 1998, pp. 53–59.

[16] S. Wakid, D. Kuhn, D. Wallace, “Toward credible
IT testing and certification,” IEEE Software, July/
August, 1999, pp. 39–47.



This page intentionally left blank 



5
S T R A T E G I E S A N D

M E T H O D S F O R T E S T

C A S E D E S I G N I I

5 . 0 Using the White Box Approach to Test Case Design

In the previous chapter the reader was introduced to a test design ap-
proach that considers the software to be tested as a black box with a well-
defined set of inputs and outputs that are described in a specification. In
this chapter a complementary approach to test case design will be ex-
amined where the tester has knowledge of the internal logic structure of
the software under test. The tester’s goal is to determine if all the logical
and data elements in the software unit are functioning properly. This is
called the white box, or glass box, approach to test case design.

The knowledge needed for the white box test design approach often
becomes available to the tester in the later phases of the software life cycle,
specifically during the detailed design phase of development. This is in
contrast to the earlier availability of the knowledge necessary for black
box test design. As a consequence, white box test design follows black
box design as the test efforts for a given project progress in time. Another
point of contrast between the two approaches is that the black box test



98 | Strategies and Methods for Test Case Design I I

design strategy can be used for both small and large software components,
whereas white box–based test design is most useful when testing small
components. This is because the level of detail required for test design is
very high, and the granularity of the items testers must consider when
developing the test data is very small. These points will become more
apparent as the discussion of the white box approach to test design
continues.

5 . 1 Test Adequacy Criter ia

The goal for white box testing is to ensure that the internal components
of a program are working properly. A common focus is on structural
elements such as statements and branches. The tester develops test cases
that exercise these structural elements to determine if defects exist in the
program structure. The term exercise is used in this context to indicate
that the target structural elements are executed when the test cases are
run. By exercising all of the selected structural elements the tester hopes
to improve the chances for detecting defects.

Testers need a framework for deciding which structural elements to
select as the focus of testing, for choosing the appropriate test data, and
for deciding when the testing efforts are adequate enough to terminate
the process with confidence that the software is working properly. Such
a framework exists in the form of test adequacy criteria. Formally a test
data adequacy criterion is a stopping rule [1,2]. Rules of this type can be
used to determine whether or not sufficient testing has been carried out.
The criteria can be viewed as representing minimal standards for testing
a program. The application scope of adequacy criteria also includes:

(i) helping testers to select properties of a program to focus on during
test;

(ii) helping testers to select a test data set for a program based on the
selected properties;

(iii) supporting testers with the development of quantitative objectives for
testing;

(iv) indicating to testers whether or not testing can be stopped for that
program.



995.1 Test Adequacy Criter ia |

A program is said to be adequately tested with respect to a given
criterion if all of the target structural elements have been exercised ac-
cording to the selected criterion. Using the selected adequacy criterion a
tester can terminate testing when he/she has exercised the target struc-
tures, and have some confidence that the software will function in manner
acceptable to the user.

If a test data adequacy criterion focuses on the structural properties
of a program it is said to be a program-based adequacy criterion.
Program-based adequacy criteria are commonly applied in white box test-
ing. They use either logic and control structures, data flow, program text,
or faults as the focal point of an adequacy evaluation [1]. Other types of
test data adequacy criteria focus on program specifications. These are
called specification-based test data adequacy criteria. Finally, some test
data adequacy criteria ignore both program structure and specification in
the selection and evaluation of test data. An example is the random se-
lection criterion [2].

Adequacy criteria are usually expressed as statements that depict the
property, or feature of interest, and the conditions under which testing
can be stopped (the criterion is satisfied). For example, an adequacy cri-
terion that focuses on statement/branch properties is expressed as the
following:

A test data set is statement, or branch, adequate if a test set T for program P

causes all the statements, or branches, to be executed respectively.

In addition to statement/branch adequacy criteria as shown above, other
types of program-based test data adequacy criteria are in use; for example,
those based on (i) exercising program paths from entry to exit, and
(ii) execution of specific path segments derived from data flow combi-
nations such as definitions and uses of variables (see Section 5.5). As we
will see in later sections of this chapter, a hierarchy of test data adequacy
criteria exists; some criteria presumably have better defect detecting abil-
ities than others.

The concept of test data adequacy criteria, and the requirement that
certain features or properties of the code are to be exercised by test cases,
leads to an approach called “coverage analysis,” which in practice is used
to set testing goals and to develop and evaluate test data. In the context



100 | Strategies and Methods for Test Case Design I I

of coverage analysis, testers often refer to test adequacy criteria as “cov-
erage criteria” [1]. For example, if a tester sets a goal for a unit specifying
that the tests should be statement adequate, this goal is often expressed
as a requirement for complete, or 100%, statement coverage. It follows
from this requirement that the test cases developed must insure that all
the statements in the unit are executed at least once. When a coverage-
related testing goal is expressed as a percent, it is often called the “degree
of coverage.” The planned degree of coverage is specified in the test plan
and then measured when the tests are actually executed by a coverage
tool. The planned degree of coverage is usually specified as 100% if the
tester wants to completely satisfy the commonly applied test adequacy,
or coverage criteria. Under some circumstances, the planned degree of
coverage may be less than 100% possibly due to the following:

• The nature of the unit

—Some statements/branches may not be reachable.

—The unit may be simple, and not mission, or safety, critical, and
so complete coverage is thought to be unnecessary.

• The lack of resources

—The time set aside for testing is not adequate to achieve 100%
coverage.

—There are not enough trained testers to achieve complete coverage
for all of the units.

—There is a lack of tools to support complete coverage.

• Other project-related issues such as timing, scheduling, and market-
ing constraints

The following scenario is used to illustrate the application of coverage
analysis. Suppose that a tester specifies “branches” as a target property
for a series of tests. A reasonable testing goal would be satisfaction of the
branch adequacy criterion. This could be specified in the test plan as a
requirement for 100% branch coverage for a software unit under test. In
this case the tester must develop a set of test data that insures that all of



1015.2 Coverage and Control F low Graphs |

the branches (true/false conditions) in the unit will be executed at least
once by the test cases. When the planned test cases are executed under
the control of a coverage tool, the actual degree of coverage is measured.
If there are, for example, four branches in the software unit, and only
two are executed by the planned set of test cases, then the degree of branch
coverage is 50%. All four of the branches must be executed by a test set
in order to achieve the planned testing goal. When a coverage goal is not
met, as in this example, the tester develops additional test cases and re-
executes the code. This cycle continues until the desired level of coverage
is achieved. The greater the degree of coverage, the more adequate the
test set. When the tester achieves 100% coverage according to the selected
criterion, then the test data has satisfied that criterion; it is said to be
adequate for that criterion. An implication of this process is that a higher
degrees of coverage will lead to greater numbers of detected defects.

It should be mentioned that the concept of coverage is not only as-
sociated with white box testing. Coverage can also be applied to testing
with usage profiles (see Chapter 12). In this case the testers want to ensure
that all usage patterns have been covered by the tests. Testers also use
coverage concepts to support black box testing. For example, a testing
goal might be to exercise, or cover, all functional requirements, all equiv-
alence classes, or all system features. In contrast to black box approaches,
white box–based coverage goals have stronger theoretical and practical
support.

5 . 2 Coverage and Control F low Graphs

The application of coverage analysis is typically associated with the use
of control and data flow models to represent program structural elements
and data. The logic elements most commonly considered for coverage are
based on the flow of control in a unit of code. For example,

(i) program statements;
(ii) decisions/branches (these influence the program flow of control);
(iii) conditions (expressions that evaluate to true/false, and do not contain

any other true/false-valued expressions);



102 | Strategies and Methods for Test Case Design I I

(iv) combinations of decisions and conditions;
(v) paths (node sequences in flow graphs).

These logical elements are rooted in the concept of a program prime. A
program prime is an atomic programming unit. All structured programs
can be built from three basic primes-sequential (e.g., assignment state-
ments), decision (e.g., if/then/else statements), and iterative (e.g., while,
for loops). Graphical representations for these three primes are shown in
Figure 5.1.

Using the concept of a prime and the ability to use combinations of
primes to develop structured code, a (control) flow diagram for the soft-
ware unit under test can be developed. The flow graph can be used by
the tester to evaluate the code with respect to its testability, as well as to
develop white box test cases. This will be shown in subsequent sections
of this chapter. A flow graph representation for the code example in Fig-
ure 5.2 is found in Figure 5.3. Note that in the flow graph the nodes
represent sequential statements, as well as decision and looping predi-
cates. For simplicity, sequential statements are often omitted or combined
as a block that indicates that if the first statement in the block is executed,
so are all the following statements in the block. Edges in the graph rep-
resent transfer of control. The direction of the transfer depends on the
outcome of the condition in the predicate (true or false).

There are commercial tools that will generate control flow graphs
from code and in some cases from pseudo code. The tester can use tool
support for developing control flow graphs especially for complex pieces
of code. A control flow representation for the software under test facili-
tates the design of white box–based test cases as it clearly shows the logic
elements needed to design the test cases using the coverage criterion of
choice.

Zhu has formally described a set of program-based coverage criteria
in the context of test adequacy criteria and control/data flow models [1].
This chapter will presents control-flow, or logic-based, coverage concepts
in a less formal but practical manner to aid the tester in developing test
data sets, setting quantifiable testing goals, measuring results, and eval-
uating the adequacy of the test outcome. Examples based on the logic
elements listed previously will be presented. Subsequent sections will de-
scribe data flow and fault-based coverage criteria.



103 | Strategies and Methods for Test Case Design I I

True False True

False

Sequence Condition Iteration

FIG. 5.1

Representation of program primes.

5 . 3 Covering Code Logic

Logic-based white box–based test design and use of test data adequacy/
coverage concepts provide two major payoffs for the tester: (i) quantita-
tive coverage goals can be proposed, and (ii) commercial tool support is
readily available to facilitate the tester’s work (see Chapter 14). As de-
scribed in Section 5.1, testers can use these concepts and tools to decide
on the target logic elements (properties or features of the code) and the
degree of coverage that makes sense in terms of the type of software, its
mission or safety criticalness, and time and resources available. For ex-
ample, if the tester selects the logic element “program statements,” this
indicates that she will want to design tests that focus on the execution
of program statements. If the goal is to satisfy the statement adequacy/
coverage criterion, then the tester should develop a set of test cases so
that when the module is executed, all (100%) of the statements in the
module are executed at least once. In terms of a flow graph model of the
code, satisfying this criterion requires that all the nodes in the graph are
exercised at least once by the test cases. For the code in Figure 5.2 and
its corresponding flow graph in Figure 5.3 a tester would have to develop
test cases that exercise nodes 1–8 in the flow graph. If the tests achieve
this goal, the test data would satisfy the statement adequacy criterion.

In addition to statements, the other logic structures are also associated
with corresponding adequacy/coverage criteria. For example, to achieve
complete (100%) decision (branch) coverage test cases must be designed



104 | Strategies and Methods for Test Case Design I I

/* pos_sum finds the sum of all positive numbers (greater than zero) stored in an integer
array a. Input parameters are num_of_entries, an integer, and a, an array of integers with

num_of_entries elements. The output parameter is the integer sume */

1. pos_sum(a, num_of_entries, sum)
2. sum�0
3. inti�1
4. while (i <�num_of_entries)
5. if a[i] > 0
6. sum�sum�a[i]

endif
7. i�i�1

end while
8. end pos_sum

FIG. 5.2

Code sample with branch and loop.

so that each decision element in the code (if-then, case, loop) executes
with all possible outcomes at least once. In terms of the control flow
model, this requires that all the edges in the corresponding flow graph
must be exercised at least once. Complete decision coverage is considered
to be a stronger coverage goal than statement coverage since its satisfac-
tion results in satisfying statement coverage as well (covering all the edges
in a flow graph will ensure coverage of the nodes). In fact, the statement
coverage goal is so weak that it is not considered to be very useful for
revealing defects. For example, if the defect is a missing statement it may
remain undetected by tests satisfying complete statement coverage. The
reader should be aware that in spite of the weakness, even this minimal
coverage goal is not required in many test plans.

Decision (branch) coverage for the code example in Figure 5.2, re-
quires test cases to be developed for the two decision statements, that is,
the four true/false edges in the control flow graph of Figure 5.3. Input
values must ensure execution the true/false possibilities for the decisions
in line 4 (while loop) and line 5 (if statement). Note that the “if” statement
has a “null else” component, that is, there is no “else” part. However,
we include a test that covers both the true and false conditions for the
statement.

A possible test case that satisfies 100% decision coverage is shown
in Table 5.1. The reader should note that the test satisfies both the branch



1055.3 Cover ing Code Logic |

adequacy criterion and the statement adequacy criterion, since all the
statements 1–8 would be executed by this test case. Also note that for this
code example, as well as any other code component, there may be several
sets of test cases that could satisfy a selected criterion.

This code example represents a special case in that it was feasible to
achieve both branch and statement coverage with one test case. Since one
of the inputs, “a,” is an array, it was possible to assign both positive and
negative values to the elements of “a,” thus allowing coverage of both
the true/false branches of the “if” statement. Since more than one iteration
of the “while” loop was also possible, both the true and false branches
of this loop could also be covered by one test case. Finally, note that the
code in the example does not contain any checks on the validity of the
input parameters. For simplicity it is assumed that the calling module does
the checking.

In Figure 5.2 we have simple predicates or conditions in the branch
and loop instructions. However, decision statements may contain multi-
ple conditions, for example, the statement

7

1, 2, 3

4
i<=num_of_entries

5
a[i] > 0

6

8

True

True

False

False

FIG. 5.3

A control flow graph representation for

the code in Figure 5.2.



106 | Strategies and Methods for Test Case Design I I

Decision or

branch

Value of

variable i

Value of

predicate

Test case: Value of

a, num_of_entries

a�1, �45,3

num_of_entries � 3

while 1 True

4 False

if 1 True

2 False

TABLE 5 .1

A test case for the code in Figure 5.2 that satisfies the

decision coverage criterion.

If (x � MIN and y � MAX and (not INT Z))

has three conditions in its predicate: (i) x � MIN, (ii) y � MAX, and
(iii) not INT Z. Decision coverage only requires that we exercise at least
once all the possible outcomes for the branch or loop predicates as a
whole, not for each individual condition contained in a compound pred-
icate. There are other coverage criteria requiring at least one execution of
the all possible conditions and combinations of decisions/conditions. The
names of the criteria reflect the extent of condition/decision coverage. For
example, condition coverage requires that the tester insure that each in-
dividual condition in a compound predicate takes on all possible values
at least once during execution of the test cases. More stringent coverage
criteria also require exercising all possible combinations of decisions and
conditions in the code. All of the coverage criterion described so far can
be arranged in a hierarchy of strengths from weakest to strongest as fol-
lows: statement, decision, decision/condition. The implication for this ap-
proach to test design is that the stronger the criterion, the more defects
will be revealed by the tests. Below is a simple example showing the test
cases for a decision statement with a compound predicate.

if(age <65 and married �� true)
do X
do Y ........

else
do Z



1075.3 Cover ing Code Logic |

Condition 1: Age less than 65
Condition 2: Married is true

Test cases for simple decision coverage

Value
for age

Value for
married

Decision outcome
(compound predicate
as a whole)

Test case
ID

30 True True 1
75 True False 2

Note that these tests would not exercise the possible outcome for married
as false. A defect in the logical operator for condition 2, for example, may
not be detected. Test cases 2 and 3 shown as follows would cover both
possibilities.

Test cases for condition coverage

Value
for age

Value for
married

Condition 1
outcome

Condition 2
outcome

Test case
ID

75 True False True 2
30 False True False 3

Note that the tests result in each condition in the compound predicate
taking on a true/false outcome. However, all possible outcomes for the
decision as a whole are not exercised so it would not satisfy decision/
condition coverage criteria. Decision/condition coverage requires that
every condition will be set to all possible outcomes and the decision as a
whole will be set to all possible outcomes. A combination of test cases 1,
2, and 3 would satisfy this criterion.

Test cases for decision condition coverage

Value
for age

Value for
married Condition 1

outcome
Condition 2
outcome

Decision
outcome
(compound
predicate
as a whole)

Test
case
ID

30 True True True True 1
75 True False True False 2
30 False True False False 3



108 | Strategies and Methods for Test Case Design I I

The criteria described above do not require the coverage of all the
possible combinations of conditions. This is represented by yet another
criterion called multiple condition coverage where all possible combina-
tions of condition outcomes in each decision must occur at least once
when the test cases are executed. That means the tester needs to satisfy
the following combinations for the example decision statement:

Condition 1 Condition 2

True True
True False
False True
False False

In most cases the stronger the coverage criterion, the larger the num-
ber of test cases that must be developed to insure complete coverage. For
code with multiple decisions and conditions the complexity of test case
design increases with the strength of the coverage criterion. The tester
must decide, based on the type of code, reliability requirements, and re-
sources available which criterion to select, since the stronger the criterion
selected the more resources are usually required to satisfy it.

5 . 4 Paths: Their Role in White Box–Based Test Design

In Section 5.2 the role of a control flow graph as an aid to white box test
design was described. It was also mentioned that tools were available to
generate control flow graphs. These tools typically calculate a value for
a software attribute called McCabe’s Cyclomatic Complexity V(G) from
a flow graph. The cyclomatic complexity attribute is very useful to a tester
[3]. The complexity value is usually calculated from the control flow
graph (G) by the formula

V(G) � E � N � 2 (1)

The value E is the number of edges in the control flow graph and N is
the number of nodes. This formula can be applied to flow graphs where



1095.4 Paths: Their Role in White Box–Based Test Design |

there are no disconnected components [4]. As an example, the cyclomatic
complexity of the flow graph in Figure 5.3 is calculated as follows:

E � 7, N � 6
V(G) � 7 � 6 � 2 � 3

The cyclomatic complexity value of a module is useful to the tester
in several ways. One of its uses is to provide an approximation of the
number of test cases needed for branch coverage in a module of structured
code. If the testability of a piece of software is defined in terms of the
number of test cases required to adequately test it, then McCabes’ cyclo-
matic complexity provides an approximation of the testability of a mod-
ule. The tester can use the value of V(G) along with past project data to
approximate the testing time and resources required to test a software
module. In addition, the cyclomatic complexity value and the control flow
graph give the tester another tool for developing white box test cases using
the concept of a path. A definition for this term is given below.

A path is a sequence of control flow nodes usually beginning from the entry node

of a graph through to the exit node.

A path may go through a given segment of the control flow graph
one or more times. We usually designate a path by the sequence of nodes
it encompasses. For example, one path from the graph in Figure 5.3 is

1-2-3-4-8

where the dashes represent edges between two nodes. For example, the
sequence “4-8” represents the edge between nodes 4 and 8.

Cyclomatic complexity is a measure of the number of so-called “in-
dependent” paths in the graph. An independent path is a special kind of
path in the flow graph. Deriving a set of independent paths using a flow
graph can support a tester in identifying the control flow features in the
code and in setting coverage goals. A tester identifies a set of independent
paths for the software unit by starting out with one simple path in the
flow graph and iteratively adding new paths to the set by adding new
edges at each iteration until there are no more new edges to add. The
independent paths are defined as any new path through the graph that
introduces a new edge that has not be traversed before the path is defined.



110 | Strategies and Methods for Test Case Design I I

A set of independent paths for a graph is sometimes called a basis set. For
most software modules it may be possible to derive a number of basis
sets. If we examine the flow graph in Figure 5.3, we can derive the fol-
lowing set of independent paths starting with the first path identified
above.

(i) 1-2-3-4-8
(ii) 1-2-3-4-5-6-7-4-8
(iii) 1-2-3-4-5-7-4-8

The number of independent paths in a basis set is equal to the cyclo-
matic complexity of the graph. For this example they both have a value
of 3. Recall that the cyclomatic complexity for a flow graph also gives us
an approximation (usually an upper limit) of the number of tests needed
to achieve branch (decision) coverage. If we prepare white box test cases
so that the inputs cause the execution of all of these paths, we can be
reasonably sure that we have achieved complete statement and decision
coverage for the module. Testers should be aware that although identi-
fying the independent paths and calculating cyclomatic complexity in a
module of structured code provides useful support for achieving decision
coverage goals, in some cases the number of independent paths in the
basis set can lead to an overapproximation of the number of test cases
needed for decision (branch) coverage. This is illustrated by the code ex-
ample of Figure 5.2, and the test case as shown in Table 5.1.

To complete the discussion in this section, one additional logic-based
testing criterion based on the path concept should be mentioned. It is the
strongest program-based testing criterion, and it calls for complete path
coverage; that is, every path (as distinguished from independent paths) in
a module must be exercised by the test set at least once. This may not be
a practical goal for a tester. For example, even in a small and simple unit
of code there may be many paths between the entry and exit nodes. Add-
ing even a few simple decision statements increases the number of paths.
Every loop multiplies the number of paths based on the number of pos-
sible iterations of the loop since each iteration constitutes a different path
through the code. Thus, complete path coverage for even a simple module
may not be practical, and for large and complex modules it is not feasible.



1115.5 Addit ional White Box Test Design Approaches |

In addition, some paths in a program may be unachievable, that is, they
cannot be executed no matter what combinations of input data are used.
The latter makes achieving complete path coverage an impossible task.
The same condition of unachievability may also hold true for some
branches or statements in a program. Under these circumstances coverage
goals are best expressed in terms of the number of feasible or achievable
paths, branches, or statements respectively.

As a final note, the reader should not confuse the coverage based on
independent path testing as equivalent to the strongest coverage goal—
complete path coverage. The basis set is a special set of paths and does
not represent all the paths in a module; it serves as a tool to aid the tester
in achieving decision coverage.

5 . 5 Addit ional White Box Test Design Approaches

In addition to methods that make use of software logic and control struc-
tures to guide test data generation and to evaluate test completeness there
are alternative methods that focus on other characteristics of the code.
One widely used approach is centered on the role of variables (data) in
the code. Another is fault based. The latter focuses on making modifi-
cations to the software, testing the modified version, and comparing re-
sults. These will be described in the following sections of this chapter.

5 . 5 . 1 D a t a F l o w a n d W h i t e B o x T e s t D e s i g n

In order to discuss test data generation based on data flow information,
some basic concepts that define the role of variables in a software com-
ponent need to be introduced.

We say a variable is defined in a statement when its value is assigned or changed.

For example in the statements

Y � 26 * X
Read (Y)



112 | Strategies and Methods for Test Case Design I I

the variable Y is defined, that is, it is assigned a new value. In data flow
notation this is indicated as a def for the variable Y.

We say a variable is used in a statement when its value is utilized in a statement.

The value of the variable is not changed.

A more detailed description of variable usage is given by Rapps and Wey-
uker [4]. They describe a predicate use (p-use) for a variable that indicates
its role in a predicate. A computational use (c-use) indicates the variable’s
role as a part of a computation. In both cases the variable value is un-
changed. For example, in the statement

Y � 26 * X

the variable X is used. Specifically it has a c-use. In the statement

if (X � 98)
Y � max

X has a predicate or p-use. There are other data flow roles for variables
such as undefined or dead, but these are not relevant to the subsequent
discussion. An analysis of data flow patterns for specific variables is often
very useful for defect detection. For example, use of a variable without a
definition occurring first indicates a defect in the code. The variable has
not been initialized. Smart compilers will identify these types of defects.
Testers and developers can utilize data flow tools that will identify and
display variable role information. These should also be used prior to code
reviews to facilitate the work of the reviewers.

Using their data flow descriptions, Rapps and Weyuker identified
several data-flow based test adequacy criteria that map to corresponding
coverage goals. These are based on test sets that exercise specific path
segments, for example:

All def
All p-uses
All c-uses/some p-uses
All p-uses/some c-uses
All uses
All def-use paths

The strongest of these criteria is all def-use paths. This includes all p- and
c-uses.



1135.5 Addit ional White Box Test Design Approaches |

We say a path from a variable definition to a use is called a def-use path.

To satisfy the all def-use criterion the tester must identify and classify
occurrences of all the variables in the software under test. A tabular sum-
mary is useful. Then for each variable, test data is generated so that all
definitions and all uses for all of the variables are exercised during test.
As an example we will work with the code in Figure 5.4 that calculates
the sum of n numbers

The variables of interest are sum, i, n, and number. Since the goal is
to satisfy the all def-use criteria we will need to tabulate the def-use oc-
currences for each of these variables. The data flow role for each variable
in each statement of the example is shown beside the statement in italics.
Tabulating the results for each variable we generate the following tables.
On the table each def-use pair is assigned an identifier. Line numbers are
used to show occurrence of the def or use. Note that in some statements
a given variable is both defined and used.

Table for n
pair id def use

1 2 4

Table for number
pair id def use

1 5 6

1 sum�0 sum, def
2 read (n), n, def
3 i�1 i, def
4 while (i <�n) i, n p-sue
5 read (number) number, def
6. sum�sum�number sum, def, sum, number, c-use
7 i�i�1 i, def, c-use
8 end while
9 print (sum) sum, c-use

FIG. 5.4

Sample code with data flow

information.



114 | Strategies and Methods for Test Case Design I I

Table for sum
pair id def use

1 1 6
2 1 9
3 6 6
4 6 9

Table for i
pair id def use

1 3 4
2 3 7
3 7 7
4 7 4

After completion of the tables, the tester then generates test data to ex-
ercise all of these def-use pairs In many cases a small set of test inputs
will cover several or all def-use paths. For this example two sets of test
data would cover all the def-use pairs for the variables:

Test data set 1: n � 0

Test data set 2: n � 5, number � 1,2,3,4,5

Set 1 covers pair 1 for n, pair 2 for sum, and pair 1 for i. Set 2 covers
pair 1 for n, pair 1 for number, pairs 1,3,4 for sum, and pairs 1,2,3,4 for
i. Note even for this small piece of code there are four tables and four
def-use pairs for two of the variables.

As with most white box testing methods, the data flow approach is
most effective at the unit level of testing. When code becomes more com-
plex and there are more variables to consider it becomes more time con-
suming for the tester to analyze data flow roles, identify paths, and design
the tests. Other problems with data flow oriented testing occur in the
handling of dynamically bound variables such as pointers. Finally, there
are no commercially available tools that provide strong support for data
flow testing, such as those that support control-flow based testing. In the
latter case, tools that determine the degree of coverage, and which por-
tions of the code are yet uncovered, are of particular importance. These
are not available for data flow methods. For examples of prototype tools



1155.5 Addit ional White Box Test Design Approaches |

and further discussion of data flow testing see Beizer [4], Laski [6], Rapps
[5], Clarke [7], Horgan [8] and Ostrand [9].

5 . 5 . 2 L o o p T e s t i n g

Loops are among the most frequently used control structures. Experi-
enced software engineers realize that many defects are associated with
loop constructs. These are often due to poor programming practices and
lack of reviews. Therefore, special attention should be paid to loops dur-
ing testing. Beizer has classified loops into four categories: simple, nested,
concatenated, and unstructured [4]. He advises that if instances of un-
structured loops are found in legacy code they should be redesigned to
reflect structured programming techniques. Testers can then focus on the
remaining categories of loops.

Loop testing strategies focus on detecting common defects associated
with these structures. For example, in a simple loop that can have a range
of zero to n iterations, test cases should be developed so that there are:

(i) zero iterations of the loop, i.e., the loop is skipped in its entirely;
(ii) one iteration of the loop;
(iii) two iterations of the loop;
(iv) k iterations of the loop where k � n;
(v) n � 1 iterations of the loop;
(vi) n � 1 iterations of the loop (if possible).

If the loop has a nonzero minimum number of iterations, try one less than
the minimum. Other cases to consider for loops are negative values for
the loop control variable, and n � 1 iterations of the loop if that is
possible. Zhu has described a historical loop count adequacy criterion
that states that in the case of a loop having a maximum of n iterations,
tests that execute the loop zero times, once, twice, and so on up to n times
are required [1].

Beizer has some suggestions for testing nested loops where the outer
loop control variables are set to minimum values and the innermost loop
is exercised as above. The tester then moves up one loop level and finally
tests all the loops simultaneously. This will limit the number of tests to
perform; however, the number of test under these circumstances is still
large and the tester may have to make trade-offs. Beizer also has sugges-
tions for testing concatenated loops [4].



116 | Strategies and Methods for Test Case Design I I

5 . 5 . 3 M u t a t i o n T e s t i n g

In Chapters 4 and 5 we have studied test data generation approaches that
depend on code behavior and code structure. Mutation testing is another
approach to test data generation that requires knowledge of code struc-
ture, but it is classified as a fault-based testing approach. It considers the
possible faults that could occur in a software component as the basis for
test data generation and evaluation of testing effectiveness.

Mutation testing makes two major assumptions:

1. The competent programmer hypothesis. This states that a competent
programmer writes programs that are nearly correct. Therefore we
can assume that there are no major construction errors in the pro-
gram; the code is correct except for a simple error(s).

2. The coupling effect. This effect relates to questions a tester might have
about how well mutation testing can detect complex errors since the
changes made to the code are very simple. DeMillo has commented
on that issue as far back as 1978 [10]. He states that test data that
can distinguish all programs differing from a correct one only by
simple errors are sensitive enough to distinguish it from programs
with more complex errors.

Mutation testing starts with a code component, its associated test
cases, and the test results. The original code component is modified in a
simple way to provide a set of similar components that are called mutants.
Each mutant contains a fault as a result of the modification. The original
test data is then run with the mutants. If the test data reveals the fault in
the mutant (the result of the modification) by producing a different output
as a result of execution, then the mutant is said to be killed. If the mutants
do not produce outputs that differ from the original with the test data,
then the test data are not capable of revealing such defects. The tests
cannot distinguish the original from the mutant. The tester then must
develop additional test data to reveal the fault and kill the mutants.

A test data adequacy criterion that is applicable here is the following
[11]:

A test set T is said to be mutation adequate for program P provided that for every

inequivalent mutant Pi of P there is an element t in T such that Pi(t) is not equal

to P(t).



1175.5 Addit ional White Box Test Design Approaches |

The term T represents the test set, and t is a test case in the test set. For
the test data to be adequate according to this criterion, a correct program
must behave correctly and all incorrect programs behave incorrectly for
the given test data.

Mutations are simple changes in the original code component, for
example: constant replacement, arithmetic operator replacement, data
statement alteration, statement deletion, and logical operator replace-
ment. There are existing tools that will easily generate mutants. Tool users
need only to select a change operator. To illustrate the types of changes
made in mutation testing we can make use of the code in Figure 5.2. A
first mutation could be to change line 7 from

i � i � 1 to i � i � 2.

If we rerun the tests used for branch coverage as in Table 5.1 this mutant
will be killed, that is, the output will be different than for the original
code. Another change we could make is in line 5, from

if a[i] � 0 to if a[i] � 0.

This mutant would also be killed by the original test data. Therefore, we
can assume that our original tests would have caught this type of defect.
However, if we made a change in line 5 to read

if a[i] � � 0,

this mutant would not be killed by our original test data in Table 5.1.
Our inclination would be to augment the test data with a case that in-
cluded a zero in the array elements, for example:

a � 0, 45, 3, SIZE � 3.

However, this test would not cause the mutant to be killed because adding
a zero to the output variable sum does not change its final value. In this
case it is not possible to kill the mutant. When this occurs, the mutant is
said to be equivalent to the original program.

To measure the mutation adequacy of a test set T for a program P
we can use what is called a mutation score (MS), which is calculated as
follows [12]:

# of dead mutants
MS (P,T) �

# total mutants � # of equivalent mutants



118 | Strategies and Methods for Test Case Design I I

Equivalent mutants are discarded from the mutant set because they do
not contribute to the adequacy of the test set.

Mutation testing is useful in that it can show that certain faults as
represented in the mutants are not likely to be present since they would
have been revealed by test data. It also helps the tester to generate hy-
potheses about the different types of possible faults in the code and to
develop test cases to reveal them. As previously mentioned there are tools
to support developers and testers with producing mutants. In fact, many
hundreds of mutants can be produced easily. However, running the tests,
analyzing results, and developing additional tests, if needed, to kill the
mutants are all time consuming. For these reasons mutation testing is
usually applied at the unit level. However, recent research in an area called
interface mutation (the application of mutation testing to evaluate how
well unit interfaces have been tested) has suggested that it can be applied
effectively at the integration test level as well [12].

Mutation testing as described above is called strong mutation testing.
There are variations that reduce the number of mutants produced. One
of these is called weak mutation testing which focuses on specific code
components and is described by Howden [13].

5 . 6 Evaluating Test Adequacy Criter ia

Most of the white box testing approaches we have discussed so far are
associated with application of an adequacy criterion. Testers are often
faced with the decision of which criterion to apply to a given item under
test given the nature of the item and the constraints of the test environ-
ment (time, costs, resources) One source of information the tester can use
to select an appropriate criterion is the test adequacy criterion hierarchy
as shown in Figure 5.5 which describes a subsumes relationship among
the criteria. Satisfying an adequacy criterion at the higher levels of the
hierarchy implies a greater thoroughness in testing [1,14–16]. The criteria
at the top of the hierarchy are said to subsume those at the lower levels.
For example, achieving all definition-use (def-use) path adequacy means
the tester has also achieved both branch and statement adequacy. Note
from the hierarchy that statement adequacy is the weakest of the test
adequacy criteria. Unfortunately, in many organizations achieving a high
level of statement coverage is not even included as a minimal testing goal.



1195.6 Evaluating Test Adequacy Criter ia |

All paths

All def-use paths

All uses

All c-uses,
some p-uses

All p-uses,
some c-uses

All-defs All p-uses

All branches

All statements

Strong mutation

Weak mutation

All c-uses

FIG. 5.5

A partial ordering for test adequacy

criteria.

As a conscientious tester you might at first reason that your testing
goal should be to develop tests that can satisfy the most stringent criterion.
However, you should consider that each adequacy criterion has both
strengths and weaknesses. Each, is effective in revealing certain types of
defects. Application of the so-called “stronger” criteria usually requires
more tester time and resources. This translates into higher testing costs.
Testing conditions, and the nature of the software should guide your
choice of a criterion.

Support for evaluating test adequacy criteria comes from a theoretical
treatment developed by Weyuker [2]. She presents a set of axioms that
allow testers to formalize properties which should be satisfied by any
good program-based test data adequacy criterion. Testers can use the
axioms to

• recognize both strong and weak adequacy criteria; a tester may decide
to use a weak criterion, but should be aware of its weakness with
respect to the properties described by the axioms;



120 | Strategies and Methods for Test Case Design I I

• focus attention on the properties that an effective test data adequacy
criterion should exhibit;

• select an appropriate criterion for the item under test;

• stimulate thought for the development of new criteria; the axioms are
the framework with which to evaluate these new criteria.

The axioms are based on the following set of assumptions [2]:

(i) programs are written in a structured programming language;
(ii) programs are SESE (single entry/single exit);
(iii) all input statements appear at the beginning of the program;
(iv) all output statements appear at the end of the program.

The axioms/properties described by Weyuker are the following [2]:

1 . App l i cab i l i t y P rope r t y

“For every program there exists an adequate test set.” What this axiom
means is that for all programs we should be able to design an adequate
test set that properly tests it. The test set may be very large so the tester
will want to select representable points of the specification domain to test
it. If we test on all representable points, that is called an exhaustive test
set. The exhaustive test set will surely be adequate since there will be no
other test data that we can generate. However, in past discussions we
have ruled out exhaustive testing because in most cases it is too expensive,
time consuming, and impractical.

2 . Nonexhaus t i ve App l i cab i l i t y P rope r t y

“For a program P and a test set T, P is adequately tested by the test set
T, and T is not an exhaustive test set.” To paraphrase, a tester does not
need an exhaustive test set in order to adequately test a program.

3 . Mono ton i c i t y P rope r t y

“If a test set T is adequate for program P, and if T is equal to, or a subset
of T�, then T� is adequate for program P.”



1215.6 Evaluating Test Adequacy Criter ia |

4 . I nadequa te Empty Se t

“An empty test set is not an adequate test for any program.” If a program
is not tested at all, a tester cannot claim it has been adequately tested!

Note that these first four axioms are very general and apply to all pro-
grams independent of programming language and equally apply to uses
of both program- and specification-based testing. For some of the next
group of axioms this is not true.

5 . An t i ex tens i ona l i t y P rope r t y

“There are programs P and Q such that P is equivalent to Q, and T is
adequate for P, but T is not adequate for Q.” We can interpret this axiom
as saying that just because two programs are semantically equivalent (they
may perform the same function) does not mean we should test them the
same way. Their implementations (code structure) may be very different.
The reader should note that if programs have equivalent specifications
then their test sets may coincide using black box testing techniques, but
this axiom applies to program-based testing and it is the differences that
may occur in program code that make it necessary to test P and Q with
different test sets.

6 . Genera l Mu l t i p l e Change Prope r t y

“There are programs P and Q that have the same shape, and there is a
test set T such that T is adequate for P, but is not adequate for Q.” Here
Weyuker introduces the concept of shape to express a syntactic equiva-
lence. She states that two programs are the same shape if one can be
transformed into the other by applying the set of rules shown below any
number of times:

(i) replace relational operator r1 in a predicate with relational operator
r2;

(ii) replace constant c1 in a predicate of an assignment statement with
constant c2;

(iii) replace arithmetic operator a1 in an assignment statement with arith-
metic operator a2.



122 | Strategies and Methods for Test Case Design I I

Axiom 5 says that semantic closeness is not sufficient to imply that two
programs should be tested in the same way. Given this definition of shape,
Axiom 6 says that even the syntactic closeness of two programs is not
strong enough reason to imply they should be tested in the same way.

7 . An t i decompos i t i on Prope r t y

“There is a program P and a component Q such that T is adequate for
P, T� is the set of vectors of values that variables can assume on entrance
to Q for some t in T, and T� is not adequate for Q.” This axiom states
that although an encompassing program has been adequately tested, it
does not follow that each of its components parts has been properly
tested. Implications for this axiom are:

1. a routine that has been adequately tested in one environment may
not have been adequately tested to work in another environment, the
environment being the enclosing program.

2. although we may think of P, the enclosing program, as being more
complex than Q it may not be. Q may be more semantically complex;
it may lie on an unexecutable path of P, and thus would have the
null set, as its test set, which would violate Axiom 4.

8 . An t i compos i t i on Prope r t y

“There are programs P and Q, and test set T, such that T is adequate for
P, and the set of vectors of values that variables can assume on entrance
to Q for inputs in T is adequate for Q, but T is not adequate for P; Q
(the composition of P and Q).” Paraphrasing this axiom we can say that
adequately testing each individual program component in isolation does
not necessarily mean that we have adequately tested the entire program
(the program as a whole). When we integrate two separate program com-
ponents, there are interactions that cannot arise in the isolated compo-
nents. Axioms 7 and 8 have special impact on the testing of object ori-
ented code. These issues are covered in Chapter 6.

9 . Renaming Prope r t y

“If P is a renaming of Q, then T is adequate for P only if T is adequate
for Q. A program P is a renaming of Q if P is identical to Q expect for



1235.6 Evaluating Test Adequacy Criter ia |

the fact that all instances of an identifier, let us say a in Q have been
replaced in P by an identifier, let us say b, where “b” does not occur in
Q, or if there is a set of such renamed identifiers.” This axiom simply
says that an inessential change in a program such as changing the names
of the variables should not change the nature of the test data that are
needed to adequately test the program.

10 . Comp lex i t y P rope r t y

“For every n, there is a program P such that P is adequately tested by a
size n test set, but not by any size n � 1 test set.” This means that for
every program, there are other programs that require more testing.

11 . S ta temen t Cove rage Prope r t y

“If the test set T is adequate for P, then T causes every executable state-
ment of P to be executed.” Ensuring that their test set executed all state-
ments in a program is a minimum coverage goal for a tester. A tester soon
realizes that if some portion of the program has never been executed, then
that portion could contain defects: it could be totally in error and be
working improperly. Testing would not be able to detect any defects in
this portion of the code. However, this axiom implies that a tester needs
to be able to determine which statements of a program are executable. It
is possible that not all of program statements are executable. Unfortu-
nately, there is no algorithm to support the tester in the latter task, but
Weyuker believes that developers/testers are quite good at determining
whether or not code is, or is not, executable [2]. Issues relating to infea-
sible (unexecutable) paths, statements, and branches have been discussed
in Section 5.4.

The first eight axioms as described by Weyuker exposed weaknesses
in several well-known program-based adequacy criteria. For example,
both statement and branch adequacy criteria were found to fail in satis-
fying several of the axioms including the applicability axiom. Some data
flow adequacy criteria also failed to satisfy the applicability axiom. An
additional three axioms/properties (shown here as 9–11) were added to
the original set to provide an even stronger framework for evaluating test
adequacy criteria. Weyuker meant for these axioms to be used as a tool
by testers to understand the strengths and weaknesses of the criteria they



124 | Strategies and Methods for Test Case Design I I

select. Note that each criterion has a place on the “subsumes” hierarchy
as shown in Figure 5.5. A summary showing several criteria and eight of
the axioms they satisfy, and fail to satisfy, is shown in Table 5.2 [11].

Weyuker’s goal for the research community is to eventually develop
criteria that satisfy all of the axioms. Using these new criteria, testers will
be able to have greater confidence that the code under test has been ad-
equately tested. Until then testers will need to continue to use exiting
criteria such as branch- and statement-based criteria. However, they
should be aware of inherent weaknesses of each, and use combinations
of criteria and different testing techniques to adequately test a program.

As a note to the reader, there are existing studies that discuss issues
relating to when to apply specific test adequacy criteria, and whether
satisfaction of stronger criteria does in fact reveal more defects than
weaker criteria. The effectiveness of tests based on the criteria relative to
those derived from the random test data generation approach is also dis-
cussed. The studies are both theoretical and empirical in nature. The key
researchers in this area include Frankl, Weyuker, Zhu, Parrish, and
Gutjahr [1,2,11,13–17].

5 . 7 White Box Testing Methods and the TMM

In the previous chapter we discussed various black box–based testing
methods and established a connection between these methods and TMM
level 2 maturity goals. A similar argument can be made for the important
role of white box methods in the evolution of test process maturity and
for their association with TMM maturity goals. As in the case of black
box–based test design, white box methods also provide a systematic way
of developing test cases. However, white box methods have a stronger
theoretical foundation and are supported by test adequacy criteria that
guide the development of test data and allow evaluation of testing goals
when tests are subsequently executed. In addition, white box methods
have adequate tool support, and they depend on the use of notations that
allow a connection to other development activities, for example, design.
Use of black box as well as white box methods needs to be specified in
the organizational testing goals/policy statement, and both need to be



1255.7 White Box Testing Methods and the TMM |

Statement Branch Mutation

Axiom 1 No No Yes

Axiom 2 Yes Yes Yes

Axiom 3 Yes Yes Yes

Axiom 4 Yes Yes Yes

Axiom 5 Yes Yes Yes

Axiom 6 Yes Yes Yes

Axiom 7 No No Yes

Axiom 8 No No Yes

TABLE 5 .2

Sample test data adequacy criteria and

axiom satisfaction [11].

applied in test plans. Managers should ensure that testers are trained in
the use of both for consistent application to all organizational projects as
described in the TMM. The Activities/Tasks/Responsibilities (ATR’s) as-
sociated with adapting and implementing black box methods also apply
to white box methods as well.

Several white box testing techniques were discussed in this chapter,
and once again the role of smart developer/tester is to choose among them.
In addition to the selection of properties to test based on test adequacy
criteria, the developer/tester must also decide on the degree of coverage
that is appropriate in each case. When making a choice among white box
testing methods the tester must consider the nature of the software to be
tested, resources available, and testing constraints and conditions. For
example, a tester might choose to develop test designs using elements of
control flow such as branches. In this same example, to insure coverage
of compound conditions the tester may decide that multiple decision cov-
erage is a wise testing goal. However, if the code is not complex, and is
not mission, safety, or business critical, then simple branch coverage
might be sufficient. The tester must also apply this reasoning to selection
of a degree of coverage. For example, for a simple nonmission critical
module, 85% branch coverage may prove to be a sufficient goal for the
module if testing resources are tight. Remember that the higher up on the



126 | Strategies and Methods for Test Case Design I I

ordering hierarchy you climb, and the greater the degree of coverage you
specify, the more testing resources are likely to be required to achieve
testing goals.

In all cases the tester should select a combination of strategies to
develop test cases that includes both black box and white box approaches.
No one test design approach is guaranteed to reveal all defects, no matter
what its proponents declare! Use of different testing strategies and meth-
ods has the following benefits:

1. The tester is encouraged to view the developing software from several
different views to generate the test data. The views include control
flow, data flow, input/output behavior, loop behavior, and
states/state changes. The combination of views, and the test cases
developed from their application, is more likely to reveal a wide va-
riety of defects, even those that are difficult to detect. This results in
a higher degree of software quality.

2. The tester must interact with other development personnel such as
requirements analysts and designers to review their representations
of the software. Representations include input/output specifications,
pseudo code, state diagrams, and control flow graphs which are rich
sources for test case development. As a result of the interaction, test-
ers are equipped with a better understanding of the nature of the
developing software, can evaluate its testability, give intelligent input
during reviews, generate hypotheses about possible defects, and de-
velop an effective set of tests.

3. The tester is better equipped to evaluate the quality of the testing
effort (there are more tools and approaches available from the com-
bination of strategies). The testers are also more able to evaluate the
quality of the software itself, and establish a high degree of confidence
that the software is operating occurring to the specifications. This
higher confidence is a result of having examined software behavior
and structural integrity in several independent ways.

4. The tester is better able to contribute to organizational test process
improvement efforts based on his/her knowledge of a variety of test-
ing strategies. With a solid grasp of both black and white box test
design strategies, testers can have a very strong influence on the de-
velopment and maintenance of test policies, test plans, and test prac-



1275.7 White Box Testing Methods and the TMM |

tices. Testers are also better equipped to fulfill the requirements for
the Activities, Tasks, and Responsibilities called for at TMM level 2
(see Section 3.12 and Appendix III). With their knowledge they can
promote best practices, technology transfer, and ensure organization-
wide adaptation of a variety of test design strategies and techniques.

K E Y T E R M S

Branch/statement adequate

Defined variable

Def-use path

Mutation adequate

Path

Used variable

E X E R C I S E S

1. What is a control flow graph? How is it used in white box test design?

2. Draw a flow graph for the code in Figure 5.4. Calculate its cyclomatic complex-

ity. Why is this value useful to the tester?

3. You are developing a module whose logic impacts on data acquisition for a

flight control system. Your test manager has given you limited time and budget to

test the module. The module is fairly complex; it has many loops, conditional

statements, and nesting levels. You are going to unit test the module using white

box testing approaches. Describe three test adequacy criteria you would consider

applying to develop test cases for this module. What are the pros and cons for

each. Which will have the highest strength?

4. Suppose you have developed a module with the following conditional

statement:

if (value < 100 and found �� true)

call (enter_data (value))

else

print (‘‘data cannot be entered’’)



128 | Strategies and Methods for Test Case Design I I

Create tables as shown in the text containing test data that will enable you to

achieve (i) simple decision coverage, (ii) condition coverage, and (iii) decision/

condition coverage.

5. The following is a pseudocode fragment that has no redeeming features except

for the purpose of this question. Draw a control flow graph for the example and

clearly label each node so that it is linked to its corresponding statement. Calculate

its cyclomatic complexity. How can you use this value as a measure of testability?

Describe how a tester could use the cyclomatic complexity and the control flow

graph to design a set of white box tests for this module that would at least cover

all its branches.

module nonsense( )

/* a[] and b[] are global variables */

begin

int i,x

i �1

read (x)

while (i < x) do begin

a[i] � b[i] * x

if a[i] > 50 then

print (‘‘array a is over the limit’’)

else

print (‘‘ok’’)

i � i �1

end

print (‘‘end of nonsense’’)

end

6. The following is a unit that implements a binary search. It decides if a particular

value of x occurs in the sorted integer array v. The elements of v are sorted in

increasing order. The unit returns the position (a value between 0 and n �1 if x

occurs in v, and �1 if not. Draw a control flow graph for the example, and clearly

label each node to show its correspondence to a statement. Calculate its cyclo-

matic complexity. How many test cases are needed to adequately cover the code

with respect to its branches? Develop the necessary test cases using sample

values for x, n, and v as needed and show how they cover the branches.



1295.7 White Box Testing Methods and the TMM |

int binsearch (int x,int v[], int n)

{

int low, high, mid;

low � 0;

high � n-1;

while (low <� high) {

mid � (low�high)/2

if (x < v[mid]

high � mid&ndash;1;

else if (x > v[mid])

low � mid� 1;

else /* found match*/

return mid;

}

return–1; /* no match*/

}

7. Using your original (untested) version of the coin program (Problem 7, Chapter

4), design a set of test cases based on the branch adequacy criterion. Be sure to

develop tables that identify each branch and the test cases that are assigned to

execute it. Run the tests on the original code. Be sure that your tests actual

execute all the branches; your goal is 100% coverage. If your original set is not

adequate, add more tests to the set. Compare the defects you detected using the

branch adequacy criterion in terms of number and type to results from each of

the black box testing techniques you used in Chapter 4. What differences were

apparent? Comment on these.

8. Use the same approach as in Problem 7 above with the original code developed

for Problem 9 in Chapter 4. Again compare the results you observed using the

branch adequacy criterion as compared to the black box techniques. Are there any

particular classes of defects more effectively detected by the white or black box

techniques? Compare the number of test cases needed for all the approaches and

the number of defects detected of each type. Are there major differences? What

would you recommend in terms of using combinations of these techniques?

9. For the code in Figure 5.2 identify the data flow information for each variable

in each statement. Construct tables for each variable identifying their def-use

paths. From the tables generate test data to exercise as many def-use paths as

you can making any necessary assumptions needed.



130 | Strategies and Methods for Test Case Design I I

10. For following looping construct, describe the set of tests you would develop

based on the number of loop iterations in accordance with the loop testing criteria

described in this chapter.

for (i � 0; i < 50; i��)

}

text_box[i] � value[i];

full � full–1;

}

11. A programmer using a mutation analysis tool finds that a total of 35 mutants

have been generated for a program module A. Using a test set she has developed

she finds after running the tests the number of dead mutants is 29 and the number

of equivalent mutants is 2. What is the mutation score (MS) for module A. Is her

test set for module A mutation adequate? Should she develop additional test

cases. Why?

12. Given the test adequacy criteria hierarchy of Figure 5.5, and the observation

that for many organizations statement adequacy at best is likely to be planned

for, evaluate the strength of their testing approach. Make suggestions for improve-

ment based on what you have learned in this chapter and your own testing

experiences.

13. From your understanding of Weyuker’s axioms and the information on Table

5.2 explain why statement adequacy does/does not satisfy Axioms 1, 7, and 8.

14. From your own testing experiences and what you have learned from this text,

why do you think it is important for a tester to use both white and black box-

based testing techniques to evaluate a given software module?

R E F E R E N C E S

[1] H. Zhu, P. Hall, J. May, “Software unit test cov-
erage and adequacy,” ACM Computing Surveys,
Vol. 29, No. 4, 1997, pp. 366–427.

[2] E. Weyuker, “The evaluation of program-based
software test adequacy criteria,” CACM, Vol. 31,
No. 6, 1988, pp. 668–675.

[3] T. McCabe, C. Butler, “Design complexity mea-
surement and testing,” CACM, Vol. 32, No. 12, 1989.
pp. 1415–1425.

[4] B. Beizer, Software Testing Techniques, second edi-
tion, Van Nostrand Reinhold, New York, 1990.

[5] S. Rapps, E. Weyuker, “Selecting software test data
using data flow information,” IEEE Trans. Software
Engineering, Vol. 11, No. 4, 1985, pp. 367–375.

[6] J. Laski, B. Korel, “A data flow oriented testing
strategy,” IEEE Trans. Software Engineering, Vol. 9,
No. 3, 1983, pp. 347–354.



1315.7 White Box Testing Methods and the TMM |

[7] L. Clarke, A. Podgurski, A. Richardson, S. Zeil, “A
comparison of data flow path selection criteria,” Proc.
Eighth International Conf. on SW Engineering, August
1985, pp. 244–251.

[8] J. Horgan, S. London, “Data flow coverage and the
C language,” Proc. ACM SIGSOFT Symposium on
Testing, Analysis, and Verification, Oct. 1991,
pp. 87–97.

[9] T. Ostrand, E. Weyuker, “Data flow–based test ad-
equacy analysis for languages with pointers,” Proc.
ACM SIGSOFT Symposium on Testing, Analysis, and
Verification, Oct. 1991, pp. 74–86.

[10] R. DeMillo, R. Lipton, F. Sayward, “Hints on test
data selection: help for the practicing programmer,”
Computer, Vol. 11, No. 4, 1978, pp. 34–41.

[11] E. Weyuker, “Axiomatizing software test data ad-
equacy,” IEEE Trans. Software Engineering, Vol. 12,
No. 12, 1986, pp. 1128–1138.

[12] M. Delamaro, J. Maldonado, A. Mathur, “Inter-
face mutation: an approach for integration testing,”

IEEE Transactions on Software Engineering, Vol. 27,
No. 3, March 2001, pp. 228–247.

[13] W. Howden, “Weak mutation testing and com-
pleteness of test sets,” IEEE Trans. Software Engi-
neering, Vol. 8, No. 4. 1982, pp. 371–379.

[14] P. Frankl, E. Weyuker, “A formal analysis of the
fault-detecting ability of testing methods,” IEEE
Trans. Software Engineering, Vol. 19, No. 3, 1993,
pp. 202–213.

[15] P. Frankl, E. Weyuker, “Provable improvements
on branch testing,” IEEE Trans. Software Engineer-
ing, Vol. 19, No. 10, Oct. 1993, pp. 962–975.

[16] A. Parrish, S. Zweben, “Analysis and refinement
of software test data adequacy properties,” IEEE
Trans. Software Engineering, Vol. 17, No. 7, 1991,
pp. 565–581.

[17] W. Gutjahr, “Partition testing vs. random testing:
the influence of uncertainty,” IEEE Trans. Soft-
ware Engineering, Vol. 25, No. 5., Sept./Oct. 1999,
pp. 661–674.



This page intentionally left blank 



6
L E V E L S

O F T E S T I N G

6 . 0 The Need for Levels of Test ing

Execution-based software testing, especially for large systems, is usually
carried out at different levels. In most cases there will be 3–4 levels, or
major phases of testing: unit test, integration test, system test, and some
type of acceptance test as shown in Figure 6.1. Each of these may consist
of one or more sublevels or phases. At each level there are specific testing
goals. For example, at unit test a single component is tested. A principal
goal is to detect functional and structural defects in the unit. At the in-
tegration level several components are tested as a group, and the tester
investigates component interactions. At the system level the system as a
whole is tested and a principle goal is to evaluate attributes such as us-
ability, reliability, and performance.

An orderly progression of testing levels is described in this chapter
for both object-oriented and procedural-based software systems. The ma-
jor testing levels for both types of system are similar. However, the nature
of the code that results from each developmental approach demands dif-



134 | Levels of Test ing

Unit test

Integration
test

System test

Acceptance
test

Individual
components

Component
groups

System
as a whole

System as a whole—
customer requirements

FIG. 6.1

Levels of testing.

ferent testing strategies, for example, to identify individual components,
and to assemble them into subsystems. The issues involved are described
in Sections 6.0.1, 6.1, and 6.2.3 of this chapter. For both types of systems
the testing process begins with the smallest units or components to iden-
tify functional and structural defects. Both white and black box test strat-
egies as discussed in Chapters 4 and 5 can be used for test case design at
this level. After the individual components have been tested, and any
necessary repairs made, they are integrated to build subsystems and clus-
ters. Testers check for defects and adherence to specifications. Proper
interaction at the component interfaces is of special interest at the inte-
gration level. In most cases black box design predominates, but often
white box tests are used to reveal defects in control and data flow between
the integrated modules.

System test begins when all of the components have been integrated
successfully. It usually requires the bulk of testing resources. Laboratory
equipment, special software, or special hardware may be necessary, es-
pecially for real-time, embedded, or distributed systems. At the system
level the tester looks for defects, but the focus is on evaluating perfor-
mance, usability, reliability, and other quality-related requirements.



1356.0 The Need for Levels of Test ing |

If the system is being custom made for an individual client then the
next step following system test is acceptance test. This is a very important
testing stage for the developers. During acceptance test the development
organization must show that the software meets all of the client’s require-
ments. Very often final payments for system development depend on the
quality of the software as observed during the acceptance test. A success-
ful acceptance test provides a good opportunity for developers to request
recommendation letters from the client. Software developed for the mass
market (i.e., shrink-wrapped software) often goes through a series of tests
called alpha and beta tests. Alpha tests bring potential users to the de-
veloper’s site to use the software. Developers note any problems. Beta
tests send the software out to potential users who use it under real-world
conditions and report defects to the developing organization.

Implementing all of these levels of testing require a large investment
in time and organizational resources. Organizations with poor testing
processes tend to skimp on resources, ignore test planning until code is
close to completion, and omit one or more testing phases. This seldom
works to the advantage of the organization or its customers. The software
released under these circumstances is often of poor quality, and the ad-
ditional costs of repairing defects in the field, and of customer dissatis-
faction are usually under estimated.

6 . 0 . 1 L e v e l s o f T e s t i n g a n d S o f t w a r e

D e v e l o p m e n t P a r a d i g m s

The approach used to design and develop a software system has an impact
on how testers plan and design suitable tests. There are two major ap-
proaches to system development—bottom-up, and top-down. These ap-
proaches are supported by two major types of programming languages—
procedure-oriented and object-oriented. This chapter considers testing at
different levels for systems developed with both approaches using either
traditional procedural programming languages or object-oriented pro-
gramming languages. The different nature of the code produced requires
testers to use different strategies to identify and test components and com-
ponent groups. Systems developed with procedural languages are gener-
ally viewed as being composed of passive data and active procedures.
When test cases are developed the focus is on generating input data to
pass to the procedures (or functions) in order to reveal defects. Object-



136 | Levels of Test ing

oriented systems are viewed as being composed of active data along with
allowed operations on that data, all encapsulated within a unit similar to
an abstract data type. The operations on the data may not be called upon
in any specific order. Testing this type of software means designing an
order of calls to the operations using various parameter values in order
to reveal defects. Issues related to inheritance of operations also impact
on testing.

Levels of abstraction for the two types of systems are also somewhat
different. In traditional procedural systems, the lowest level of abstraction
is described as a function or a procedure that performs some simple task.
The next higher level of abstraction is a group of procedures (or functions)
that call one another and implement a major system requirement. These
are called subsystems. Combining subsystems finally produces the system
as a whole, which is the highest level of abstraction. In object-oriented
systems the lowest level is viewed by some researchers as the method or
member function [1–3]. The next highest level is viewed as the class that
encapsulates data and methods that operate on the data [4]. To move up
one more level in an object-oriented system some researchers use the con-
cept of the cluster, which is a group of cooperating or related classes [3,5].
Finally, there is the system level, which is a combination of all the clusters
and any auxiliary code needed to run the system [3]. Not all researchers
in object-oriented development have the same view of the abstraction
levels, for example, Jorgensen describes the thread as a highest level of
abstraction [1]. Differences of opinion will be described in other sections
of this chapter.

While approaches for testing and assembling traditional procedural
type systems are well established, those for object-oriented systems are
still the subject of ongoing research efforts. There are different views on
how unit, integration, and system tests are best accomplished in object-
oriented systems. When object-oriented development was introduced key
beneficial features were encapsulation, inheritance, and polymorphism.
It was said that these features would simplify design and development
and encourage reuse. However, testing of object-oriented systems is not
straightforward due to these same features. For example, encapsulation
can hide details from testers, and that can lead to uncovered code. Inher-
itance also presents many testing challenges, among those the retesting of
inherited methods when they are used by a subclass in a different context.



1376.1 Unit Test: Functions, Procedures, Classes, and Methods as Units |

It is also difficult to define a unit for object-oriented code. Some research-
ers argue for the method (member function) as the unit since it is proce-
durelike. However, some methods are very small in size, and developing
test harnesses to test each individually requires a large overhead. Should
a single class be a unit? If so, then the tester need to consider the com-
plexity of the test harness needed to test the unit since in many cases, a
particular class depends on other classes for its operation. Also, object-
oriented code is characterized by use of messages, dynamic binding, state
changes, and nonhierarchical calling relationships. This also makes test-
ing more complex. The reader should understand that many of these is-
sues are yet to be resolved. Subsequent sections in this chapter will discuss
several of these issues using appropriate examples. References 1–9 rep-
resent some of the current research views in this area.

6 . 1 Unit Test: Functions, Procedures, Classes, and Methods as Units

A workable definition for a software unit is as follows:

A unit is the smallest possible testable software component.

It can be characterized in several ways. For example, a unit in a typical
procedure-oriented software system:

• performs a single cohesive function;

• can be compiled separately;

• is a task in a work breakdown structure (from the manager’s point
of view);

• contains code that can fit on a single page or screen.

A unit is traditionally viewed as a function or procedure implemented
in a procedural (imperative) programming language. In object-oriented
systems both the method and the class/object have been suggested by
researchers as the choice for a unit [1–5]. The relative merits of each of
these as the selected component for unit test are described in sections that
follow. A unit may also be a small-sized COTS component purchased
from an outside vendor that is undergoing evaluation by the purchaser,



138 | Levels of Test ing

or a simple module retrieved from an in-house reuse library. These unit
types are shown in Figure 6.2.

No matter which type of component is selected as the smallest testable
component, unit test is a vital testing level. Since the software component
being tested is relatively small in size and simple in function, it is easier
to design, execute, record, and analyze test results. If a defect is revealed
by the tests it is easier to locate and repair since only the one unit is under
consideration.

6 . 2 Unit Test: The Need for Preparat ion

The principal goal for unit testing is insure that each individual software
unit is functioning according to its specification. Good testing practice
calls for unit tests that are planned and public. Planning includes design-
ing tests to reveal defects such as functional description defects, algorith-
mic defects, data defects, and control logic and sequence defects. Re-
sources should be allocated, and test cases should be developed, using
both white and black box test design strategies. The unit should be tested
by an independent tester (someone other than the developer) and the test
results and defects found should be recorded as a part of the unit history
(made public). Each unit should also be reviewed by a team of reviewers,
preferably before the unit test.

Unfortunately, unit test in many cases is performed informally by the
unit developer soon after the module is completed, and it compiles
cleanly. Some developers also perform an informal review of the unit.
Under these circumstances the review and testing approach may be ad

Procedures
and functions

Classes/objects
and methods

Procedure-sized
reusable components

(Small-sized COTS com-
ponents or components

from an in-house
reuse library)

Fig. 6.2

Some components suitable for unit test.



1396.3 Unit Test Planning |

hoc. Defects found are often not recorded by the developer; they are pri-
vate (not public), and do not become a part of the history of the unit.
This is poor practice, especially if the unit performs mission or safely
critical tasks, or is intended for reuse.

To implement best practices it is important to plan for, and allocate
resources to test each unit. If defects escape detection in unit test because
of poor unit testing practices, they are likely to show up during integra-
tion, system, or acceptance test where they are much more costly to locate
and repair. In the worst-case scenario they will cause failures during
operation requiring the development organization to repair the software
at the clients’ site. This can be very costly.

To prepare for unit test the developer/tester must perform several
tasks. These are:

(i) plan the general approach to unit testing;
(ii) design the test cases, and test procedures (these will be attached to

the test plan);
(iii) define relationships between the tests;
(iv) prepare the auxiliary code necessary for unit test.

The text sections that follow describe these tasks in detail.

6 . 3 Unit Test Planning

A general unit test plan should be prepared. It may be prepared as a
component of the master test plan or as a stand-alone plan. It should be
developed in conjunction with the master test plan and the project plan
for each project. Documents that provide inputs for the unit test plan are
the project plan, as well the requirements, specification, and design doc-
uments that describe the target units. Components of a unit test plan are
described in detail the IEEE Standard for Software Unit Testing [10].
This standard is rich in information and is an excellent guide for the test
planner. A brief description of a set of development phases for unit test
planning is found below. In each phase a set of activities is assigned based
on those found in the IEEE unit test standard [10]. The phases allow a
steady evolution of the unit test plan as more information becomes avail-



140 | Levels of Test ing

able. The reader will note that the unit test plan contains many of the
same components as the master test plan that will be described in Chapter
7. Also note that a unit test plan is developed to cover all the units within
a software project; however, each unit will have its own associated set of
tests.

Phase 1: Describe Unit Test Approach and Risks

In this phase of unit testing planning the general approach to unit testing
is outlined. The test planner:

(i) identifies test risks;
(ii) describes techniques to be used for designing the test cases for the

units;
(iii) describes techniques to be used for data validation and recording of

test results;
(iv) describes the requirements for test harnesses and other software that

interfaces with the units to be tested, for example, any special objects
needed for testing object-oriented units.

During this phase the planner also identifies completeness requirements—
what will be covered by the unit test and to what degree (states, func-
tionality, control, and data flow patterns). The planner also identifies
termination conditions for the unit tests. This includes coverage require-
ments, and special cases. Special cases may result in abnormal termination
of unit test (e.g., a major design flaw). Strategies for handling these special
cases need to be documented. Finally, the planner estimates resources
needed for unit test, such as hardware, software, and staff, and develops
a tentative schedule under the constraints identified at that time.

Phase 2: Identify Unit Features to be Tested

This phase requires information from the unit specification and detailed
design description. The planner determines which features of each unit
will be tested, for example: functions, performance requirements, states,
and state transitions, control structures, messages, and data flow patterns.
If some features will not be covered by the tests, they should be mentioned



1416.4 Designing the Unit Tests |

and the risks of not testing them be assessed. Input/output characteristics
associated with each unit should also be identified, such as variables with
an allowed ranges of values and performance at a certain level.

Phase 3: Add Levels of Detail to the Plan

In this phase the planner refines the plan as produced in the previous two
phases. The planner adds new details to the approach, resource, and
scheduling portions of the unit test plan. As an example, existing test cases
that can be reused for this project can be identified in this phase. Unit
availability and integration scheduling information should be included in
the revised version of the test plan. The planner must be sure to include
a description of how test results will be recorded. Test-related documents
that will be required for this task, for example, test logs, and test incident
reports, should be described, and references to standards for these
documents provided. Any special tools required for the tests are also de-
scribed.

The next steps in unit testing consist of designing the set of test cases,
developing the auxiliary code needed for testing, executing the tests, and
recording and analyzing the results. These topics will be discussed in Sec-
tions 6.4–6.6.

6 . 4 Designing the Unit Tests

Part of the preparation work for unit test involves unit test design. It is
important to specify (i) the test cases (including input data, and expected
outputs for each test case), and, (ii) the test procedures (steps required
run the tests). These items are described in more detail in Chapter 7. Test
case data should be tabularized for ease of use, and reuse. Suitable tabular
formats for test cases are found in Chapters 4 and 5. To specifically sup-
port object-oriented test design and the organization of test data, Berard
has described a test case specification notation [8]. He arranges the com-
ponents of a test case into a semantic network with parts, Object_ID,
Test_Case_ID, Purpose, and List_of_Test_Case_Steps. Each of these
items has component parts. In the test design specification Berard also



142 | Levels of Test ing

includes lists of relevant states, messages (calls to methods), exceptions,
and interrupts.

As part of the unit test design process, developers/testers should also
describe the relationships between the tests. Test suites can be defined
that bind related tests together as a group. All of this test design infor-
mation is attached to the unit test plan. Test cases, test procedures, and
test suites may be reused from past projects if the organization has been
careful to store them so that they are easily retrievable and reusable.

Test case design at the unit level can be based on use of the black and
white box test design strategies described in Chapters 4 and 5. Both of
these approaches are useful for designing test cases for functions and pro-
cedures. They are also useful for designing tests for the individual methods
(member functions) contained in a class. Considering the relatively small
size of a unit, it makes sense to focus on white box test design for pro-
cedures/functions and the methods in a class. This approach gives the
tester the opportunity to exercise logic structures and/or data flow se-
quences, or to use mutation analysis, all with the goal of evaluating the
structural integrity of the unit. Some black box–based testing is also done
at unit level; however, the bulk of black box testing is usually done at the
integration and system levels and beyond. In the case of a smaller-sized
COTS component selected for unit testing, a black box test design ap-
proach may be the only option. It should be mentioned that for units that
perform mission/safely/business critical functions, it is often useful and
prudent to design stress, security, and performance tests at the unit level
if possible. (These types of tests are discussed in latter sections of this
chapter.) This approach may prevent larger scale failures at higher levels
of test.

6 . 5 The Class as a Testable Unit : Special Considerat ions

If an organization is using the object-oriented paradigm to develop soft-
ware systems it will need to select the component to be considered for
unit test. As described in Section 6.1, the choices consist of either the
individual method as a unit or the class as a whole. Each of these choices
requires special consideration on the part of the testers when designing
and running the unit tests, and when retesting needs to be done. For
example, in the case of the method as the selected unit to test, it may call



1436.5 The Class as a Testable Unit : Special Considerat ions |

other methods within its own class to support its functionality. Additional
code, in the form of a test harness, must be built to represent the called
methods within the class. Building such a test harness for each individual
method often requires developing code equivalent to that already existing
in the class itself (all of its other methods). This is costly; however, the
tester needs to consider that testing each individual method in this way
helps to ensure that all statements/branches have been executed at least
once, and that the basic functionality of the method is correct. This is
especially important for mission or safety critical methods.

In spite of the potential advantages of testing each method individ-
ually, many developers/testers consider the class to be the component of
choice for unit testing. The process of testing classes as units is sometimes
called component test [11]. A class encapsulates multiple interacting
methods operating on common data, so what we are testing is the intra-
class interaction of the methods. When testing on the class level we are
able detect not only traditional types of defects, for example, those due
to control or data flow errors, but also defects due to the nature of object-
oriented systems, for example, defects due to encapsulation, inheritance,
and polymorphism errors. We begin to also look for what Chen calls
object management faults, for example, those associated with the instan-
tiation, storage, and retrieval of objects [12].

This brief discussion points out some of the basic trade-offs in se-
lecting the component to be considered for a unit test in object-oriented
systems. If the class is the selected component, testers may need to address
special issues related to the testing and retesting of these components.
Some of these issues are raised in the paragraphs that follow.

Issue 1: Adequately Testing Classes

The potentially high costs for testing each individual method in a class
have been described. These high costs will be particularly apparent when
there are many methods in a class; the numbers can reach as high as 20
to 30. If the class is selected as the unit to test, it is possible to reduce
these costs since in many cases the methods in a single class serve as drivers
and stubs for one another. This has the effect of lowering the complexity
of the test harness that needs to be developed. However, in some cases
driver classes that represent outside classes using the methods of the class
under test will have to be developed.



144 | Levels of Test ing

In addition, if it is decided that the class is the smallest component to
test, testers must decide if they are able to adequately cover all necessary
features of each method in class testing. Some researchers believe that
coverage objectives and test data need to be developed for each of the
methods, for example, the create, pop, push, empty, full, and show_top
methods associated with the stack class shown in Figure 6.3. Other re-
searchers believe that a class can be adequately tested as a whole by ob-
servation of method interactions using a sequence of calls to the member
functions with appropriate parameters.

Again, referring to the stack class shown in Figure 6.3, the methods
push, pop, full, empty, and show_top will either read or modify the state
of the stack. When testers unit (or component) test this class what they
will need to focus on is the operation of each of the methods in the class
and the interactions between them. Testers will want to determine, for
example, if push places an item in the correct position at the top of the
stack. However, a call to the method full may have to be made first to
determine if the stack is already full. Testers will also want to determine
if push and pop work together properly so that the stack pointer is in the
correct position after a sequence of calls to these methods. To properly
test this class, a sequence of calls to the methods needs to be specified as

Stack Class

Data for Stack

Member functions
for Stack

create(s, size)
push(s, item)
pop(s, item)
full(s)
empty(s)
show_top(s)

..
.

Fig. 6.3

Sample stack class with multiple

methods.



1456.5 The Class as a Testable Unit : Special Considerat ions |

part of component test design. For example, a test sequence for a stack
that can hold three items might be:

create(s,3), empty(s), push(s,item-1), push(s,item-2), push(s,item-3),
full(s), show_top(s), pop(s,item), pop(s,item), pop(s,item), empty(s), . . .

The reader will note that many different sequences and combination
of calls are possible even for this simple class. Exhaustively testing every
possible sequence is usually not practical. The tester must select those
sequences she believes will reveal the most defects in the class. Finally, a
tester might use a combination of approaches, testing some of the critical
methods on an individual basis as units, and then testing the class as a
whole.

Issue 2: Observation of Object States and State Changes

Methods may not return a specific value to a caller. They may instead
change the state of an object. The state of an object is represented by a
specific set of values for its attributes or state variables. State-based testing
as described in Chapter 4 is very useful for testing objects. Methods will
often modify the state of an object, and the tester must ensure that each
state transition is proper. The test designer can prepare a state table
(using state diagrams developed for the requirements specification) that
specifies states the object can assume, and then in the table indicate se-
quence of messages and parameters that will cause the object to enter
each state. When the tests are run the tester can enter results in this same
type of table. For example, the first call to the method push in the stack
class of Figure 6.3, changes the state of the stack so that empty is no
longer true. It also changes the value of the stack pointer variable, top.
To determine if the method push is working properly the value of the
variable top must be visible both before and after the invocation of this
method. In this case the method show_top within the class may be called
to perform this task. The methods full and empty also probe the state of
the stack. A sample augmented sequence of calls to check the value of top
and the full/empty state of the three-item stack is:

empty(s), push(s,item-1), show_top(s), push(s,item-2),
show_top(s), push(s,item-3), full(s), show_top(s), pop(s,item),

show_top(s), pop(s,item), show_top(s), empty(s), . . .



146 | Levels of Test ing

Test sequences also need to be designed to try to push an item on a
full stack and pop an item from an empty stack. This could be done by
adding first an extra push to the sequence of pushes, and in a separate
test adding an extra pop to the sequence of pops.

In the case of the stack class, the class itself contains methods that
can provide information about state changes. If this is not the case then
additional classes/methods may have to be created to show changes of
state. These would be part of the test harness. Another option is to include
in each class methods that allows state changes to be observable. Testers
should have the option of going back to the designers and requesting
changes that make a class more testable. In any case, test planners should
insure that code is available to display state variables, Test plans should
provide resources for developing this type of code.

Issue 3: The Retesting of Classes—I

One of the most beneficial features of object-oriented development is en-
capsulation. This is a technique that can be used to hide information. A
program unit, in this case a class, can be built with a well-defined public
interface that proclaims its services (available methods) to client classes.
The implementation of the services is private. Clients who use the services
are unaware of implementation details. As long as the interface is un-
changed, making changes to the implementation should not affect the
client classes. A tester of object-oriented code would therefore conclude
that only the class with implementation changes to its methods needs to
be retested. Client classes using unchanged interfaces need not be retested.
This is not necessarily correct, as Perry and Kaiser explain in their paper
on adequate testing for object-oriented systems [13]. In an object-oriented
system, if a developer changes a class implementation that class needs to
be retested as well as all the classes that depend on it. If a superclass, for
example, is changed, then it is necessary to retest all of its subclasses. In
addition, when a new subclass is added (or modified), we must also retest
the methods inherited from each of its ancestor superclasses. The new (or
changed) subclass introduces an unexpected form of dependency because
there now exists a new context for the inherited components. This is
a consequence of the antidecomposition testing axiom as described in
Chapter 5 [13].



1476.5 The Class as a Testable Unit : Special Considerat ions |

Issue 4: The Retesting of Classes—II

Classes are usually a part of a class hierarchy where there are existing
inheritance relationships. Subclasses inherit methods from their super-
classes. Very often a tester may assume that once a method in a superclass
has been tested, it does not need retested in a subclass that inherits it.
However, in some cases the method is used in a different context by the
subclass and will need to be retested.

In addition, there may be an overriding of methods where a subclass
may replace an inherited method with a locally defined method. Not only
will the new locally defined method have to be retested, but designing a
new set of test cases may be necessary. This is because the two methods
(inherited and new) may be structurally different. The antiextentionality
axiom as discussed in Chapter 5 expresses this need [13].

The following is an example of such as case using the shape class in
Figure 6.4. Suppose the shape superclass has a subclass, triangle, and
triangle has a subclass, equilateral triangle. Also suppose that the method
display in shape needs to call the method color for its operation. Equi-
lateral triangle could have a local definition for the method display. That
method could in turn use a local definition for color which has been
defined in triangle. This local definition of the color method in triangle
has been tested to work with the inherited display method in shape, but
not with the locally defined display in equilateral triangle. This is a new
context that must be retested. A set of new test cases should be developed.
The tester must carefully examine all the relationships between members
of a class to detect such occurrences.

Many authors have written about class testing and object-oriented
testing in general. Some have already been referenced in this chapter.
Others include Desouza, Perry, and Rangaraajan who discuss the issue of
when the retesting of methods within classes and subclasses is necessary
[2,13,14]. Smith, Wilde, Doong, McGregor, and Tsai describe frame-
works and tools to assist with class test design [3,6,7,11,15]. Harrold and
co-authors have written several papers that describe the application of
data flow testing to object-oriented systems [16,17]. The authors use data
flow techniques to test individual member functions and also to test in-
teractions among member functions. Outside of class interactions are also
covered by their approach. Finally, Kung has edited a book that contains



148 | Levels of Test ing

Class Shape

Data for Shape

Member functions
for Shape

create(figure)
color(figure, color)
rotate(figure, degrees)
shrink(figure, percent)
enlarge(figure, percent)
duplicate(figure)
display(figure)

..
.

Fig. 6.4

Sample shape class.

key papers devoted to object-oriented testing. The papers discuss many
of the above issues in detail [18].

6 . 6 The Test Harness

In addition to developing the test cases, supporting code must be devel-
oped to exercise each unit and to connect it to the outside world. Since
the tester is considering a stand-alone function/procedure/class, rather
than a complete system, code will be needed to call the target unit, and
also to represent modules that are called by the target unit. This code
called the test harness, is developed especially for test and is in addition
to the code that composes the system under development. The role is of
the test harness is shown in Figure 6.5 and it is defined as follows:

The auxiliary code developed to support testing of units and components is called

a test harness. The harness consists of drivers that call the target code and stubs

that represent modules it calls.

The development of drivers and stubs requires testing resources. The driv-
ers and stubs must be tested themselves to insure they are working prop-



1496.6 The Test Harness |

Unit under test

Driver

Call and pass
parameters

Results

Stub 1 Stub 2

Call Acknowledge Call Acknowledge

Fig. 6.5

The test harness.

erly and that they are reusable for subsequent releases of the software.
Drivers and stubs can be developed at several levels of functionality. For
example, a driver could have the following options and combinations of
options:

(i) call the target unit;
(ii) do 1, and pass inputs parameters from a table;
(iii) do 1, 2, and display parameters;
(iv) do 1, 2, 3 and display results (output parameters).

The stubs could also exhibit different levels of functionality. For example
a stub could:

(i) display a message that it has been called by the target unit;
(ii) do 1, and display any input parameters passed from the target unit;
(iii) do 1, 2, and pass back a result from a table;
(iv) do 1, 2, 3, and display result from table.



150 | Levels of Test ing

Drivers and stubs as shown in Figure 6.5 are developed as procedures
and functions for traditional imperative-language based systems. For
object-oriented systems, developing drivers and stubs often means the
design and implementation of special classes to perform the required test-
ing tasks. The test harness itself may be a hierarchy of classes. For ex-
ample, in Figure 6.5 the driver for a procedural system may be designed
as a single procedure or main module to call the unit under test; however,
in an object-oriented system it may consist of several test classes to em-
ulate all the classes that call for services in the class under test. Researchers
such as Rangaraajan and Chen have developed tools that generate test
cases using several different approaches, and classes of test harness objects
to test object-oriented code [12,14].

The test planner must realize that, the higher the degree of function-
ally for the harness, the more resources it will require to design, imple-
ment, and test. Developers/testers will have to decide depending on the
nature of the code under test, just how complex the test harness needs to
be. Test harnesses for individual classes tend to be more complex than
those needed for individual procedures and functions since the items being
tested are more complex and there are more interactions to consider.

6 . 7 Running the Unit Tests and Recording Results

Unit tests can begin when (i) the units becomes available from the devel-
opers (an estimation of availability is part of the test plan), (ii) the test
cases have been designed and reviewed, and (iii) the test harness, and any
other supplemental supporting tools, are available. The testers then pro-
ceed to run the tests and record results. Chapter 7 will describe documents
called test logs that can be used to record the results of specific tests. The
status of the test efforts for a unit, and a summary of the test results, could
be recorded in a simple format such as shown in Table 6.1. These forms
can be included in the test summary report, and are of value at the weekly
status meetings that are often used to monitor test progress.

It is very important for the tester at any level of testing to carefully
record, review, and check test results. The tester must determine from the
results whether the unit has passed or failed the test. If the test is failed,
the nature of the problem should be recorded in what is sometimes called



1516.7 Running the Unit Tests and Recording Results |

Unit Test Worksheet

Unit Name:

Unit Identifier:

Tester:

Date:

Test case ID Status (run/not run) Summary of results Pass/fail

TABLE 6 .1

Summary work sheet for unit test

results.

a test incident report (see Chapter 7). Differences from expected behavior
should be described in detail. This gives clues to the developers to help
them locate any faults. During testing the tester may determine that ad-
ditional tests are required. For example, a tester may observe that a par-
ticular coverage goal has not been achieved. The test set will have to be
augmented and the test plan documents should reflect these changes.

When a unit fails a test there may be several reasons for the failure.
The most likely reason for the failure is a fault in the unit implementation
(the code). Other likely causes that need to be carefully investigated by
the tester are the following:

• a fault in the test case specification (the input or the output was not
specified correctly);

• a fault in test procedure execution (the test should be rerun);

• a fault in the test environment (perhaps a database was not set up
properly);

• a fault in the unit design (the code correctly adheres to the design
specification, but the latter is incorrect).

The causes of the failure should be recorded in a test summary report,
which is a summary of testing activities for all the units covered by the
unit test plan.



152 | Levels of Test ing

Ideally, when a unit has been completely tested and finally passes all
of the required tests it is ready for integration. Under some circumstances
a unit may be given a conditional acceptance for integration test. This
may occur when the unit fails some tests, but the impact of the failure is
not significant with respect to its ability to function in a subsystem, and
the availability of a unit is critical for integration test to proceed on sched-
ule. This a risky procedure and testers should evaluate the risks involved.
Units with a conditional pass must eventually be repaired.

When testing of the units is complete, a test summary report should
be prepared. This is a valuable document for the groups responsible for
integration and system tests. It is also a valuable component of the project
history. Its value lies in the useful data it provides for test process im-
provement and defect prevention. Finally, the tester should insure that
the test cases, test procedures, and test harnesses are preserved for future
reuse.

6 . 8 Integrat ion Test: Goals

Integration test for procedural code has two major goals:

(i) to detect defects that occur on the interfaces of units;
(ii) to assemble the individual units into working subsystems and finally

a complete system that is ready for system test.

In unit test the testers attempt to detect defects that are related to the
functionality and structure of the unit. There is some simple testing of
unit interfaces when the units interact with drivers and stubs. However,
the interfaces are more adequately tested during integration test when
each unit is finally connected to a full and working implementation of
those units it calls, and those that call it. As a consequence of this assembly
or integration process, software subsystems and finally a completed sys-
tem is put together during the integration test. The completed system is
then ready for system testing.

With a few minor exceptions, integration test should only be per-
formed on units that have been reviewed and have successfully passed
unit testing. A tester might believe erroneously that since a unit has al-



1536.9 Integrat ion Strategies for Procedures and Functions |

ready been tested during a unit test with a driver and stubs, it does not
need to be retested in combination with other units during integration
test. However, a unit tested in isolation may not have been tested ade-
quately for the situation where it is combined with other modules. This
is also a consequences of one of the testing axioms found in Chapter 4
called anticomposition [13].

Integration testing works best as an iterative process in procedural-
oriented system. One unit at a time is integrated into a set of previously
integrated modules which have passed a set of integration tests. The in-
terfaces and functionally of the new unit in combination with the previ-
ously integrated units is tested. When a subsystem is built from units
integrated in this stepwise manner, then performance, security, and stress
tests can be performed on this subsystem.

Integrating one unit at a time helps the testers in several ways. It keeps
the number of new interfaces to be examined small, so tests can focus on
these interfaces only. Experienced testers know that many defects occur
at module interfaces. Another advantage is that the massive failures that
often occur when multiple units are integrated at once is avoided. This
approach also helps the developers; it allows defect search and repair to
be confined to a small known number of components and interfaces.
Independent subsystems can be integrated in parallel as long as the re-
quired units are available.

The integration process in object-oriented systems is driven by assem-
bly of the classes into cooperating groups. The cooperating groups of
classes are tested as a whole and then combined into higher-level groups.
Usually the simpler groups are tested first, and then combined to form
higher-level groups until the system is assembled. This process will be
described in the next sections of this chapter.

6 . 9 Integrat ion Strategies for Procedures and Functions

For conventional procedural/functional-oriented systems there are two
major integration strategies—top-down and bottom-up. In both of these
strategies only one module at a time is added to the growing subsystem.
To plan the order of integration of the modules in such system a structure
chart such as shown in Figure 6.6 is used.



154 | Levels of Test ing

M1

M2 M3 M4 M5

M6 M7 M8 M9 M10 M11

Fig. 6.6

Simple structure chart for integration

test examples.

Structure charts, or call graphs as they are otherwise known, are used
to guide integration. These charts show hierarchical calling relationships
between modules. Each node, or rectangle in a structure chart, represents
a module or unit, and the edges or lines between them represent calls
between the units. In the simple chart in Figure 6.6 the rectangles M1–
M11 represent all the system modules. Again, a line or edge from an
upper-level module to one below it indicates that the upper level module
calls the lower module. Some annotated versions of structure charts show
the parameters passed between the caller and called modules. Conditional
calls and iterative calls may also be represented.

Bottom-up integration of the modules begins with testing the lowest-
level modules, those at the bottom of the structure chart. These are mod-
ules that do not call other modules. In the structure chart example these
are modules M6, M7, M8, M9, M10, M11. Drivers are needed to test
these modules. The next step is to integrate modules on the next upper
level of the structure chart whose subordinate modules have already been
tested. For example, if we have tested M6, M7, and M8, then we can
select M2 and integrate it with M6, M7, and M8. The actual M2 replaces
the drivers for these modules.

In the process for bottom-up integration after a module has been
tested, its driver can be replaced by an actual module (the next one to be
integrated). This next module to be integrated may also need a driver,
and this will be the case until we reach the highest level of the structure
chart. Accordingly we can integrate M9 with M3 when M9 is tested, and



1556.9 Integrat ion Strategies for Procedures and Functions |

M4 with M10 when M10 is tested, and finally M5 with M11 and M10
when they are both tested. Integration of the M2 and M3 subsystems can
be done in parallel by two testers. The M4 and M5 subsystems have
overlapping dependencies on M10. To complete the subsystem repre-
sented by M5, both M10 and M11 will have to be tested and integrated.
M4 is only dependent on M10. A third tester could work on the M4 and
M5 subsystems.

After this level of integration is completed, we can then move up a
level and integrate the subsystem M2, M6, M7, and M8 with M1 when
M2 has been completed tested with its subordinates, and driver. The same
conditions hold for integrating the subsystems represented by M3, M9,
M4, M10, and M5, M10, M11 with M1. In that way the system is finally
integrated as a whole. In this example a particular sequence of integration
has been selected. There are no firm rules for selecting which module to
integrate next. However, a rule of thumb for bottom-up integration says
that to be eligible for selection as the next candidate for integration, all
of a module’s subordinate modules (modules it calls) must have been
tested previously. Issues such as the complexity, mission, or safety criti-
calness of a module also impact on the choices for the integration
sequence.

Bottom-up integration has the advantage that the lower-level mod-
ules are usually well tested early in the integration process. This is im-
portant if these modules are candidates for reuse. However, the upper-
level modules are tested later in the integration process and consequently
may not be as well tested. If they are critical decision-makers or handle
critical functions, this could be risky. In addition, with bottom-up inte-
gration the system as a whole does not exist until the last module, in our
example, M1, is integrated. It is possible to assemble small subsystems,
and when they are shown to work properly the development team often
experiences a boost in morale and a sense of achievement.

Top-down integration starts at the top of the module hierarchy. The
rule of thumb for selecting candidates for the integration sequence says
that when choosing a candidate module to be integrated next, at least one
of the module’s superordinate (calling) modules must have been previ-
ously tested. In our case, M1 is the highest-level module and we start the
sequence by developing stubs to test it. In order to get a good upward
flow of data into the system, the stubs may have to be fairly complex (see



156 | Levels of Test ing

Section 6.2.3). The next modules to be integrated are those for whom
their superordinate modules has been tested. The way to proceed is to
replace one-by-one each of the stubs of the superordinate module with a
subordinate module. For our example in Figure 6.6, we begin top-down
integration with module M1. We create four stubs to represent M2, M3,
M4, and M5. When the tests are passed, then we replace the four stubs
by the actual modules one at a time. The actual modules M2–M5 when
they are integrated will have stubs of their own. Figure 6.7 shows the set
up for the integration of M1 with M2.

When we have integrated the modules M2–M5, then we can integrate
the lowest-level modules. For example, when, M2 has been integrated
with M1 we can replace its stubs for M6, M7, and M8 with the actual
modules, one at a time, and so on for M3, M4, and M5. One can traverse
the structure chart and integrate the modules in a depth or breadth-first
manner. For example, the order of integration for a depth-first approach
would be M1, M2, M6, M7, M8, M3, M9, M4, M10, M5, M11.
Breadth-first would proceed as M1, M2, M3, M4, M5, M6, M7, M8,
M9, M10, M11. Note that using the depth-first approach gradually forms
subsystems as the integration progresses. In many cases these subsystems
can be assembled and tested in parallel. For example, when the testing of
M1 is completed, there could be parallel integration testing of subsystems
M2 and M3. A third tester could work in parallel with these testers on
the subsystems M4 and M5. The test planner should look for these op-
portunities when scheduling testing tasks.

Top-down integration ensures that the upper-level modules are tested
early in integration. If they are complex and need to be redesigned there
will be more time to do so. This is not the case with bottom-up integra-
tion. Top-down integration requires the development of complex stubs
to drive significant data upward, but bottom-up integration requires driv-
ers so there is not a clear-cut advantage with respect to developing test
harnesses. In many cases a combination of approaches will be used. One
approach is known as sandwich, where the higher-level modules are in-
tegrated top-down and the lower-level modules integrated bottom-up.

No matter which integration strategy is selected, testers should con-
sider applying relevant coverage criteria to the integration process. Lin-
nenkugel and Mullerburg have suggested several interprocedural control
and data flow–based criteria [19]. Example control flow criteria include:



1576.9 Integrat ion Strategies for Procedures and Functions |

M1

M2 Stub M3 Stub M4 Stub M5

Stub
M6

Stub
M7

Stub
M8

Fig. 6.7

Top-down integration of modules M1

and M2.

all modules in the graph or chart should be executed at least once (all
nodes covered), all calls should be executed at least once (all edges cov-
ered), and all descending sequences of calls should be executed at least
once (all paths covered).

The smart test planner takes into account risk factors associated with
each of the modules, and plans the order of integration accordingly. Some
modules and subsystems may be handling mission/safety/business critical
functions; some might be complex. The test planner will want to be sure
that these are assembled and tested early in the integration process to
insure they are tested adequately. For example, in the sample structure
chart shown in Figure 6.6, if modules M6 and M10 are complex and/or
safety critical modules, a tester would consider bottom-up integration as
a good choice since these modules would be integrated and tested early
in the integration process.

Another area of concern for the planner is the availability of the mod-
ules. The test planner should consult the project plan to determine avail-
ability dates. Availability may also be affected during the testing process
depending on the number and nature of the defects found in each module.
A subsystem may be assembled earlier/later then planned depending in
the amount of time it takes to test/repair its component modules. For
example, we may be planning to integrate branch M2 before branch M3;
however, M2 and its components may contain more defects then M3 and
its components, so there will be a delay for repairs to be made.



158 | Levels of Test ing

6 . 1 0 Integrat ion Strategies for Classes

For object-oriented systems the concept of a structure chart and hierar-
chical calling relationships are not applicable. Therefore, integration
needs to proceed in a manner different from described previously. A good
approach to integration of an object-oriented system is to make use of
the concept of object clusters. Clusters are somewhat analogous to small
subsystems in procedural-oriented systems.

A cluster consists of classes that are related, for example, they may work together

(cooperate) to support a required functionality for the complete system.

Figure 6.8 shows a generic cluster that consists of four classes/objects
interacting with one another, calling each others methods. For purposes
of illustration we assume that they cooperate to perform functions whose
result (Out message) is exported to the outside world. As another illus-
tration of the cluster concept we can use the notion of an object-oriented
system that manages a state vehicle licensing bureau. A high-level cluster
of objects may be concerned with functions related to vehicle owners,
while another cluster is concerned with functions relating to the vehicles
themselves. Coad and Yourdon in their text on object-oriented analysis
give examples of partitioning the objects in a system into what they call
subject layers that are similar in concept to clusters. The partitioning is
based on using problem area subdomains [20]. Subject layers can be iden-
tified during analysis and design and help to formulate plans for integra-
tion of the component classes.

To integrate an object-oriented system using the cluster approach a
tester could select clusters of classes that work together to support simple
functions as the first to be integrated. Then these are combined to form
higher-level, or more complex, clusters that perform multiple related func-
tions, until the system as a whole is assembled.

An alternative integration approach for object-oriented systems con-
sists of first selecting classes for integration that send very few messages
and/or request few, or no, services from other classes. After these lower-
level classes are integrated, then a layer of classes that use them can be
selected for integration, and so on until the successive selection of layers
of classes leads to complete integration.



1596.11 Designing Integrat ion Tests |

Class 1

Method a

Method b

Message 1

Class 2

Class 3

Class 4

Method c

Method d
Method e

Method fMessage 4

Message 3

Message 2

Method g

Method h

Cluster A

In message

Out message

In message

Fig. 6.8

An generic class cluster.

6 . 1 1 Designing Integrat ion Tests

Integration tests for procedural software can be designed using a black
or white box approach. Both are recommended. Some unit tests can be
reused. Since many errors occur at module interfaces, test designers need
to focus on exercising all input/output parameter pairs, and all calling
relationships. The tester needs to insure the parameters are of the correct
type and in the correct order. The author has had the personal experience
of spending many hours trying to locate a fault that was due to an in-
correct ordering of parameters in the calling routine. The tester must also
insure that once the parameters are passed to a routine they are used
correctly. For example, in Figure 6.9, Procedure_b is being integrated with
Procedure_a. Procedure_a calls Procedure_b with two input parameters
in3, in4. Procedure_b uses those parameters and then returns a value for
the output parameter out1. Terms such as lhs and rhs could be any vari-
able or expression. The reader should interpret the use of the variables in
the broadest sense. The parameters could be involved in a number of def
and/or use data flow patterns. The actual usage patterns of the parameters



160 | Levels of Test ing

F ig. 6.9

Example integration of two

procedures.

must be checked at integration time. Data flow–based (def-use paths) and
control flow (branch coverage) test data generation methods are useful
here to insure that the input parameters, in3, in4, are used properly in
Procedure_b. Again data flow methods (def-use pairs) could also be used
to check that the proper sequence of data flow operations is being carried
out to generate the correct value for out1 that flows back to Procedure_a.
Black box tests are useful in this example for checking the behavior of
the pair of procedures. For this example test input values for the input
parameters in1 and in2 should be provided, and the outcome in out2
should be examined for correctness.

For conventional systems, input/output parameters and calling rela-
tionships will appear in a structure chart built during detailed design.



1616.11 Designing Integrat ion Tests |

Testers must insure that test cases are designed so that all modules in the
structure chart are called at least once, and all called modules are called
by every caller. The reader can visualize these as coverage criteria for
integration test. Coverage requirements for the internal logic of each of
the integrated units should be achieved during unit tests.

Some black box tests used for module integration may be reusable
from unit testing. However, when units are integrated and subsystems are
to be tested as a whole, new tests will have to be designed to cover their
functionality and adherence to performance and other requirements (see
example above). Sources for development of black box or functional tests
at the integration level are the requirements documents and the user man-
ual. Testers need to work with requirements analysts to insure that the
requirements are testable, accurate, and complete. Black box tests should
be developed to insure proper functionally and ability to handle subsys-
tem stress. For example, in a transaction-based subsystem the testers want
to determine the limits in number of transactions that can be handled.
The tester also wants to observe subsystem actions when excessive
amounts of transactions are generated. Performance issues such as the
time requirements for a transaction should also be subjected to test. These
will be repeated when the software is assembled as a whole and is un-
dergoing system test.

Integration testing of clusters of classes also involves building test
harnesses which in this case are special classes of objects built especially
for testing. Whereas in class testing we evaluated intraclass method in-
teractions, at the cluster level we test interclass method interaction as well.
We want to insure that messages are being passed properly to interfacing
objects, object state transitions are correct when specific events occur,
and that the clusters are performing their required functions. Unlike
procedural-oriented systems, integration for object-oriented systems usu-
ally does not occur one unit at a time. A group of cooperating classes is
selected for test as a cluster. If developers have used the Coad and Your-
don’s approach, then a subject layer could be used to represent a cluster.
Jorgenson et al. have reported on a notation for a cluster that helps to
formalize object-oriented integration [1]. In their object-oriented testing
framework the method is the entity selected for unit test. The methods
and the classes they belong to are connected into clusters of classes that
are represented by a directed graph that has two special types of entities.
These are method-message paths, and atomic systems functions that



162 | Levels of Test ing

represent input port events. A method-message path is described as a
sequence of method executions linked by messages. An atomic system
function is an input port event (start event) followed by a set of method-
messages paths and terminated by an output port event (system response).
Murphy et al. define clusters as classes that are closely coupled and work
together to provide a unified behavior [5]. Some examples of clusters are
groups of classes that produce a report, or monitor and control a device.
Scenarios of operation from the design document associated with a cluster
are used to develop test cases. Murphy and his co-authors have developed
a tool that can be used for class and cluster testing.

6 . 1 2 Integrat ion Test Planing

Integration test must be planned. Planning can begin when high-level de-
sign is complete so that the system architecture is defined. Other docu-
ments relevant to integration test planning are the requirements docu-
ment, the user manual, and usage scenarios. These documents contain
structure charts, state charts, data dictionaries, cross-reference tables,
module interface descriptions, data flow descriptions, messages and event
descriptions, all necessary to plan integration tests. The strategy for in-
tegration should be defined. For procedural-oriented system the order of
integration of the units of the units should be defined. This depends on
the strategy selected. Consider the fact that the testing objectives are to
assemble components into subsystems and to demonstrate that the sub-
system functions properly with the integration test cases. For object-ori-
ented systems a working definition of a cluster or similar construct must
be described, and relevant test cases must be specified. In addition, testing
resources and schedules for integration should be included in the test plan.

For readers integrating object-oriented systems Murphy et al. has a
detailed description of a Cluster Test Plan [5]. The plan includes the fol-
lowing items:

(i) clusters this cluster is dependent on;
(ii) a natural language description of the functionality of the cluster to

be tested;
(iii) list of classes in the cluster;
(iv) a set of cluster test cases.



As stated earlier in this section, one of the goals of integration test is
to build working subsystems, and then combine these into the system as
a whole. When planning for integration test the planner selects subsystems
to build based upon the requirements and user needs. Very often subsys-
tems selected for integration are prioritized. Those that represent key fea-
tures, critical features, and/or user-oriented functions may be given the
highest priority. Developers may want to show clients that certain key
subsystems have been assembled and are minimally functional. Hetzel has
an outline for integration test planning that takes these requirements into
consideration [21].

6 . 1 3 System Test: The Different Types

When integration tests are completed, a software system has been assem-
bled and its major subsystems have been tested. At this point the devel-
opers/testers begin to test it as a whole. System test planning should begin
at the requirements phase with the development of a master test plan and
requirements-based (black box) tests. System test planning is a compli-
cated task. There are many components of the plan that need to be pre-
pared such as test approaches, costs, schedules, test cases, and test pro-
cedures. All of these are examined and discussed in Chapter 7.

System testing itself requires a large amount of resources. The goal is
to ensure that the system performs according to its requirements. System
test evaluates both functional behavior and quality requirements such as
reliability, usability, performance and security. This phase of testing is
especially useful for detecting external hardware and software interface
defects, for example, those causing race conditions, deadlocks, problems
with interrupts and exception handling, and ineffective memory usage.
After system test the software will be turned over to users for evaluation
during acceptance test or alpha/beta test. The organization will want to
be sure that the quality of the software has been measured and evaluated
before users/clients are invited to use the system. In fact system test serves
as a good rehearsal scenario for acceptance test.

Because system test often requires many resources, special laboratory
equipment, and long test times, it is usually performed by a team of test-
ers. The best scenario is for the team to be part of an independent testing
group. The team must do their best to find any weak areas in the software;
therefore, it is best that no developers are directly involved.

1636.11 Designing Integrat ion Tests |



164 | Levels of Test ing

There are several types of system tests as shown on Figure 6.10. The
types are as follows:

• Functional testing

• Performance testing

• Stress testing

• Configuration testing

• Security testing

• Recovery testing

Two other types of system testing called reliability and usability testing
will be discussed in Chapter 12. The TMM recommends that these be
formally integrated into the testing process by organizations at higher
levels of testing maturity since at that time they have the needed expertise
and infrastructure to properly conduct the tests and analyze the results.

Not all software systems need to undergo all the types of system
testing. Test planners need to decide on the type of tests applicable to a
particular software system. Decisions depend on the characteristics of the
system and the available test resources. For example, if multiple device
configurations are not a requirement for your system, then the need for
configuration test is not significant. Test resources can be used for other
types of system tests. Figure 6.10 also shows some of the documents useful
for system test design, such as the requirements document, usage profile,
and user manuals. For both procedural- and object-oriented systems, use
cases, if available, are also helpful for system test design.

As the system has been assembled from its component parts, many
of these types of tests have been implemented on the component parts
and subsystems. However, during system test the testers can repeat these
tests and design additional tests for the system as a whole. The repeated
tests can in some cases be considered regression tests since there most
probably have been changes made to the requirements and to the system
itself since the initiation of the project. A conscientious effort at system
test is essential for high software quality. Properly planned and executed
system tests are excellent preparation for acceptance test. The following



Functional
tests

Stress and
load tests

Security
tests

Configuration
tests

Performance
tests

Recovery
tests

Fully integrated
software system

System tests Usage
profile

Requirements
documents

User
manuals

System ready for
acceptance test

Tests completed and passed

Fig. 6.10

Types of system tests.

sections will describe the types of system test. Beizer provides additional
material on the different types of system tests [22].

Paper and on-line forms are helpful for system test. Some are used to
insure coverage of all the requirements, for example, the Requirements
Traceability Matrix, which is discussed in Chapter 7. Others, like test
logs, also discussed in Chapter 7, support record keeping for test results.
These forms should be fully described in the organization’s standards
documents.

An important tool for implementing system tests is a load generator.
A load generator is essential for testing quality requirements such as per-
formance and stress.

A load is a series of inputs that simulates a group of transactions.

A transaction is a unit of work seen from the system user’s view [19]. A
transaction consists of a set of operations that may be performed by a
person, software system, or a device that is outside the system. A use case
can be used to describe a transaction. If you were system testing a tele-
communication system you would need a load that simulated a series of

1656.13 System Test: The Different Types |



166 | Levels of Test ing

phone calls (transactions) of particular types and lengths arriving from
different locations. A load can be a real load, that is, you could put the
system under test to real usage by having actual telephone users connected
to it. Loads can also be produced by tools called load generators. They
will generate test input data for system test. Load generators can be simple
tools that output a fixed set of predetermined transactions. They can be
complex tools that use statistical patterns to generate input data or
simulate complex environments. Users of the load generators can usually
set various parameters. For example, in our telecommunication system
load generator users can set parameters for the mean arrival rate of the
calls, the call durations, the number of wrong numbers and misdials, and
the call destinations. Usage profiles, and sets of use cases can be used to
set up loads for use in performance, stress, security and other types of
system test.

6 . 1 3 . 1 F u n c t i o n a l T e s t i n g

System functional tests have a great deal of overlap with acceptance tests.
Very often the same test sets can apply to both. Both are demonstrations
of the system’s functionality. Functional tests at the system level are used
to ensure that the behavior of the system adheres to the requirements
specification. All functional requirements for the system must be achiev-
able by the system. For example, if a personal finance system is required
to allow users to set up accounts, add, modify, and delete entries in the
accounts, and print reports, the function-based system and acceptance
tests must ensure that the system can perform these tasks. Clients and
users will expect this at acceptance test time.

Functional tests are black box in nature. The focus is on the inputs
and proper outputs for each function. Improper and illegal inputs must
also be handled by the system. System behavior under the latter circum-
stances tests must be observed. All functions must be tested.

Many of the system-level tests including functional tests should be
designed at requirements time, and be included in the master and system
test plans (see Chapter 7). However, there will be some requirements
changes, and the tests and the test plan need to reflect those changes.
Since functional tests are black box in nature, equivalence class partition-
ing and boundary-value analysis as described in Chapter 4 are useful



1676.13 System Test: The Different Types |

methods that can be used to generate test cases. State-based tests are also
valuable. In fact, the tests should focus on the following goals.

• All types or classes of legal inputs must be accepted by the software.

• All classes of illegal inputs must be rejected (however, the system
should remain available).

• All possible classes of system output must exercised and examined.

• All effective system states and state transitions must be exercised and
examined.

• All functions must be exercised.

As mentioned previously, a defined and documented form should be
used for recording test results from functional and all other system tests.
If a failure is observed, a formal test incident report should be completed
and returned with the test log to the developer for code repair. Managers
keep track of these forms and reports for quality assurance purposes, and
to track the progress of the testing process. Readers will learn more about
these documents and their importance in Chapter 7.

6 . 1 3 . 2 P e r f o r m a n c e T e s t i n g

An examination of a requirements document shows that there are two
major types of requirements:

1. Functional requirements. Users describe what functions the software
should perform. We test for compliance of these requirements at the
system level with the functional-based system tests.

2. Quality requirements. There are nonfunctional in nature but describe
quality levels expected for the software. One example of a quality
requirement is performance level. The users may have objectives for
the software system in terms of memory use, response time, through-
put, and delays.

The goal of system performance tests is to see if the software meets
the performance requirements. Testers also learn from performance test



168 | Levels of Test ing

whether there are any hardware or software factors that impact on the
system’s performance. Performance testing allows testers to tune the sys-
tem; that is, to optimize the allocation of system resources. For example,
testers may find that they need to reallocate memory pools, or to modify
the priority level of certain system operations. Testers may also be able
to project the system’s future performance levels. This is useful for plan-
ning subsequent releases.

Performance objectives must be articulated clearly by the users/clients
in the requirements documents, and be stated clearly in the system test
plan. The objectives must be quantified. For example, a requirement that
the system return a response to a query in “a reasonable amount of time”
is not an acceptable requirement; the time requirement must be specified
in quantitative way. Results of performance tests are quantifiable. At the
end of the tests the tester will know, for example, the number of CPU
cycles used, the actual response time in seconds (minutes, etc.), the actual
number of transactions processed per time period. These can be evaluated
with respect to requirements objectives.

Resources for performance testing must be allocated in the system
test plan. Examples of such resources are shown in Figure 6.11. Among
the resources are:

• A source of transactions to drive the experiments. For example if you
were performance testing an operating system you need a stream of
data that represents typical user interactions. Typically the source of
transaction for many systems is a load generator (as described in the
previous section).

• An experimental testbed that includes hardware and software the
system-under-test interacts with. The testbed requirements sometimes
include special laboratory equipment and space that must be reserved
for the tests.

• Instrumentation or probes that help to collect the performance data.
Probes may be hardware or software in nature. Some probe tasks
are event counting and event duration measurement. For example, if
you are investigating memory requirements for your software you
could use a hardware probe that collected information on memory
usage (blocks allocated, blocks deallocated for different types of
memory per unit time) as the system executes. The tester must keep



1696.13 System Test: The Different Types |

Load
generator

Event logging,
counting, sampling

Probes

Software under test

Tools

Collect and process
data from probes  

Analyze data 

Test Bed

Evaluate results
with respect to
requirements 

Hardware environment 

Fig. 6.11

Examples of special resources needed

for a performance test.

in mind that the probes themselves may have an impact on system
performance.

• A set of tools to collect, store, process, and interpret the data. Very
often, large volumes of data are collected, and without tools the test-
ers may have difficulty in processing and analyzing the data in order
to evaluate true performance levels.

Test managers should ascertain the availability of these resources, and
allocate the necessary time for training in the test plan. Usage require-
ments for these resources need to be described as part of the test plan.

6 . 1 3 . 3 S t r e s s T e s t i n g

When a system is tested with a load that causes it to allocate its resources
in maximum amounts, this is called stress testing. For example, if an



170 | Levels of Test ing

operating system is required to handle 10 interrupts/second and the load
causes 20 interrupts/second, the system is being stressed. The goal of stress
test is to try to break the system; find the circumstances under which it
will crash. This is sometimes called “breaking the system.” An everyday
analogy can be found in the case where a suitcase being tested for strength
and endurance is stomped on by a multiton elephant!

Stress testing is important because it can reveal defects in real-time
and other types of systems, as well as weak areas where poor design could
cause unavailability of service. For example, system prioritization orders
may not be correct, transaction processing may be poorly designed and
waste memory space, and timing sequences may not be appropriate for
the required tasks. This is particularly important for real-time systems
where unpredictable events may occur resulting in input loads that exceed
those described in the requirements documents. Stress testing often un-
covers race conditions, deadlocks, depletion of resources in unusual or
unplanned patterns, and upsets in normal operation of the software sys-
tem. System limits and threshold values are exercised. Hardware and soft-
ware interactions are stretched to the limit. All of these conditions are
likely to reveal defects and design flaws which may not be revealed under
normal testing conditions.

Stress testing is supported by many of the resources used for perfor-
mance test as shown in Figure 6.11. This includes the load generator. The
testers set the load generator parameters so that load levels cause stress
to the system. For example, in our example of a telecommunication sys-
tem, the arrival rate of calls, the length of the calls, the number of misdials,
as well as other system parameters should all be at stress levels. As in the
case of performance test, special equipment and laboratory space may be
needed for the stress tests. Examples are hardware or software probes and
event loggers. The tests may need to run for several days. Planners must
insure resources are available for the long time periods required. The
reader should note that stress tests should also be conducted at the inte-
gration, and if applicable at the unit level, to detect stress-related defects
as early as possible in the testing process. This is especially critical in cases
where redesign is needed.

Stress testing is important from the user/client point of view. When
system operate correctly under conditions of stress then clients have con-



1716.13 System Test: The Different Types |

fidence that the software can perform as required. Beizer suggests that
devices used for monitoring stress situations provide users/clients with
visible and tangible evidence that the system is being stressed [22].

6 . 1 3 . 4 C o n f i g u r a t i o n T e s t i n g

Typical software systems interact with hardware devices such as disc
drives, tape drives, and printers. Many software systems also interact with
multiple CPUs, some of which are redundant. Software that controls real-
time processes, or embedded software also interfaces with devices, but
these are very specialized hardware items such as missile launchers, and
nuclear power device sensors. In many cases, users require that devices
be interchangeable, removable, or reconfigurable. For example, a printer
of type X should be substitutable for a printer of type Y, CPU A should
be removable from a system composed of several other CPUs, sensor A
should be replaceable with sensor B. Very often the software will have a
set of commands, or menus, that allows users to make these configuration
changes. Configuration testing allows developers/testers to evaluate sys-
tem performance and availability when hardware exchanges and recon-
figurations occur. Configuration testing also requires many resources in-
cluding the multiple hardware devices used for the tests. If a system does
not have specific requirements for device configuration changes then
large-scale configuration testing is not essential.

According to Beizer configuration testing has the following objectives
[22]:

• Show that all the configuration changing commands and menus work
properly.

• Show that all interchangeable devices are really interchangeable, and
that they each enter the proper states for the specified conditions.

• Show that the systems’ performance level is maintained when devices
are interchanged, or when they fail.

Several types of operations should be performed during configuration
test. Some sample operations for testers are [22]:



172 | Levels of Test ing

(i) rotate and permutate the positions of devices to ensure physi-
cal/logical device permutations work for each device (e.g., if there are
two printers A and B, exchange their positions);

(ii) induce malfunctions in each device, to see if the system properly han-
dles the malfunction;

(iii) induce multiple device malfunctions to see how the system reacts.

These operations will help to reveal problems (defects) relating to hard-
ware/software interactions when hardware exchanges, and reconfigura-
tions occur. Testers observe the consequences of these operations and
determine whether the system can recover gracefully particularly in the
case of a malfunction.

6 . 1 3 . 5 S e c u r i t y T e s t i n g

Designing and testing software systems to insure that they are safe and
secure is a big issue facing software developers and test specialists. Re-
cently, safety and security issues have taken on additional importance due
to the proliferation of commercial applications for use on the Internet. If
Internet users believe that their personal information is not secure and is
available to those with intent to do harm, the future of e-commerce is in
peril! Security testing evaluates system characteristics that relate to the
availability, integrity, and confidentially of system data and services.
Users/clients should be encouraged to make sure their security needs are
clearly known at requirements time, so that security issues can be ad-
dressed by designers and testers.

Computer software and data can be compromised by:

(i) criminals intent on doing damage, stealing data and information,
causing denial of service, invading privacy;

(ii) errors on the part of honest developers/maintainers who modify, de-
stroy, or compromise data because of misinformation, misunder-
standings, and/or lack of knowledge.

Both criminal behavior and errors that do damage can be perpetuated by
those inside and outside of an organization. Attacks can be random or
systematic. Damage can be done through various means such as:



1736.13 System Test: The Different Types |

(i) viruses;
(ii) trojan horses;
(iii) trap doors;
(iv) illicit channels.

The effects of security breaches could be extensive and can cause:

(i) loss of information;
(ii) corruption of information;
(iii) misinformation;
(iv) privacy violations;
(v) denial of service.

Physical, psychological, and economic harm to persons or property
can result from security breaches. Developers try to ensure the security of
their systems through use of protection mechanisms such as passwords,
encryption, virus checkers, and the detection and elimination of trap
doors. Developers should realize that protection from unwanted entry
and other security-oriented matters must be addressed at design time. A
simple case in point relates to the characteristics of a password. Designers
need answers to the following: What is the minimum and maximum al-
lowed length for the password? Can it be pure alphabetical or must it be
a mixture of alphabetical and other characters? Can it be a dictionary
word? Is the password permanent, or does it expire periodically? Users
can specify their needs in this area in the requirements document. A pass-
word checker can enforce any rules the designers deem necessary to meet
security requirements.

Password checking and examples of other areas to focus on during
security testing are described below.

Password Checking—Test the password checker to insure that users will
select a password that meets the conditions described in the password
checker specification. Equivalence class partitioning and boundary value
analysis based on the rules and conditions that specify a valid password
can be used to design the tests.

Legal and Illegal Entry with Passwords—Test for legal and illegal system/data
access via legal and illegal passwords.



174 | Levels of Test ing

Password Expiration—If it is decided that passwords will expire after a cer-
tain time period, tests should be designed to insure the expiration period
is properly supported and that users can enter a new and appropriate
password.

Encryption—Design test cases to evaluate the correctness of both encryption
and decryption algorithms for systems where data/messages are encoded.

Browsing—Evaluate browsing privileges to insure that unauthorized
browsing does not occur. Testers should attempt to browse illegally and
observe system responses. They should determine what types of private
information can be inferred by both legal and illegal browsing.

Trap Doors—Identify any unprotected entries into the system that may al-
low access through unexpected channels (trap doors). Design tests that
attempt to gain illegal entry and observe results. Testers will need the
support of designers and developers for this task. In many cases an ex-
ternal “tiger team” as described below is hired to attempt such a break
into the system.

Viruses—Design tests to insure that system virus checkers prevent or curtail
entry of viruses into the system. Testers may attempt to infect the system
with various viruses and observe the system response. If a virus does pen-
etrate the system, testers will want to determine what has been damaged
and to what extent.

Even with the backing of the best intents of the designers, develop-
ers/testers can never be sure that a software system is totally secure even
after extensive security testing. If security is an especially important issue,
as in the case of network software, then the best approach if resources
permit, is to hire a so-called “tiger team” which is an outside group of
penetration experts who attempt to breach the system security. Although
a testing group in the organization can be involved in testing for security
breaches, the tiger team can attack the problem from a different point of
view. Before the tiger team starts its work the system should be thoroughly
tested at all levels. The testing team should also try to identify any trap



1756.13 System Test: The Different Types |

doors and other vulnerable points. Even with the use of a tiger team there
is never any guarantee that the software is totally secure.

6 . 1 3 . 6 R e c o v e r y T e s t i n g

Recovery testing subjects a system to losses of resources in order to de-
termine if it can recover properly from these losses. This type of testing
is especially important for transaction systems, for example, on-line bank-
ing software. A test scenario might be to emulate loss of a device during
a transaction. Tests would determine if the system could return to a well-
known state, and that no transactions have been compromised. Systems
with automated recovery are designed for this purpose. They usually have
multiple CPUs and/or multiple instances of devices, and mechanisms to
detect the failure of a device. They also have a so-called “checkpoint”
system that meticulously records transactions and system states periodi-
cally so that these are preserved in case of failure. This information allows
the system to return to a known state after the failure. The recovery testers
must ensure that the device monitoring system and the checkpoint soft-
ware are working properly.

Beizer advises that testers focus on the following areas during recov-
ery testing [22]:

1. Restart. The current system state and transaction states are discarded.
The most recent checkpoint record is retrieved and the system ini-
tialized to the states in the checkpoint record. Testers must insure
that all transactions have been reconstructed correctly and that all
devices are in the proper state. The system should then be able to
begin to process new transactions.

2. Switchover. The ability of the system to switch to a new processor
must be tested. Switchover is the result of a command or a detection
of a faulty processor by a monitor.

In each of these testing situations all transactions and processes must
be carefully examined to detect:

(i) loss of transactions;
(ii) merging of transactions;



176 | Levels of Test ing

(iii) incorrect transactions;
(iv) an unnecessary duplication of a transaction.

A good way to expose such problems is to perform recovery testing under
a stressful load. Transaction inaccuracies and system crashes are likely to
occur with the result that defects and design flaws will be revealed.

6 . 1 4 Regression Testing

Regression testing is not a level of testing, but it is the retesting of software
that occurs when changes are made to ensure that the new version of the
software has retained the capabilities of the old version and that no new
defects have been introduced due to the changes. Regression testing can
occur at any level of test, for example, when unit tests are run the unit
may pass a number of these tests until one of the tests does reveal a defect.
The unit is repaired and then retested with all the old test cases to ensure
that the changes have not affected its functionality. Regression tests are
especially important when multiple software releases are developed. Users
want new capabilities in the latest releases, but still expect the older ca-
pabilities to remain in place. This is where regression testing plays a role.
Test cases, test procedures, and other test-related items from previous
releases should be available so that these tests can be run with the new
versions of the software. Automated testing tools support testers with this
very time-consuming task. Later chapters will describe the role of these
testing tools.

6 . 1 5 Alpha, Beta, and Acceptance Tests

In the various testing activities that have been described so far, users have
played a supporting role for the most part. They have been involved in
requirements analysis and reviews, and have played a role in test planning.
This is especially true for acceptance test planning if the software is being



1776.15 Alpha, Beta, and Acceptance Tests |

custom made for an organization. The clients along with test planners
design the actual test cases that will be run during acceptance test.

Users/clients may also have participated in prototype evaluation, us-
age profile development, and in the various stages of usability testing (see
Chapter 12). After the software has passed all the system tests and defect
repairs have been made, the users take a more active role in the testing
process. Developers/testers must keep in mind that the software is being
developed to satisfy the users requirements, and no matter how elegant
its design it will not be accepted by the users unless it helps them to achieve
their goals as specified in the requirements. Alpha, beta, and acceptance
tests allow users to evaluate the software in terms of their expectations
and goals.

When software is being developed for a specific client, acceptance
tests are carried out after system testing. The acceptance tests must be
planned carefully with input from the client/users. Acceptance test cases
are based on requirements. The user manual is an additional source for
test cases. System test cases may be reused. The software must run under
real-world conditions on operational hardware and software. The
software-under-test should be stressed. For continuous systems the soft-
ware should be run at least through a 25-hour test cycle. Conditions
should be typical for a working day. Typical inputs and illegal inputs
should be used and all major functions should be exercised. If the entire
suite of tests cannot be run for any reason, then the full set of tests needs
to be rerun from the start.

Acceptance tests are a very important milestone for the developers.
At this time the clients will determine if the software meets their require-
ments. Contractual obligations can be satisfied if the client is satisfied
with the software. Development organizations will often receive their final
payment when acceptance tests have been passed.

Acceptance tests must be rehearsed by the developers/testers. There
should be no signs of unprofessional behavior or lack of preparation.
Clients do not appreciate surprises. Clients should be received in the de-
velopment organization as respected guests. They should be provided
with documents and other material to help them participate in the accep-
tance testing process, and to evaluate the results. After acceptance testing
the client will point out to the developers which requirement have/have



178 | Levels of Test ing

not been satisfied. Some requirements may be deleted, modified, or added
due to changing needs. If the client has been involved in prototype eval-
uations then the changes may be less extensive.

If the client is satisfied that the software is usable and reliable, and
they give their approval, then the next step is to install the system at the
client’s site. If the client’s site conditions are different from that of the
developers, the developers must set up the system so that it can interface
with client software and hardware. Retesting may have to be done to
insure that the software works as required in the client’s environment.
This is called installation test.

If the software has been developed for the mass market (shrink-
wrapped software), then testing it for individual clients/users is not prac-
tical or even possible in most cases. Very often this type of software un-
dergoes two stages of acceptance test. The first is called alpha test. This
test takes place at the developer’s site. A cross-section of potential users
and members of the developer’s organization are invited to use the soft-
ware. Developers observe the users and note problems. Beta test sends the
software to a cross-section of users who install it and use it under real-
world working conditions. The users send records of problems with the
software to the development organization where the defects are repaired
sometimes in time for the current release. In many cases the repairs are
delayed until the next release.

6 . 1 6 Summary Statement on Testing Levels

In this chapter we have studied the testing of software at different levels
of abstraction as summarized in Figure 6.1. The reader should note that
each testing level:

• focuses on a specific level of abstraction of the software;

• has a set of specific goals;

• is useful for revealing different types of defects (problems);

• uses a specific set of documents as guides for designing tests;



1796.17 The Special Role of Use Cases |

• is useful for evaluating certain functional and quality attributes of the
software;

• is associated with a level-oriented test plan (described in Chapter 7).

The study of the material in this chapter gives the reader an appreciation
of the size and complexity of the entire testing effort. To achieve testing
goals and to perform testing in an effective manner, testers must be mo-
tivated, have good technical and communication skills, and be good plan-
ners and managers. It is the goal of the testing group working along with
developers and other software professionals to release a software system
to the customer that meets all requirements.

6 . 1 7 The Special Role of Use Cases

The importance of software models as aids to the tester has been described
throughout this book. For example, the role of state models, data flow,
and control flow models in designing black and white box test cases is
described in Chapters 4 and 5. In this chapter, another important model
is introduced called the “use case.” A description of a use case is as
follows.

A use case is a pattern, scenario, or exemplar of usage. It describes a typical

interaction between the software system under development and a user.

A use case scenario begins with some user of the system (human,
hardware device, an interfacing software system) initiating a transaction
or a sequence of events. The interaction is often depicted as a diagram or
graphical drawing showing the entities involved. In addition, a textual
description of the interaction often accompanies the graphic representa-
tion. The text describes the sequence of events that occurs when such a
transaction is initiated. All the events that occur and the system’s re-
sponses to the events are part of the textural description (scenario script).
The design of use cases typically begins in the requirements phase. User
interactions with respect to primary system functions are collected and
analyzed. Each of the scenarios/interactions in the collection are modeled
in the form of a use case. As development continues the use cases can be



180 | Levels of Test ing

refined to include, for example, exception conditions. Scenarios for in-
teractions involving secondary system functions can be added. The entire
collection of use cases gives a complete description of system use by users.
The use cases are usually reviewed with testers as participants in the re-
view process. Customers also review the use cases.

The development of use cases is often associated with object-oriented
development. They are used frequently to describe object responsibilities
and/or to model object interactions. Current uses include application to
both object-oriented and procedure-oriented systems to model user–sys-
tem interactions. Use cases are especially of value to testers, and are useful
for designing tests at the integration or system level for both types of
systems. For example, a given use case may model a thread or transaction
implemented by a subsystem or a class cluster. A set of use cases can also
serve as a model for transactions involving the software system as whole.
Use cases are also very useful for designing acceptance tests with customer
participation. A reasonable testing goal would be to test uses of the system
through coverage of all of the use cases. Each thread of functionality
should be covered by a test.

Jacobson et al. briefly describe how use cases support integration and
system test in object-oriented systems [23]. They suggest tests that cause
the software to follow the expected flow of events, as well as tests that
trigger odd or unexpected cases of the use case—a flow of events different
than expected. An example use case associated with an automated pay-
ment system is shown in Figure 6.12. The customer initiates the trans-
action by inserting a card and a PIN. The steps following describe the
interaction between the customer and the system in detail for a particular
type of transaction—the automated payment. For our use case example
we could develop a set of test inputs during integration or system test so
that a typical interaction for the automated payment system would follow
the flow of steps. The set of inputs for the test includes:

Valid user PIN: IB-1234

Selection option: Automated payment

Valid account number of the recipient: GWB-6789

Selection payment schedule: Weekly

Selection of day of the month: 15



1816.18 Levels of Test ing and the TMM |

Maximum payment option value: $50

Start date: 3-15-01

In our example, use of an invalid recipient account number as input would
alter the flow of events described and could constitute one odd use of the
case. Other exceptions could include a payment entered that is larger than
the customer’s current account holding.

6 . 1 8 Levels of Test ing and the TMM

The material covered in this chapter is associated with the TMM level 2
maturity goal, “institutionalize basic testing techniques and methods,”

Automated Payment Sequence
ATM Machine Software System

Customer inserts card in machine slot and enters PIN.

The card and PIN are verified and the main menu is shown.

Customer selects the “transaction services” menu, the menu
is then displayed by the ATM.

Customer selects the “automated payment” service from
the menu.

Customer is prompted for the account number of the
recipient of the payment.

Customer enters the recipient's account number.

Recipient’s account number is verified, and “payment
schedule” menu is displayed.

Customer selects monthly payment schedule from menu.
Choices include: weekly, monthly, yearly, etc.  Secondary
menu displays choices to refine payment schedule.

Customer inputs day-of-month for periodic payments.

Secondary menu displays options to set fixed and maximum
amount.

Customer selects the maximum amount option (e.g., a
$60 value).  A menu for start date is displayed.  On this
date the payment is due.

Customer selects today’s date as the start date.

The transaction is verified, and the main menu is displayed.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Fig. 6.12

Example text-based use case.



182 | Levels of Test ing

which addresses important technical issues related to execution-based
testing. The focus is on the different levels of testing that must occur when
a complex software system is being developed. An organization at TMM
level 2 must work hard to plan, support, and implement these levels of
testing so that it can instill confidence in the quality of its software and
the proficiency of its testing process. This is why the maturity goal to
“institutionalize basic testing techniques and methods,” which encom-
passes multilevel testing, appears at lower levels of the maturity goal hi-
erarchy (TMM level 2). In Chapter 7 you will learn how these testing
levels are supported by test planning. Later chapters will describe the tools
to support these levels of testing.

Readers can see that testing at different levels requires many re-
sources. Very often when budgets and schedules are tight, these levels are
sacrificed and the organization often reverts to previous immature prac-
tices such as “big bang” integration and multiple test, debug, patch, and
repair cycles. This will occur unless there are concerted efforts by the
developers, quality personnel, and especially management to put these
levels of testing into place as part of a concerted TMM-based test process
improvement effort. Otherwise the organization’s reputation for consis-
tently releasing quality products will not be maintainable.

The three maturity goals at TMM level 2 are interrelated and support
areas from the three critical groups overlap. In Chapters 4 and 5 you
learned how the members of the three critical groups support the adap-
tation and application of white and black box testing methods. Chapter
7 will describe how critical group members support test planning and
policy making. Below is a brief description of how critical group members
support multilevel testing. Again, you will notice some overlap with the
group responsibilities described in Chapters 4, 5, and 7.

Managers can support multilevel testing by:

• ensuring that the testing policy requires multilevel testing;

• ensuring that test plans are prepared for the multiple levels;

• providing the resources needed for multilevel testing;

• adjusting project schedules so that multilevel testing can be ade-
quately performed;



1836.18 Levels of Test ing and the TMM |

• supporting the education and training of staff in testing methods and
techniques needed to implement multilevel testing.

Developers/testers give their support by:

• attending classes and training sessions to master the knowledge
needed to plan and implement multilevel testing;

• supporting management to ensure multilevel testing is a part of or-
ganizational policy, is incorporated into test plans, and is applied
throughout the organization;

• working with project managers (and test managers at TMM level 3
and higher) to ensure there is time and resources to test at all levels;

• mentoring colleagues who wish to acquire the necessary background
and experience to perform multilevel testing;

• work with users/clients to develop the use cases, usage profiles, and
acceptance criteria necessary for the multilevel tests;

• implement the tests at all levels which involves:

—planning the tests
—designing the test cases
—gathering the necessary resources
—executing unit, integration, system, and acceptance tests
—collecting test results
—collecting test-related metrics
—analyzing test results
—interacting with developers, SQA staff, and user/clients to resolve

problems

The user/clients play an essential role in the implementation of multi-
level testing. They give support by:

• providing liaison staff to interact with the development organization
testing staff;

• working with analysts so that system requirements are complete and
clear and testable;



184 | Levels of Test ing

• providing input for system and acceptance test;

• providing input for the development of use cases and/or a usage pro-
file to support system and acceptance testing;

• participating in acceptance and/or alpha and beta tests;

• providing feedback and problem reports promptly so that problems
can be addressed after the system is in operation.

L I S T O F K E Y T E R M S

Cluster

Load

Test harness

Unit

Use case

E X E R C I S E S

1. How would you define a software unit? In terms of your definition, what con-

stitutes a unit for procedural code; for object-oriented code?

2. Summarize the issues that arise in class testing.

3. The text gives example sequences of inputs and calls to test the stack class

as shown in Figure 6.3. Develop sequences for testing the stack that try to push

an item on a full stack, and to pop an item from an empty stack.

4. Why is it so important to design a test harness for reusability?

5. Suppose you were developing a stub that emulates a module that passes back

a hash value when passed a name. What are the levels of functionality you could

implement for this stub? What factors could influence your choice of levels?

6. What are the key differences in integrating procedural-oriented systems as

compared to object-oriented systems?

7. From your knowledge of defect types in Chapter 3 of this text, what defect

types are most likely to be detected during integration test of a software system?

Describe your choices in terms of both the nature of integration test and the nature

of the defect types you select.



1856.18 Levels of Test ing and the TMM |

8. Using the structure chart shown below, show the order of module integration

for the top-down (depth and breadth first), and bottom-up integration approaches.

Estimate the number of drivers and stubs needed for each approach. Specify in-

tegration testing activities that can be done in parallel, assuming you have a

maximum of three testers. Based on resource needs and the ability to carry out

parallel testing activities, which approach would you select for this system and

why?

A

B C D

E F G H I

J K L M

9. This chapter describe several types of system tests. Select from these types

those you would perform for the software described below. For each category you

choose (i) specify the test objectives, and (ii) give a general description of the

tests you would develop and tools you would need. You may make any assump-

tions related to system characteristics that are needed to support your answers.

An on-line fast food restaurant system. The system reads customer orders,

relays orders to the kitchen, calculates the customer’s bill, and gives change. It

also maintains inventory information. Each wait-person has a terminal. Only au-

thorized wait-persons and a system administrator can access the system.

10. An air-traffic control system can have one or many users. It interfaces with

many hardware devices such as displays, radar detectors, and communications

devices. This system can occur in a variety of configurations. Describe how you

would carry out configuration tests on this system.

11. As in Problem 9, describe the types of system tests you would select for the

following software. The project is a real-time control system for a new type of

laser that will be used for cancer therapy. Some of the code will be used to control

hardware devices. Only qualified technicians can access the system.

12. Discuss the importance of regression testing when developing a new software

release. What items from previous release would be useful to the regression

tester?



186 | Levels of Test ing

13. From your experience with online and/or catalog shopping, develop a use case

to describe a user purchase of a television set with a credit card from a online

vendor using web-based software. With the aid of your use case, design a set of

tests you could use during system test to evaluate the software.

14. Describe the Activities/Tasks and Responsibilities for developer/testers in sup-

port of multilevel testing.

R E F E R E N C E S

[1] P. Jorgensen, C. Erikson, “Object-oriented integra-
tion Test,” CACM, Vol. 37, No. 9, 1994, pp. 30–38.

[2] R. D’Souza, R. LeBlanc, “Class testing by exam-
ining pointers,” J. Object Oriented Programming,
July–August, 1994, pp. 33–39.

[3] M. Smith, D. Robson, “A framework for testing
object-oriented programs,” J. Object Oriented Pro-
gramming, June 1992, pp. 45–53.

[4] S. Fiedler, “Object-oriented unit testing,” Hewlett-
Packard Journal, April, 1989, pp. 69–74.

[5] G. Murphy, P. Townsend, P. Wong, “Experiences
with cluster and class testing,” CACM, Vol. 37, No. 9,
1994, pp. 39–47.

[6] N. Wilde, “Testing your objects,” The C Users
Journal, May 1993, pp. 25–32.

[7] R. Doong, P. Frankl, “The ASTOOT approach to
testing object-oriented programs,” ACM Transactions
of Software Engineering and Methodology, Vol. 3,
No., 1994, pp 101–130.

[8] E. Berard, Essays on Object-Oriented Software En-
gineering, Volume 1, Prentice Hall, Englewood Cliffs,
NJ, 1993.

[9] B. Marick, The Craft of Software Testing, Prentice
Hall, Englewood Cliffs, NJ, 1995.

[10] IEEE/ANSI Std 1008-1987 (Reaff 1993), Standard
for Software Unit Testing, Institute of Electrical and
Electronics Engineers, Inc., 1987.

[11] J. McGregor, A. Kare, “Parallel architecture for
component testing of object-oriented software,” Proc.
Ninth International Quality Week Conf., May 1996.

[12] M. Chen, M. Kao, “Investigating test effectiveness
on object-oriented software: a case study,” Proc.
Twelfth International Quality Week Conf., May 1999.

[13] D. Perry. G. Kaiser, “Adequate testing and object-
oriented programming,” J. Object Oriented Program-
ming, Vol. 2, No. 5, 1990, pp. 13–19.

[14] K Rangaraajan, P. Eswar, T. Ashok, “Retesting
C�� classes,” Proc. Ninth International Quality
Week Conf., May 1996.

[15] B. Tsai, S. Stobart, N. Parrington, I. Mitchell, “A
state-based testing approach providing data flow cov-
erage in object-oriented class testing,” Proc. Twelfth
International Quality Week Conf., May 1999.

[16] M Harrold, J. McGregor, K. Fitzpatrick, “Incre-
mental testing of object-oriented class structures,”
Proc. 14th International Conf. on Software Engineer-
ing, May 1992, pp. 68–80.

[17] M. Harrold, G. Rothermel, “Performing data flow
testing on classes,” Proc. Second ACM SIGSOFT Sym-
posium on Foundations of Software Engineering,
Dec. 1994, pp. 154–163.

[18] D. Kung, P. Hsia, J. Gao, Testing Object-Oriented
Software, IEEE Computer Society Press, Los Alamitos,
CA, 1998.

[19] U. Linnenkugel, M. Mullerburg, “Test data selec-
tion criteria for (software) integration testing,” Proc.
First International Conf. Systems Integration, April
1990, pp. 709–717.

[20] P. Coad, E. Yourdon, Object-Oriented Analysis,
second edition, Yourdon Press, Englewood Cliffs, NJ,
1991.



1876.18 Levels of Test ing and the TMM |

[21] B. Hetzel The Complete Guide to Software Test-
ing, second edition, QED Information Sciences, Inc.,
Wellesley, MA. 1988.

[22] B. Beizer, Software Testing and Quality Assur-
ance, Von Nostrand Reinhold, New York, 1984.

[23] I. Jacobson, M. Christerson, P. Jonsson, G. Over-
gaard, Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, Reading,
MA, 1992.



This page intentionally left blank 



7
T E S T I N G G O A L S ,

P O L I C I E S , P L A N S A N D

D O C U M E N T A T I O N

7 . 0 Introductory Concepts

This chapter focuses on preparing the reader to address two fundamental
maturity goals at level 2 of the TMM: (i) developing organizational goals/
policies relating to testing and debugging, and (ii) test planning. These
maturity goals are managerial in nature. They are essential to support
testing as a managed process. According to R. Thayer, a managed process
is one that is planned, monitored, directed, staffed, and organized [1]. At
TMM level 2 the planning component of a managed process is instituted.
At TMM levels 3 and 4 the remaining managerial components are inte-
grated into the process. By instituting all of the managerial components
described by Thayer in an incremental manner, an organization is able to
establish the high-quality testing process described at higher levels of the
TMM. The test specialist has a key role in developing and implementing



190 | Testing Goals, Pol ic ies, Plans and Documentation

these managerial components. In this chapter concepts and tools are in-
troduced to build test management skills, thus supporting the reader in
his/her development as a test specialist.

The development, documentation, and institutionalization of goals
and related policies is important to an organization. The goals/policies
may be business-related, technical, or political in nature. They are the
basis for decision making; therefore setting goals and policies requires the
participation and support of upper management. Technical staff and
other interested parties also participate in goal and policy development.
Simple examples of the three types of goals mentioned are shown below.

1. Business goal: to increase market share 10% in the next 2 years in
the area of financial software.

2. Technical goal: to reduce defects by 2% per year over the next 3
years.

3. Business/technical goal: to reduce hotline calls by 5% over the next
2 years.

4. Political goal: to increase the number of women and minorities in
high management positions by 15% in the next 3 years.

Planning is guided by policy, supports goal achievement, and is a vital
part of all engineering activities. In the software domain, plans to achieve
goals associated with a specific project are usually developed by a project
manager. In the testing domain, test plans support achieving testing goals
for a project, and are either developed by the project manager as part of
the overall project plan, or by a test or quality specialist in conjunction
with the project planner. Test planning requires the planner to articulate
the testing goals for a given project, to select tools and techniques needed
to achieve the goals, and to estimate time and resources needed for testing
tasks so that testing is effective, on time, within budget, and consistent
with project goals. The first sections of this chapter will provide insight
into the nature of test-related goals and policies. In latter sections the
reader will learn how to organize and develop test plans and other test-
related documents.



1917.1 Testing and Debugging Goals and Pol ic ies |

7 . 1 Testing and Debugging Goals and Pol ic ies

A goal can be described as (i) a statement of intent, or (ii) a statement of a

accomplishment that an individual or an organization wants to achieve.

A goal statement relates to an area where an individual, group, or orga-
nization wants to make improvements. Goals project future states of an
organization, a group, or an individual.

In an organization there is often a hierarchy of goals. At the top level
are general organizational goals. There are intermediate-level goals that
may be associated with a particular organizational functional unit. Indi-
vidual projects have specific goals. These usually reflect organizational
goals. There are personal-level goals as well. Each individual in an or-
ganization has a set of goals for self-improvement so that he or she can
more effectively contribute to the project, functional unit, and organiza-
tion as a whole.

Goal statements can express expectations in quantitative terms or be
more general in nature. For the testing goals below, goals 1 and 2 express
what is to be achieved in a more quantitative manner than goals 3
and 4.

1. One-hundred percent of testing activities are planned.
2. The degree of automation for regression testing is increased from

50% to 80% over the next 3 years.
3. Testing activities are performed by a dedicated testing group.
4. Testing group members have at least a bachelor-level degree and have

taken a formal course in software testing.

In general, quantitative goals are more useful. These are measurable goals,
and give an organization, group, or individual the means to evaluate prog-
ress toward achieving the goal.

In the testing domain, goal statements should provide a high-level
vision of what testing is to accomplish in the organization with respect
to quality of process and product. In addition to general testing goal
statements, lower-level goal statements should be developed for all levels



192 | Testing Goals, Pol ic ies, Plans and Documentation

of testing. Goals for the education and training of testing personnel should
also be included with testing goal statements. Test plans should express
testing goals for each project. These reflect overall organizational testing
goals as well as specific goals for the project.

The TMM itself is built on a hierarchy of high-level testing maturity
goals and subgoals which support the growth of an effective software
testing process and promote high software quality. The TMM can be used
by decision-makers in an organization to develop both long- and short-
term testing goals based on the TMM goal hierarchy.

A policy can be defined as a high-level statement of principle or course of action

that is used to govern a set of activities in an organization.

Because a policy provides the vision and framework for decision making,
it is important to have the policy formally adopted by the organization,
documented, and available for all interested parties. An intraorganiza-
tional web site is suggested as a location for policy statements. This would
allow for updates and visibility within the organization. A policy state-
ment should be formulated by a team or task force consisting of upper
management, executive personnel, and technical staff. In the case of test-
ing, a testing policy statement is used to guide the course of testing activ-
ities and test process evolution. It should be agreed upon as workable by
all concerned.

Testing policy statements reflect, integrate, and support achievement
of testing goals. These goals in turn often target increasing software
quality and improving customer satisfaction. Test policies also pro-
vide high-level guidance as to how testing is to be done in the organiza-
tion, how its effectiveness will be evaluated, who will be responsible,
and what choices of resources are possible. They should be explicit
enough to guide decisions on all important testing issues, for example,
how to test, what to test, and who will test. Policies are not written in
stone, and as an organization grows in maturity its policies will change
and mature. The task force should establish documented procedures for
policy change.

A brief outline of a sample testing policy statement appropriate for a
TMM level 2 organization follows.



1937.1 Testing and Debugging Goals and Pol ic ies |

T e s t i n g P o l i c y : O r g a n i z a t i o n X

Our organization, the X Corporation, realizes that testing is an important
component of the software development process and has a high impact
on software quality and the degree of customer satisfaction. To ensure
that our testing process is effective and that our software products meet
the client’s requirements we have developed and adopted the following
testing policy statement.

1. Delivering software of the highest quality is our company goal. The
presence of defects has a negative impact on software quality. Defects
affect the correctness, reliability, and usability of a software product,
thus rendering it unsatisfactory to the client. We define a testing ac-
tivity as a set of tasks whose purpose is to reveal functional and qual-
ity-related defects in a software deliverable. Testing activities include
traditional execution of the developing software, as well as reviews
of the software deliverables produced at all stages of the life cycle.
The aggregation of all testing activities performed in a systematic
manner supported by organizational policies, procedures, and stan-
dards constitutes the testing process.

2. A set of testing standards must be available to all interested parties
on an intraorganizational web site. The standards contain descrip-
tions of all test-related documents, prescribed templates, and the
methods, tools, and procedures to be used for testing. The standards
must specify the types of projects that each of these items is to be
associated with.

3. In our organization the following apply to all software develop-
ment/maintenance projects:

• Execution-based tests must be performed at several levels such as unit,
integration, system, and acceptance tests as appropriate for each soft-
ware product.

• Systematic approaches to test design must be employed that include
application of both white and black box testing methods.

• Reviews of all major product deliverables such as requirements and
design documents, code, and test plans are required.

• Testing must be planned for all projects. Plans must be developed for



194 | Testing Goals, Pol ic ies, Plans and Documentation

all levels of execution-based testing as well as for reviews of deliver-
ables. Test plan templates must be included in organizational stan-
dards documents and implemented online. A test plan for a project
must be compatible with the project plan for that project. Test plans
must be approved by the project manager and technical staff. Accep-
tance test plans must also be approved by the client.

• Testing activities must be monitored using measurements and mile-
stones to ensure that they are proceeding according to plan.

• Testing activities must be integrated into the software life cycle and
carried out in parallel with other development activities. The ex-
tended modified V-model as shown in the testing standards document
has been adopted to support this goal.

• Defects uncovered during each test must be classified and recorded.

• There must be a training program to ensure that the best testing prac-
tices are employed by the testing staff.

4. Because testing is an activity that requires special training and an
impartial view of the software, it must be carried out by an indepen-
dent testing group. Communication lines must be established to sup-
port cooperation between testers and developers to ensure that the
software is reliable, safe, and meets client requirements.

5. Testing must be supported by tools, and, test-related measurements
must be collected and used to evaluate and improve the testing pro-
cess and the software product.

6. Resources must be provided for continuos test process improvement.
7. Clients/developer/tester communication is important, and clients

must be involved in acceptance test planning, operational profile de-
velopment, and usage testing when applicable to the project. Clients
must sign off on the acceptance test plan and give approval for all
changes in the acceptance test plan.

8. A permanent committee consisting of managerial and technical staff
must be appointed to be responsible for distribution and maintenance
of organizational test policy statements.

Whatever the nature of the test policy statement, it should have strong
support and continual commitment from management. After the policy



1957.1 Testing and Debugging Goals and Pol ic ies |

statement has been developed, approved, and distributed, a subset of the
task force should be appointed to permanently oversee policy implemen-
tation and change.

Note that the TMM maturity goals at level 2 call for separate orga-
nizational goals (and policies) for testing and debugging. This is impor-
tant for several reasons. First, at TMM level 2 testing becomes a planned
activity and can therefore be managed. Debugging is difficult to manage
because predictions about the types of defects present in the software are
usually not accurate. At higher levels of the TMM where data relating to
defects from past releases and projects are available, the project manager
may have some success in this area. In addition, testing and debugging
have different goals and psychologies. Each requires different techniques,
methods, and tools. Because of the differing psychologies involved they
should be performed by different groups having different training. Policies
for both of these processes should describe these differences. It should be
clear what the goals for both of these processes are. In this way managers
will better be able to allocate resources, decide on proper training, apply
appropriate tools, and keep track of the costs for each. A sample debug-
ging policy statement is shown below. This debugging policy is applicable
to organizations at TMM level 2. At higher levels of the TMM, organi-
zations will want to modify the policy statements to include support for
activities such as defect prevention. At TMM levels 3 and higher there is
separate testing group. The duties of the testers and developers will be
separate and responsibilities will be transferred from developers to testers
and vice versa. It will be the software developers who will have primary
responsibilities for debugging efforts.

D e b u g g i n g P o l i c y : O r g a n i z a t i o n X

Our organization, the X Corporation, is committed to delivering high-
quality software to our customers. Effective testing and debugging pro-
cesses are essential to support this goal. It is our policy to separate testing
and debugging, and we consider them as two separate processes. Each
has different psychologies, goals, and requirements. The resources, train-
ing, and tools needed are different for both. To support the separation of
these two processes we have developed individual testing and debugging



196 | Testing Goals, Pol ic ies, Plans and Documentation

policies. Our debugging policy is founded on our quality goal to remove
all defects from our software that impact on our customers’ ability to use
our software effectively, safely, and economically. To achieve this goal
we have developed the following debugging policy statement.

1. Testing and debugging are two separate processes. Testing is the pro-
cess used to detect (reveal) defects. Debugging is the process dedicated
to locating the defects, repairing the code, and retesting the software.
Defects are anomalies that impact on software functionality as well
as on quality attributes such as performance, security, ease of use,
correctness, and reliability.

2. Since debugging is a timely activity, all project schedules must allow
for adequate time to make repairs, and retest the repaired software.

3. Debugging tools, and the training necessary to use the tools, must be
available to developers to support debugging activities and tasks.

4. Developers/testers and SQA staff must define and document a set of
defect classes and defect severity levels. These must be must be avail-
able to all interested parties on an intraorganizational web site, and
applied to all projects.

5. When failures are observed during testing or in operational software
they are documented. A problem, or test incident, report is completed
by the developer/tester at testing time and by the users when a fail-
ure/problem is observed in operational software. The problem report
is forwarded to the development group. Both testers/developers and
SQA staff must communicate and work with users to gain an under-
standing of the problem. A fix report must be completed by the de-
veloper when the defect is repaired and code retested. Standard prob-
lem and fix report forms must be available to all interested parties
on an intraorganizational web site, and applied to all projects.

7. All defects identified for each project must be cataloged according to
class and severity level and stored as a part of the project history.

8. Measurement such as total number of defects, total number of de-
fects/KLOC, and time to repair a defect are saved for each project.

9. A permanent committee consisting of managerial and technical staff
must be appointed to be responsible for distribution and maintenance
of organizational debugging policy statements.



1977.2 Test Planning |

7 . 2 Test Planning

A plan can be defined in the following way.

A plan is a document that provides a framework or approach for achieving a set

of goals.

In the software domain, plans can be strictly business oriented, for ex-
ample, long-term plans to support the economic growth of an organiza-
tion, or they can be more technical in nature, for example, a plan to
develop a specific software product. Test plans tend to be more technically
oriented. However, a software project plan that may contain a test plan
as well will often refer to business goals. In this chapter we focus on
planning for execution-based software testing (validation testing). In
Chapter 10, where reviews are discussed, planning for verification activ-
ities is described.

Test planning is an essential practice for any organization that wishes
to develop a test process that is repeatable and manageable. Pursuing the
maturity goals embedded in the TMM structure is not a necessary pre-
condition for initiating a test-planning process. However, a test process
improvement effort does provide a good framework for adopting this
essential practice. Test planning should begin early in the software life
cycle, although for many organizations whose test processes are immature
this practice is not yet in place. Models such as the V-model, or the Ex-
tended/Modified V-model (Figure 1.5), help to support test planning ac-
tivities that begin in the requirements phase, and continue on into suc-
cessive software development phases [2,3].

In order to meet a set of goals, a plan describes what specific tasks
must be accomplished, who is responsible for each task, what tools, pro-
cedures, and techniques must be used, how much time and effort is
needed, and what resources are essential. A plan also contains milestones.

Milestones are tangible events that are expected to occur at a certain time in the

project’s lifetime. Managers use them to determine project status.

Tracking the actual occurrence of the milestone events allows a manager
to determine if the project is progressing as planned. Finally, a plan should
assess the risks involved in carrying out the project.



198 | Testing Goals, Pol ic ies, Plans and Documentation

Test plans for software projects are very complex and detailed doc-
uments. The planner usually includes the following essential high-level
items.

1. Overall test objectives. As testers, why are we testing, what is to be
achieved by the tests, and what are the risks associated with testing
this product?

2. What to test (scope of the tests). What items, features, procedures,
functions, objects, clusters, and subsystems will be tested?

3. Who will test. Who are the personnel responsible for the tests?
4. How to test. What strategies, methods, hardware, software tools, and

techniques are going to be applied? What test documents and deliv-
erable should be produced?

5. When to test. What are the schedules for tests? What items need to
be available?

6. When to stop testing. It is not economically feasible or practical to
plan to test until all defects have been revealed. This is a goal that
testers can never be sure they have reached. Because of budgets,
scheduling, and customer deadlines, specific conditions must be out-
lined in the test plan that allow testers/managers to decide when test-
ing is considered to be complete.

Test plans can be organized in several ways depending on organiza-
tional policy. There is often a hierarchy of plans that includes several
levels of quality assurance and test plans. The complexity of the hierarchy
depends on the type, size, risk-proneness, and the mission/safety criticality
of software system being developed. All of the quality and testing plans
should also be coordinated with the overall software project plan. A sam-
ple plan hierarchy is shown in Figure 7.1.

At the top of the plan hierarchy there may be a software quality
assurance plan. This plan gives an overview of all verification and vali-
dation activities for the project, as well as details related to other quality
issues such as audits, standards, configuration control, and supplier con-
trol. Below that in the plan hierarchy there may be a master test plan that
includes an overall description of all execution-based testing for the
software system. A master verification plan for reviews inspec-
tions/walkthroughs would also fit in at this level. The master test plan
itself may be a component of the overall project plan or exist as a separate



1997.2 Test Planning |

Software quality assurance  (V&V) plan

Master test plan

Unit test plan
Integration
test plan

System
test plan

Acceptance
test plan

Review plan: Inspections
and walkthroughs

FIG. 7.1

A hierarchy of test plans.

document. Depending on organizational policy, another level of the hi-
erarchy could contain a separate test plan for unit, integration, system,
and acceptance tests. In some organizations these are part of the master
test plan. The level-based plans give a more detailed view of testing ap-
propriate to that level. The IEEE Software Engineering Standards Col-
lection has useful descriptions for many of these plans and other test and
quality-related documents such as verification and validation plans
[4–7].

The persons responsible for developing test plans depend on the type
of plan under development. Usually staff from one or more groups co-
operates in test plan development. For example, the master test plan for
execution-based testing may be developed by the project manager, espe-
cially if there is no separate testing group. It can also be developed by a
tester or software quality assurance manager, but always requires coop-
eration and input from the project manager. It is essential that develop-
ment and testing activities be coordinated to allow the project to progress
smoothly. The type and organization of the test plan, the test plan hier-
archy, and who is responsible for development should be specified in
organizational standards or software quality assurance documents.

The remainder of this chapter focuses on the development of a gen-
eral-purpose execution-based test plan that will be referred to as a “test
plan.” The description of the test plan contents is based on a discussion
of recommended test plan components appearing in the IEEE Standard
for Software Test Documentation: IEEE/ANSI Std 829-1983 [5]. This



200 | Testing Goals, Pol ic ies, Plans and Documentation

standard also contains examples of other test-related documents de-
scribed in this chapter. The reader should note that the IEEE test plan
description serves as a guideline to test planners. The actual templates
and documents developed by test planners should be tailored to meet
organizational needs and conform to organizational goals and policies.
An abbreviated example of a test plan appears in Appendix II.

7 . 3 Test Plan Components

This section of the text will discuss the basic test plan components as
described in IEEE Std 829-1983 [5]. They are shown in Figure 7.2. These
components should appear in the master test plan and in each of the level-
based test plans (unit, integration, etc.) with the appropriate amount of
detail. The reader should note that some items in a test plan may appear
in other related documents, for example, the project plan. References to
such documents should be included in the test plan, or a copy of the
appropriate section of the document should be attached to the test plan.

1 . Tes t P lan Iden t i f i e r

Each test plan should have a unique identifier so that it can be associated
with a specific project and become a part of the project history. The
project history and all project-related items should be stored in a project
database or come under the control of a configuration management sys-
tem. Organizational standards should describe the format for the test plan
identifier and how to specify versions, since the test plan, like all other
software items, is not written in stone and is subject to change. A mention
was made of a configuration management system. This is a tool that
supports change management. It is essential for any software project and
allows for orderly change control. If a configuration management system
is used, the test plan identifier can serve to identify it as a configuration
item (see Chapter 9).

2 . I n t roduc t i on

In this section the test planner gives an overall description of the project,
the software system being developed or maintained, and the soft-



2017.3 Test Plan Components |

Test Plan Components

Test plan identifier

Introduction

Items to be tested

Features to be tested

Approach

Pass/fail criteria

Suspension and resumption criteria

Test deliverables

Testing Tasks

Test environment

Responsibilities

Staffing and training needs

Scheduling

Risks and contingencies

Testing costs

Approvals

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

FIG. 7.2

Components of a test plan.

ware items and/or features to be tested. It is useful to include a high-level
description of testing goals and the testing approaches to be used. Ref-
erences to related or supporting documents should also be included in
this section, for example, organizational policies and standards docu-
ments, the project plan, quality assurance plan, and software configura-
tion plan. If test plans are developed as multilevel documents, that is,
separate documents for unit, integration, system, and acceptance test,
then each plan must reference the next higher level plan for consistency
and compatibility reasons.

3 . I t ems to Be Tes ted

This is a listing of the entities to be tested and should include names,
identifiers, and version/revision numbers for each entity. The items listed
could include procedures, classes, modules, libraries, subsystems, and sys-
tems. References to the appropriate documents where these items and
their behaviors are described such as requirements and design documents,
and the user manual should be included in this component of the test
plan. These references support the tester with traceability tasks. The focus



202 | Testing Goals, Pol ic ies, Plans and Documentation

of traceability tasks is to ensure that each requirement has been covered
with an appropriate number of test cases. In this test plan component also
refer to the transmittal media where the items are stored if appropriate;
for example, on disk, CD, tape. The test planner should also include items
that will not be included in the test effort.

4 . Fea tu res to Be Tes ted

In this component of the test plan the tester gives another view of the
entities to be tested by describing them in terms of the features they en-
compass. Chapter 3 has this definition for a feature.

Features may be described as distinguishing characteristics of a software com-

ponent or system.

They are closely related to the way we describe software in terms of its
functional and quality requirements [4]. Example features relate to per-
formance, reliability, portability, and functionality requirements for the
software being tested. Features that will not be tested should be identified
and reasons for their exclusion from test should be included.

In this component of the test plan references to test design specifi-
cations for each feature and each combination of features are identified
to establish the associations with actual test cases. The test design speci-
fications, test procedures, and test case specifications appear in other sec-
tions of the test plan.

5 . Approach

This section of the test plan provides broad coverage of the issues to be
addressed when testing the target software. Testing activities are de-
scribed. The level of descriptive detail should be sufficient so that the
major testing tasks and task durations can be identified. More details will
appear in the accompanying test design specifications.

The planner should also include for each feature or combination of
features, the approach that will be taken to ensure that each is adequately
tested. Tools and techniques necessary for the tests should be included.
Expectations for test completeness and how the degree of completeness
will be determined should be described. For example, the planner should
specify degree of coverage expected for white box tests. This can be ex-



2037.3 Test Plan Components |

pressed in terms of the percentage of statement coverage, branch cover-
age, and so on expected. Techniques that will be used to trace require-
ments to test should be covered.

Constraints on testing should be also be included in this section, such
as time and budget limitations. The planner should also describe how the
testing process will be monitored to insure it is going according to plans.
Criteria to be used for making decisions on when to stop testing must
also be included. These should be well thought out. Unfortunately, testing
usually stops when time and money run out. This is the least desirable
scenario. It is often useful to specify stop-test criteria based on percentage
of coverage for each coverage category and/or the rate of error detection
and/or the detection of a specific amount of defects based on a statistical
analysis of errors found in previous releases. A reasonable stop test de-
cision statement is: “System testing is completed when the number of
defects found per week (X) that cause failures of a certain severity level
(Y) falls below a given value (Z).” The number of defects X, the severity
level Y and the given value Z, all must be quantified. The concept of
severity (sometimes called criticality) introduced here is a useful one that
can be applied to errors, defects, and failures. A brief discussion of severity
is given in item 6 below. Sample severity levels that can be utilized for
rating defects and failures are described in Chapter 9. Other approaches
to use to for a stop test decision are found in Chapter 12.

6 . I t em Pass / Fa i l C r i t e r i a

Given a test item and a test case, the tester must have a set of criteria to
decide on whether the test has been passed or failed upon execution. The
master test plan should provide a general description of these criteria. In
the test design specification section more specific details are given for each
item or group of items under test with that specification.

A definition for the term “failure” was given in Chapter 2. Another
way of describing the term is to state that a failure occurs when the actual
output produced by the software does not agree with what was expected,
under the conditions specified by the test. The differences in output be-
havior (the failure) are caused by one or more defects. The impact of the
defect can be expressed using an approach based on establishing severity
levels. Using this approach, scales are used to rate failures/defects with



204 | Testing Goals, Pol ic ies, Plans and Documentation

respect to their impact on the customer/user (note their previous use for
stop-test decision making in the preceding section). For example, on a
scale with values from 1 to 4, a level 4 defect/failure may have a minimal
impact on the customer/user, but one at level 1 will make the system
unusable.

As an example of the application of severity levels, let us suppose we
are testing the report-generation capability of a personal accounting soft-
ware system. Results may show that it prints a required report with cor-
rect data, but with a slightly different spacing then was specified. This
failure would be rated at a low severity level (3–4) since the software is
still usable by the customer. A high-level failure (level 1) for this software
might be assigned to a system crash when a report is requested by the
user. This renders the system unusable and unacceptable.

The test planner can use this technique to specify an acceptable se-
verity level for the failures revealed by each test. This is done in detail in
the test design specification. Upon execution, a failure occurring with a
severity rating above the acceptable level indicates the software has failed
the test. Usually a failure rated below the acceptable severity level will
still allow the software to conditionally pass the test. Testing can continue
and the defect causing the failure can be repaired later on.

7 . Suspens ion and Resumpt i on Cr i t e r i a

In this section of the test plan, criteria to suspend and resume testing are
described. In the simplest of cases testing is suspended at the end of a
working day and resumed the following morning. For some test items this
condition may not apply and additional details need to be provided by
the test planner. The test plan should also specify conditions to suspend
testing based on the effects or criticality level of the failures/defects ob-
served. Conditions for resuming the test after there has been a suspension
should also be specified. For some test items resumption may require
certain tests to be repeated.

8 . Tes t De l i ve rab les

Execution-based testing has a set of deliverables that includes the test plan
along with its associated test design specifications, test procedures, and
test cases. The latter describe the actual test inputs and expected



2057.3 Test Plan Components |

outputs. Deliverables may also include other documents that result from
testing such as test logs, test transmittal reports, test incident reports, and
a test summary report. These documents are described in subsequent sec-
tions of this chapter. Preparing and storing these documents requires con-
siderable resources. Each organization should decide which of these doc-
uments is required for a given project.

Another test deliverable is the test harness. This is supplementary
code that is written specifically to support the test efforts, for example,
module drivers and stubs. Drivers and stubs are necessary for unit and
integration test. Very often these amount to a substantial amount of code.
They should be well designed and stored for reuse in testing subsequent
releases of the software. Other support code, for example, testing tools
that will be developed especially for this project, should also be described
in this section of the test plan.

9 . Tes t i ng Tasks

In this section the test planner should identify all testing-related tasks and
their dependencies. Using a Work Breakdown Structure (WBS) is useful
here.

A Work Breakdown Structure is a hierarchical or treelike representation of all the

tasks that are required to complete a project.

High-level tasks sit at the top of the hierarchical task tree. Leaves are
detailed tasks sometimes called work packages that can be done by 1–2
people in a short time period, typically 3–5 days. The WBS is used by
project managers for defining the tasks and work packages needed for
project planning. The test planner can use the same hierarchical task
model but focus only on defining testing tasks. Rakos gives a good de-
scription of the WBS and other models and tools useful for both project
and test management [8].

10 . The Tes t i ng Env i r onment

Here the test planner describes the software and hardware needs for the
testing effort. For example, any special equipment or hardware needed
such as emulators, telecommunication equipment, or other devices should
be noted. The planner must also indicate any laboratory space containing



206 | Testing Goals, Pol ic ies, Plans and Documentation

the equipment that needs to be reserved.
The planner also needs to specify any special software needs such as

coverage tools, databases, and test data generators. Security requirements
for the testing environment may also need to be described.

11 . Respons ib i l i t i e s

The staff who will be responsible for test-related tasks should be identi-
fied. This includes personnel who will be:

• transmitting the software-under-test;

• developing test design specifications, and test cases;

• executing the tests and recording results;

• tracking and monitoring the test efforts;

• checking results;

• interacting with developers;

• managing and providing equipment;

• developing the test harnesses;

• interacting with the users/customers.

This group may include developers, testers, software quality assur-
ance staff, systems analysts, and customers/users.

12 . S ta f f i ng and Tra in ing Needs

The test planner should describe the staff and the skill levels needed to
carry out test-related responsibilities such as those listed in the section
above. Any special training required to perform a task should be noted.

13 . Schedu l i ng

Task durations should be established and recorded with the aid of a task
networking tool. Test milestones should be established, recorded, and



2077.3 Test Plan Components |

scheduled. These milestones usually appear in the project plan as well as
the test plan. They are necessary for tracking testing efforts to ensure that
actual testing is proceeding as planned. Schedules for use of staff, tools,
equipment, and laboratory space should also be specified. A tester will
find that PERT and Gantt charts are very useful tools for these assign-
ments [8].

14 . R i sks and Con t i ngenc ies

Every testing effort has risks associated with it. Testing software with a
high degree of criticality, complexity, or a tight delivery deadline all im-
pose risks that may have negative impacts on project goals. These risks
should be: (i) identified, (ii) evaluated in terms of their probability of
occurrence, (iii) prioritized, and (iv) contingency plans should be devel-
oped that can be activated if the risk occurs. Barry Bohem has a very
useful method for risk management using these types of activities. A test
planner can apply them to develop the “risk and contingencies” compo-
nent of a test plan [9].

An example of a risk-related test scenario is as follows. A test planner,
lets say Mary Jones, has made assumptions about the availability of the
software under test. A particular date was selected to transmit the test
item to the testers based on completion date information for that item in
the project plan. Ms. Jones has identified a risk: she realizes that the item
may not be delivered on time to the testers. This delay may occur for
several reasons. For example, the item is complex and/or the developers
are inexperienced and/or the item implements a new algorithm and/or it
needs redesign. Due to these conditions there is a high probability that
this risk could occur. A contingency plan should be in place if this risk
occurs. For example, Ms. Jones could build some flexibility in resource
allocations into the test plan so that testers and equipment can operate
beyond normal working hours. Or an additional group of testers could
be made available to work with the original group when the software is
ready to test. In this way the schedule for testing can continue as planned,
and deadlines can be met.

It is important for the test planner to identify test-related risks, ana-
lyze them in terms of their probability of occurrence, and be ready with
a contingency plan when any high-priority risk-related event occurs. Ex-
perienced planners realize the importance of risk management.



208 | Testing Goals, Pol ic ies, Plans and Documentation

15 . Tes t i ng Cos t s

The IEEE standard for test plan documentation does not include a sepa-
rate cost component in its specification of a test plan. This is the usual
case for many test plans since very often test costs are allocated in the
overall project management plan. The project manager in consultation
with developers and testers estimates the costs of testing. If the test plan
is an independent document prepared by the testing group and has a cost
component, the test planner will need tools and techniques to help esti-
mate test costs. Test costs that should included in the plan are:

• costs of planning and designing the tests;

• costs of acquiring the hardware and software necessary for the tests
(includes development of the test harnesses);

• costs to support the test environment;

• costs of executing the tests;

• costs of recording and analyzing test results;

• tear-down costs to restore the environment.

Other costs related to testing that may be spread among several projects
are the costs of training the testers and the costs of maintaining the test
database. Costs for reviews should appear in a separate review plan.

When estimating testing costs, the test planner should consider or-
ganizational, project, and staff characteristics that impact on the cost of
testing. Several key characteristics that we will call “test cost impact
items” are briefly described below.

The nature of the organization; its testing maturity level, and general
maturity. This will determine the degree of test planning, the types of
testing methods applied, the types of tests that are designed and imple-
mented, the quality of the staff, the nature of the testing tasks, the avail-
ability of testing tools, and the ability to manage the testing effort. It will
also determine the degree of support given to the testers by the project
manager and upper management.

The nature of the software product being developed. The tester must un-
derstand the nature of the system to be tested. For example, is it a real-



2097.3 Test Plan Components |

time, embedded, mission-critical system, or a business application? In gen-
eral, the testing scope for a business application will be smaller than one
for a mission or safely critical system, since in case of the latter there is a
strong possibility that software defects and/or poor software quality could
result in loss of life or property. Mission- and safety-critical software
systems usually require extensive unit and integration tests as well as
many types of system tests (refer to Chapter 6). The level of reliability
required for these systems is usually much higher than for ordinary ap-
plications. For these reasons, the number of test cases, test procedures,
and test scripts will most likely be higher for this type of software as
compared to an average application. Tool and resource needs will be
greater as well.

The scope of the test requirements. This includes the types of tests re-
quired, integration, performance, reliability, usability, etc. This charac-
teristic directly relates to the nature of the software product. As described
above, mission/safety-critical systems, and real-time embedded systems
usually require more extensive system tests for functionality, reliability,
performance, configuration, and stress than a simple application. These
test requirements will impact on the number of tests and test procedures
required, the quantity and complexity of the testing tasks, and the hard-
ware and software needs for testing.

The level of tester ability. The education, training, and experience levels
of the testers will impact on their ability to design, develop, execute, and
analyze test results in a timely and effective manner. It will also impact
of the types of testing tasks they are able to carry out.

Knowledge of the project problem domain. It is not always possible for
testers to have detailed knowledge of the problem domain of the software
they are testing. If the level of knowledge is poor, outside experts or con-
sultants may need to be hired to assist with the testing efforts, thus im-
pacting on costs.

The level of tool support. Testing tools can assist with designing, and
executing tests, as well as collecting and analyzing test data. Automated
support for these tasks could have a positive impact on the productivity
of the testers; thus it has the potential to reduce test costs. Tools and



210 | Testing Goals, Pol ic ies, Plans and Documentation

hardware environments are necessary to drive certain types of system
tests, and if the product requires these types of tests, the cost should be
folded in.

Training requirements. State-of-the-art tools and techniques do help im-
prove tester productivity but often training is required for testers so that
they have the capability to use these tools and techniques properly and
effectively. Depending on the organization, these training efforts may be
included in the costs of testing. These costs, as well as tool costs, could
be spread over several projects.

Project planners have cost estimation models, for example, the
COCOMO model, which they use to estimate overall project costs
[10,11]. At this time models of this type have not been designed specifi-
cally for test cost estimation. However, test planners often borrow cost
estimation techniques and models from project planners and apply them
to testing. Several of these are shown in Figure 7.3. To support the ap-
plication of these approaches, the test planner should have access to a
historical record of past projects that includes test-related data. Items such
as the size and cost of the project as a whole, size and cost of the test
effort, number of designed test cases, number of test procedures, dura-
tions of testing tasks, equipment, and tool costs are all useful for test cost
estimations as applied to the current project. The utility of these data
items will be demonstrated in the following paragraphs which describe
approaches to test cost estimation based on:

(i) the COCOMO model and heuristics;
(ii) use of test cost drivers;
(iii) test tasks;
(iv) tester/developer ratios;
(v) expert judgment (Delphi).

One approach to test cost estimation makes use of the COCOMO
model in an indirect way. The test planner can use the COCOMO model
to estimate total project costs, and then allocate a fraction of those costs
for test. Application of the COCOMO model is based on a group of
project constants that depend on the nature of the project and items
known as cost drivers.



2117.3 Test Plan Components |

Test cost estimates

Test impact items
Test cost drivers 

Historical project/
test database

Models and
heuristics

Test tasks
Test WBS

Delphi method
Expert judgement

Developer/tester ratios

FIG. 7.3

Some approaches to test cost

estimation.

A cost driver can be described as a process or product factor that has an impact

on overall project costs.

To be more precise, a cost driver should have a positive coefficient of
correlation with project costs. In the testing domain cost drivers are fac-
tors that contribute to testing costs. There should be a correlation between
the factors and testing costs and also some causal connection between
them.

Project constants and cost drivers are available for overall project
development efforts. To use the COCOMO model a project manager
must first estimate the size of the new project and identify its type. This
is facilitated by the availability of historical project data. The simple
COCOMO equation used for an initial estimate is

bE � a (size in KLOC) (1)

where E is estimated effort in man-months, and a and b are constants
that can be determined from tables provided by Boehm or by the orga-
nization itself based on its own historical data [10]. Selection of values
from the table depend on project types. The intermediate COCOMO



212 | Testing Goals, Pol ic ies, Plans and Documentation

model, used when more project details are known, incorporates project
cost drivers and uses a slightly more complex set of calculations. Cost
drivers for project the include:

• product attributes such as the required level of reliability;

• hardware attributes such as memory constraints;

• personnel attributes such as experience level;

• project attributes such as use of tools and methods.

The project cost drivers are rated on an ordinate scale and folded into
what Boehm calls an effort adjustment factor (EAF). The results from
equation (1) can be multiplied by the EAF to give a revised estimate. Note
the test cost impact items previously described are similar in nature to
these project cost drivers. Unfortunately, no work has been done at this
time to formalize them into a COCOMO-like model for testing.

After the total project costs have been estimated with COCOMO,
the test planner can then use a heuristic that estimates testing costs for a
new project as some fraction of total project costs. The appropriate frac-
tion can be determined by using historical data containing project costs
and test costs for similar projects. Roper suggests a fractional value of
about 50% of total project costs as shown in equation (2) [12].

Testing costs � 0.5 � total project costs (2)

Another approach to test cost estimation involves the use of singular
cost drivers that have been suggested for the testing domain. Many of the
test cost drivers are size-related, for example [12]:

• number of test procedures;

• number of requirements;

• number of modules.

The reader will note that these are covered in the test cost impact items
descriptions previously discussed. The test cost impact items could be the
source of additional drivers in the future.



2137.3 Test Plan Components |

In many cases testers use the drivers listed to estimate testing costs
using historical data. However, they need to cautious and understand the
nature of the relationship between the drivers and test costs. For example,
using the number of requirements to estimate test efforts and costs may
be tricky unless the test planner realizes that all requirements are not alike
in their need for test resources. For example, a requirement that a sub-
marine-positioning device display a position with a stated precision and
accuracy will need more test resources to show compliance then a re-
quirement for the system to display the opening welcome message. To
apply the number of requirements to a test effort/cost estimate, testers
must develop categories of requirements with respect to resource needs.
Each requirement in the new product should be classified in a category
before being included in the cost estimation calculation [12].

Using the number of modules to estimate test effort/costs may be
useful for unit and integration tests, where there appears to be a strong
linear relationship between the number of modules and tests costs. But
this driver does not work well for estimating system test costs since the
number of modules may not be related to the number of system functions.
In addition, quality evaluation for attributes such as reliability,
performance, and usability may not be correlated with the number of
modules.

The estimated number of test procedures for a project can be used to
estimate test effort/costs. Again, an organization will need a historical
database with information on software size (in lines of code, function
points, number of objects), number of test procedures, and man-hours of
effort. There should be projects in the database that are similar in char-
acter to the new project. A relationship between software size and the
number of test procedures required should be established. This allows the
test planner to estimate the number of test procedures needed for the new
project given the software size estimate. The historical database is also
used to establish an adjustment factor relating the number of test proce-
dures and the man-hours of effort needed. Given the estimated number
of test procedures and the adjustment factor, the test effort for the new
project can be estimated. For example, if the test planner estimates the
number of test procedures for a new project to be 650 based on past
project data, and the ratio of hours/test procedures was established as
5.5, then the test hours of effort needed for the new product is 650 �



214 | Testing Goals, Pol ic ies, Plans and Documentation

5.5 � 3575. This number of hours needs to be distributed over the al-
located test period.

An alternative test cost estimation method uses a bottom-up, testing-
task–oriented approach. This approach will work well if the testing tasks,
task durations, and resources (such as hardware and software tools) for
similar projects are well defined and documented in the historical data-
base. Testing tasks can be represented in the database as a test-oriented
Work Breakdown Structure (WBS), which is a hierarchical representation
of all test-related tasks. High-level components of a test WBS are shown
in Table 7.1. These represent high-level testing tasks. Each of these is
broken down into lower-level tasks. Table 7.2 shows a breakdown for
the higher-level “test planning” task. The historical record should also
contain values for the time and manpower needed to perform each task
in the testing WBS. The new project is compared to those in the database
in terms of size and complexity. The most similar project provides the
best support for the cost estimation. Reuse of existing tests, regression
tests and test harnesses should be folded into the estimating process.
When tasks, and durations of the tasks have been calculated for the new
project, the test planner can use the sum of the time estimated for all the
tasks, adjusted to account for differences between the completed and new
projects, to estimate total test time and expenses.

Dustin et. al. suggest an additional approach to test effort estimation.
This approach is based on the estimated number of developers and a
selected developer/tester ratio [13]. Using this approach the size of the
test team for a new project is estimated by first estimating the number of
developers needed for the project, and then using an appropriate devel-
oper/tester ratio for the project to calculate the estimated number of test-
ers. The developer/tester ratio will vary with the type of project. For ex-
ample, for a mission-critical system a ratio of 1 tester to 2 developers may
be required; for a business application a ratio of 1 tester to 4 developers
may be indicated. The size of the test team and the duration of the testing
effort give a handle on the estimated costs for test.

Finally, test planners can use the Delphi method for estimating test
costs. This technique, which involves a group of cost estimation experts
lead by a moderator, is often used to estimate the size/costs of an entire
project. It can be applied to estimate test costs as well. The group members



2157.3 Test Plan Components |

1. Project startup

2. Management coordination

3. Tool selection

4. Test planning

5. Test design

6. Test development

7. Test execution

8. Test measurement, and monitoring

9. Test analysis and reporting

10. Test process improvement

TABLE 7 .1

Example WBS elements for testing.

are given appropriate documentation relating to the project before the
estimation meeting. The group comes together in the meeting and may
have a discussion about the project and its characteristics. In the testing
domain, test-related issues would be discussed. After the discussion each
group member gives an anonymous estimate to the moderator. The mod-
erator calculates an average and mean of the estimates and distributes the
values to the group. Each group member can determine where his/her
individual estimate falls with respect to the group, and reestimate based
on this information and additional discussion. The group may have sev-
eral cycles of “discussion, estimate, and analysis,” until consensus on the
estimate is reached.

As in the case of cost estimates for a software project, more than one
approach should be used to estimate test costs to allow for biases. Con-
sultation with the project manager in all cases is essential. As a final note,
if both the estimated and actual values for the test-related effort/costs are
included in the historical database, the test planner can make further ad-
justments to the new estimate to compensate for over/under estimates.
For example, if the test planner observes that the estimated task durations
are usually 10% lower than the actual durations, the planner can fold
this factor into the new estimate.



216 | Testing Goals, Pol ic ies, Plans and Documentation

4.0 Test Planning

4.1 Meet with project manager. Discuss test requirements.

4.2 Meet with SQA group, client group. Discuss quality goals and plans.

4.3 Identify constraints and risks of testing.

4.4 Develop goals and objectives for testing. Define scope.

4.5 Select test team.

4.6 Decide on training required.

4.7 Meet with test team to discuss test strategies, test approach, test

monitoring, and controlling mechanisms.

4.8 Develop the test plan document.

4.9 Develop test plan attachments (test cases, test procedures, test scripts).

4.10 Assign roles and responsibilities.

4.11 Meet with SQA, project manager, test team, and clients to review test

plan.

TABLE 7 .2

A breakdown of testing planning

element from table 7.1.

16 . Approva l s

The test plan(s) for a project should be reviewed by those designated by
the organization. All parties who review the plan and approve it should
sign the document. A place for signatures and dates should be provided.

7 . 4 Test Plan Attachments

The previous components of the test plan were principally managerial in
nature: tasks, schedules, risks, and so on. A general discussion of technical
issues such as test designs and test cases for the items under test appears
in Section 5 of the test plan, ‘‘Approach.’’ The reader may be puzzled as
to where in the test plan are the details needed for organizing and exe-
cuting the tests. For example, what are the required inputs, outputs, and
procedural steps for each test; where will the tests be stored for each item
or feature; will it be tested using a black box, white box, or functional
approach? The following components of the test plan contain this detailed
information. These documents are generally attached to the test plan.



2177.4 Test Plan Attachments |

7 . 4 . 1 T e s t D e s i g n S p e c i f i c a t i o n s

The IEEE standard for software test documentation describes a test design
specification as a test deliverable that specifies the requirements of the
test approach [5]. It is used to identity the features covered by this design
and associated tests for the features. The test design specification also has
links to the associated test cases and test procedures needed to test the
features, and also describes in detail pass/fail criteria for the features [5].
The test design specification helps to organize the tests and provides the
connection to the actual test inputs/outputs and test steps.

To develop test design specifications many documents such as
the requirements, design documents, and user manual are useful. For
requirements-based test, developing a requirements traceability matrix is
valuable. This helps to insure all requirements are covered by tests, and
connects the requirements to the tests. Examples of entries in such a ma-
trix are shown in Table 7.3. Tools called requirements tracers can help
to automate traceability tasks [2]. These will be described in Chapter 14.

A test design specification should have the following components ac-
cording to the IEEE standard [5]. They are listed in the order in which
the IEEE recommends they appear in the document. The test planner
should be sure to list any related documents that may also contain some
of this material.

Test Design Specification Identifier
Give each test design specification a unique identifier and a reference to
its associated test plan.

Requirement

identifier

Requirement

description

Priority

(scale 1–10)

Review

status

Test

ID

SR-25-13.5 Displays opening

screens

8 Yes TC-25-2

TC-25-5

SR-25-52.2 Checks the validity

of user password

9 Yes TC-25-18

TC-25-23

TABLE 7 .3

Example of entries in a requirements traceability matrix.



218 | Testing Goals, Pol ic ies, Plans and Documentation

Features to Be Tested
Test items, features, and combination of features covered by this test de-
sign specification are listed. References to the items in the requirements
and/or design document should be included.

Approach Refinements
In the test plan a general description of the approach to be used to test
each item was described. In this document the necessary details are added.
For example, the specific test techniques to be used to generate test cases
are described, and the rational is given for the choices. The test planner
also describes how test results will be analyzed. For example, will an
automated comparator be used to compare actual and expected results?
The relationships among the associated test cases are discussed. This in-
cludes any shared constraints and procedural requirements.

Test Case Identification
Each test design specification is associated with a set of test cases and a
set of set procedures. The test cases contain input/output information,
and the test procedures contain the steps necessary to execute the tests.
A test case may be associated with more than one test design specification.

Pass/Fail Criteria
In this section the specific criteria to be used for determining whether the
item has passed/failed a test is given.

7 . 4 . 2 T e s t C a s e S p e c i f i c a t i o n s

This series of documents attached to the test plan defines the test cases
required to execute the test items named in the associated test design
specification. There are several components in this document. IEEE stan-
dards require the components to appear in the order shown here, and
references should be provided if some of the contents of the test case
specification appear in other documents [5].

Much attention should be placed on developing a quality set of test
case specifications. Strategies and techniques, as described in Chapters 4
and 5 of this text, should be applied to accomplish this task. Each test
case must be specified correctly so that time is not wasted in analyzing



2197.4 Test Plan Attachments |

the results of an erroneous test. In addition, the development of test soft-
ware and test documentation represent a considerable investment of re-
sources for an organization. They should be considered organizational
assets and stored in a test repository. Ideally, the test-related deliverables
may be recovered from the test repository and reused by different groups
for testing and regression testing in subsequent releases of a particular
product or for related products. Careful design and referencing to the
appropriate test design specification is important to support testing in the
current project and for reuse in future projects.

Test Case Specification Identifier
Each test case specification should be assigned a unique identifier.

Test Items
This component names the test items and features to be tested by this test
case specification. References to related documents that describe the items
and features, and how they are used should be listed: for example the
requirements, and design documents, the user manual.

Input Specifications
This component of the test design specification contains the actual inputs
needed to execute the test. Inputs may be described as specific values, or
as file names, tables, databases, parameters passed by the operating sys-
tem, and so on. Any special relationships between the inputs should be
identified.

Output Specifications
All outputs expected from the test should be identified. If an output is to
be a specific value it should be stated. If the output is a specific feature
such as a level of performance it also should be stated. The output spec-
ifications are necessary to determine whether the item has passed/failed
the test.

Special Environmental Needs
Any specific hardware and specific hardware configurations needed to
execute this test case should be identified. Special software required to
execute the test such as compilers, simulators, and test coverage tools
should be described, as well as needed laboratory space and equipment.



220 | Testing Goals, Pol ic ies, Plans and Documentation

Special Procedural Requirements
Describe any special conditions or constraints that apply to the test pro-
cedures associated with this test.

Intercase Dependencies
In this section the test planner should describe any relationships between
this test case and others, and the nature of the relationship. The test case
identifiers of all related tests should be given.

7 . 4 . 3 T e s t P r o c e d u r e S p e c i f i c a t i o n s

A procedure in general is a sequence of steps required to carry out a specific

task.

In this attachment to the test plan the planner specifies the steps required
to execute a set of test cases. Another way of describing the test procedure
specification is that it specifies the steps necessary to analyze a software
item in order to evaluate a set of features. The test procedure specification
has several subcomponents that the IEEE recommends being included in
the order shown below [5]. As noted previously, reference to documents
where parts of these components are described must be provided.

Test Procedure Specification Identifier
Each test procedure specification should be assigned a unique identifier.

Purpose
Describe the purpose of this test procedure and reference any test cases it
executes.

Specific Requirements
List any special requirements for this procedure, like software, hardware,
and special training.

Procedure Steps
Here the actual steps of the procedure are described. Include methods,
documents for recording (logging) results, and recording incidents. These
will have associations with the test logs and test incident reports that
result from a test run. A test incident report is only required when an
unexpected output is observed. Steps include [5]:

(i) setup: to prepare for execution of the procedure;
(ii) start: to begin execution of the procedure;



2217.5 Locating Test Items: The Test Item Transmittal Report |

(iii) proceed: to continue the execution of the procedure;
(iv) measure: to describe how test measurements related to outputs will

be made;
(v) shut down: to describe actions needed to suspend the test when un-

expected events occur;
(vi) restart: to describe restart points and actions needed to restart the

procedure from these points;
(vii) stop: to describe actions needed to bring the procedure to an orderly

halt;
(viii) wrap up: to describe actions necessary to restore the environment;
(ix) contingencies: plans for handling anomalous events if they occur

during execution of this procedure.

7 . 5 Locating Test Items: The Test Item Transmittal Report

Suppose a tester is ready to run tests on an item on the date described in
the test plan. She needs to be able to locate the item and have knowledge
of its current status. This is the function of the Test Item Transmittal
Report. This document is not a component of the test plan, but is nec-
essary to locate and track the items that are submitted for test. Each Test
Item Transmittal Report has a unique identifier. It should contain the
following information for each item that is tracked [5].

(i) version/revision number of the item;
(ii) location of the item;
(iii) persons responsible for the item (e.g., the developer);
(iv) references to item documentation and the test plan it is related to;
(v) status of the item;
(vi) approvals—space for signatures of staff who approve the trans-

mittal.

7 . 6 Report ing Test Results

The test plan and its attachments are test-related documents that are pre-
pared prior to test execution. There are additional documents related to



222 | Testing Goals, Pol ic ies, Plans and Documentation

testing that are prepared during and after execution of the tests. The IEEE
Standard for Software Test Documentation describes the following doc-
uments [5].

Test Log

The test log should be prepared by the person executing the tests. It is a
diary of the events that take place during the test. It supports the concept
of a test as a repeatable experiment [14]. In the experimental world of
engineers and scientists detailed logs are kept when carrying out experi-
mental work. Software engineers and testing specialists must follow this
example to allow others to duplicate their work.

The test log is invaluable for use in defect repair. It gives the developer
a snapshot of the events associated with a failure. The test log, in com-
bination with the test incident report which should be generated in case
of anomalous behavior, gives valuable clues to the developer whose task
it is to locate the source of the problem. The combination of documents
helps to prevent incorrect decisions based on incomplete or erroneous test
results that often lead to repeated, but ineffective, test-patch-test cycles.

Retest that follows defect repair is also supported by the test log. In
addition, the test log is valuable for (i) regression testing that takes place
in the development of future releases of a software product, and (ii) cir-
cumstances where code from a reuse library is to be reused. In all these
cases it is important that the exact conditions of a test run are clearly
documented so that it can be repeated with accuracy.

The test log can have many formats. An organization can design its
own format or adopt IEEE recommendations. The IEEE Standard for
Software Test Documentation describes the test log as a chronological
record of all details relating to the execution of its associated tests. It has
the following sections [5]:

Test Log Identifier
Each test log should have a unique identifier.

Description
In the description section the tester should identify the items being tested,
their version/revision number, and their associated Test Item/Transmittal
Report. The environment in which the test is conducted should be de-
scribed including hardware and operating system details.



2237.6 Report ing Test Results |

Activity and Event Entries
The tester should provide dates and names of test log authors for each
event and activity. This section should also contain:

1. Execution description: Provide a test procedure identifier and also
the names and functions of personnel involved in the test.

2. Procedure results: For each execution, record the results and the lo-
cation of the output. Also report pass/fail status.

3. Environmental information: Provide any environmental conditions
specific to this test.

4. Anomalous events: Any events occurring before/after an unexpected
event should be recorded. If a tester is unable to start or compete a
test procedure, details relating to these happenings should be re-
corded (e.g., a power failure or operating system crash).

5. Incident report identifiers: Record the identifiers of incident reports
generated while the test is being executed.

There are other formats for test logs. A useful example of what is
called a “Test Report Template” is found in Humphrey [15]. While not
as detailed as the analogous IEEE standard document test log description,
it can provide much valued information from the execution of tests and
is a good guide for designing an individual or organizational standard.

Test Incident Report

The tester should record in a test incident report (sometimes called a
problem report) any event that occurs during the execution of the tests
that is unexpected, unexplainable, and that requires a follow-up investi-
gation. The IEEE Standard for Software Test Documentation recom-
mends the following sections in the report [5]:

1. Test Incident Report identifier: to uniquely identify this report.
2. Summary: to identify the test items involved, the test procedures, test

cases, and test log associated with this report.
3. Incident description: this should describe time and date, testers, ob-

servers, environment, inputs, expected outputs, actual outputs,
anomalies, procedure step, environment, and attempts to repeat. Any
other information useful for the developers who will repair the code
should be included.



224 | Testing Goals, Pol ic ies, Plans and Documentation

4. Impact: what impact will this incident have on the testing effort, the
test plans, the test procedures, and the test cases? A severity rating
should be inserted here.

Test Summary Report

This report is prepared when testing is complete. It is a summary of the
results of the testing efforts. It also becomes a part of the project’s his-
torical database and provides a basis for lessons learned as applied to
future projects. When a project postmortem is conducted, the Test Sum-
mary Report can help managers, testers, developers, and SQA staff to
evaluate the effectiveness of the testing efforts. The IEEE test documen-
tation standard describes the following sections for the Test Summary
Report [5]:

1. Test Summary Report identifier: to uniquely identify this report.
2. Variances: these are descriptions of any variances of the test items

from their original design. Deviations and reasons for the deviation
from the test plan, test procedures, and test designs are discussed.

3. Comprehensiveness assessment: the document author discusses the
comprehensiveness of the test effort as compared to test objectives
and test completeness criteria as described in the test plan. Any fea-
tures or combination of features that were not as fully tested as was
planned should be identified.

4. Summary of results: the document author summarizes the testing re-
sults. All resolved incidents and their solutions should be described.
Unresolved incidents should be recorded.

5. Evaluation: in this section the author evaluates each test item based
on test results. Did it pass/fail the tests? If it failed, what was the level
of severity of the failure?

6. Summary of activities: all testing activities and events are summa-
rized. Resource consumption, actual task durations, and hardware
and software tool usage should be recorded.

7. Approvals: the names of all persons who are needed to approve this
document are listed with space for signatures and dates.

Figure 7.4 shows the relationships between all the test-related docu-
ments we have discussed in this chapter as described in the IEEE standards



2257.6 Report ing Test Results |

Planning

Execution

Completion

SPMP

Software project
management plan

Master test plan Test design
specifications

Detailed test
plans for levels

Test case
specifications

Test procedure
specifications

MTP

LTP TDS
TCS

TPS
Test item transmittal reports

Test incident reports

Test logs TL TIR

Test summary report TSR

TITR

FIG. 7.4

Test-related documents as

recommended by IEEE [5].

document [5]. In the figure it is assumed that an overall Master Test Plan
(MTP) is developed at first, and this is followed by more detailed test
plans for the different levels of testing, unit, integration, system, accep-
tance, and so on. From the figure and the discussion in this chapter, it is
apparent that the preparation of a complete set of test documents that
fully conform to IEEE standards requires many resources and an invest-
ment of a great deal of time and effort. Not all organizations require such
an extensive set of test-related documents. Each organization should de-
scribe, as part of its testing or quality standards, which test-related doc-
uments should be prepared. The content and format for each document
should be included in the standards. Very often, a subset of the IEEE-
recommended documents is satisfactory, especially if the organization is
small and there is no separate testing group.



226 | Testing Goals, Pol ic ies, Plans and Documentation

7 . 7 The Role of the Three Crit ical Groups in Testing

Planning and Test Pol icy Development

Recall that in the TMM framework three groups were identified as critical
players in the testing process. They all work together toward the evolution
of a quality testing process. These groups were managers, develop-
ers/testers, and users/clients. In TMM terminology they are called the
three critical views (CV). Each group views the testing process from a
different perspective that is related to their particular goals, needs, and
requirements. The manager’s view involves commitment and support for
those activities and tasks related to improving testing process quality. The
developer/tester’s view encompasses the technical activities and tasks that
when applied, constitute best testing practices. The user/client view is
defined as a cooperating or supporting view. The developers/testers work
with client/user groups on quality-related activities and tasks that concern
user-oriented needs. The focus is on soliciting client/user support, consen-
sus, and participation in activities such as requirements analysis, usability
testing, and acceptance test planning. At each TMM level the three groups
play specific roles in support of the maturity goals at that level.

Chapters 3–5 of this text discussed testing concepts of a technical
nature that support the TMM level 2 maturity goals. The concluding
sections of these chapters described the roles of the three critical groups,
and how they help to achieve these goals. The careful reader will under-
stand how mastery of the concepts in Chapters 3–5 supports these roles.
Of particular relevance to the material in these chapters is the maturity
goal, “Institutionalize Basic Testing Techniques and Methods.” The
remaining two maturity goals at TMM level 2, “Develop Testing and
Debugging Goals” and “Initiate a Testing Planning Process,” are more
managerial in nature. In the following paragraphs contributions to
achievement of the managerial-oriented maturity goals by the three criti-
cal views is discussed. Critical group participation for all three TMM level
2 maturity goals is summarized in Figure 7.5.

For the TMM maturity goal, “Develop Testing and Debugging
Goals,” the TMM recommends that project and upper management:

• Provide access to existing organizational goal/policy statements and
sample testing policies such as shown in this text, in Hetzel [16], and



2277.7 The Role of the Three Crit ical Groups in Testing Planning and Test Pol icy Development |

Managers Developers/Testers Users/Clients

Task forces, policies,
    standards
Planning
Resource allocation
Support for education and
    training
Interact with users/clients

Apply black and white box
    methods
Assist with test planning
Test at all levels
Train and mentor
Participate in task forces
Interact with users/clients

Specify requirements clearly
Support with operational
    profile
Participate in useability test
Participate in acceptance test
    planning

Achievement of
TMM level 2
maturity goals

Test process Evolution

Improved testing process 

Proceed to TMM level 3 goals

FIG. 7.5

Reaching TMM level 2: summary of

critical group roles.

from other sources. These serve as policy models for the testing and
debugging domains.

• Provide adequate resources and funding to form the committees
(team or task force) on testing and debugging. Committee makeup is
managerial, with technical staff serving as comembers.

• Support the recommendations and policies of the committee by:

—distributing testing/debugging goal/policy documents to project
managers, developers, and other interested staff,

—appointing a permanent team to oversee compliance and policy
changemaking.

• Ensure that the necessary training, education, and tools to carry out
defined testing/debugging goals is made available.

• Assign responsibilities for testing and debugging.



228 | Testing Goals, Pol ic ies, Plans and Documentation

Developers have an important role in the development of testing goals
and policies. (Recall that at TMM level 2 there is no requirement for a
dedicated testing group.) They serve as members of the goal/policy de-
velopment teams. As representatives of the technical staff they must en-
sure that the policies reflect best testing practices, are implementable, re-
ceive management support, and support among technical personnel. The
activities, tasks, and responsibilities for the developers/testers include:

• Working with management to develop testing and debugging policies
and goals.

• Participating in the teams that oversee policy compliance and change
management.

• Familiarizing themselves with the approved set of testing/debugging
goals and policies, keeping up-to-date with revisions, and making
suggestions for changes when appropriate.

• When developing test plans, setting testing goals for each project at
each level of test that reflect organizational testing goals and policies.

• Carrying out testing activities that are in compliance with organiza-
tional policies.

Users and clients play an indirect role in the formation of an orga-
nization’s testing goals and polices since these goals and policies reflect
the organizations efforts to ensure customer/client/user satisfaction. Feed-
back from these groups and from the marketplace in general has an in-
fluence on the nature of organizational testing goals and policies. Suc-
cessful organizations are sensitive to customer/client/user needs. Their
policies reflect their desire to insure that their software products meet the
customer’s requirements. This allows them to maintain, and eventually
increase, their market share of business.

“Initiate a Test Planning Process,” the second management-oriented
maturity goal at TMM level 2, also requires input from the three critical
groups.

Upper management supports this goal by:

• Establishing an organizationwide test planning committee with
funding.



2297.7 The Role of the Three Crit ical Groups in Testing Planning and Test Pol icy Development |

• Ensuring that the testing policy statement and quality standards sup-
port test planning with commitment of resources, tools, templates,
and training.

• Ensuring that the testing policy statement contains a formal mecha-
nism for user input to the test planning process, especially for accep-
tance and usability testing.

• Ensuring that all projects are in compliance with the test planning
policy.

• Ensuring that all developers/testers complete all the necessary posttest
documents such as test logs and test incident reports.

Project managers support the test planning maturity goal by prepar-
ing the test plans for each project with inputs and support from devel-
opers. At TMM level 3 this task will be assigned to a test specialist or
test manager. Managers can use the organizational test plan template as
a guide for preparing the test plan.

Developers who are experienced in testing support this maturity goal
by participating in test planning. They assist the project manager in de-
termining test goals, selecting test methods, procedures and tools, and
developing the test case specifications, test procedure specifications, and
other test-related documents as described in this chapter. (At TMM level
3 the testing group leaders have this role.) Developers are also responsible
for ensuring that testability issues are addressed during the requirements
and design phases of development to support test planning and test
design.

From the user/client point of view support for test planning is in the
form of articulating their requirements clearly, and supplying input to the
acceptance test plan. The required functional and performance-related
attributes that are expected by the client/users must be specified. Users/
clients may also participate in the development of an operational profile
which may be used to guide system and acceptance tests. They can also
participate in usability test planning as it is applied throughout the de-
velopment life cycle, and in use case development.



230 | Testing Goals, Pol ic ies, Plans and Documentation

7 . 8 Process and the Engineer ing Discipl ines: The Role of the

Individual as a Process Faci l i tator

What we are now witnessing is the evolution of software development
from a craft to an engineering discipline. Computer science students are
now being introduced to the fundamentals of software engineering. As
the field matures, they will be able to obtain a degree and be certified in
the area of software engineering As members of this emerging profession
we must realize that one of our major focuses as engineers is on designing,
implementing, managing, and improving the processes related to software
development. Testing is such a process. If you are a member of a TMM
level 1 organization, there is a great opportunity for you become involved
in process issues. You can serve as the change agent, using your education
in the area of testing to form a process group or to join an existing one.
You can initiate the implementation of a defined testing process by work-
ing with management and users/clients toward achievement of the tech-
nical and managerial-oriented maturity goals at TMM level 2. Minimally
you can set an example on a personal level by planning your own testing
activities. If the project manager receives effective personal test plans from
each developer or test specialist, then the quality of the overall test plan
will be improved. You can also encourage management in your organi-
zation to develop testing goals and policies, you can participate in the
committees involved, and you can help to develop test planning standards
that can be applied organizationwide. Finally, you can become proficient
in, and consistently apply, black and white box testing techniques, and
promote testing at the unit, integration, and system levels. You need to
demonstrate the positive impact of these practices on software quality,
encourage their adaptation in the organization, and mentor your col-
leagues, helping them to appreciate, master, and apply these practices.



2317.8 Process and the Engineer ing Discipl ines |

K E Y T E R M S

Cost driver

Feature

Goal

Milestone

Plan

Policy

Procedure

Work breakdown structure

E X E R C I S E S

1. Using the policy model in the text, sketch out a testing policy statement for a

small-sized software development organization (30 employees) assessed to be at

TMM level 3.

2. Why is testing planning so important for developing a repeatable and managed

testing process?

3. Test-related documents are developed and used before, during, and after

execution-based testing. The test plan is a test-related document that is prepared

before execution-based testing takes place. (a) What are some of the essential

items a tester should include in a test plan? (b) Describe the test-related docu-

ments that are developed during, and after execution-based testing. Include in the

description how these documents are used by managers, developers, and testers.

4. Suppose you were developing an online system for a specific vendor of elec-

tronic equipment. Suggest a set of test deliverables appropriate for the project

that should be specified in the test plan Which of these items would be internal,

and which would you deliver to the client?

5. Suggest some suspend/resume criteria that are applicable for system testing

the software of Problem 4.

6. A project manager estimates that the total costs of a project as $375,000. The

project is a business application. There are security, performance, and configu-

ration requirements (the latter due to devices that will interface with the software

system). The testers are experienced and have tool support and training. The num-

ber of test procedures is estimated at 670, with a ratio of 5.9 hours/test procedure

from the historical database of similar projects. Assume that the salary of the

testers is $37/hour. Estimate the costs of test for this project in as many ways as

you can using the information given. Compare the results of the estimates. Which

result do you have more confidence in?



232 | Testing Goals, Pol ic ies, Plans and Documentation

7. What is the purpose of the test transmittal report, the test log?

8. A mission-critical system fails, there are injuries, and lives and expensive equip-

ment are lost. When the case is investigated, the investigating committee finds

that the test plan did not include tests for the scenarios that caused the software

to fail. Think about this situation carefully. Who do you think is responsible for

the loss of life and property—the test manager who developed the plan, the testers

who carried out the tests, the project manager who did not check the plan carefully

enough, or the clients who did not call for the appropriate types of tests during

acceptance test?

9. What do you think are the advantages/disadvantages of having separate unit,

integration, and system test plans as opposed to an inclusive test plan that con-

tains all three in the same document?

10. Suppose you are a member of upper management and your company is in-

terested in improving it’s testing process. One of its first objectives is to satisfy

the test planning maturity goal at level 2 of the TMM. In what specific ways could

you support achievement of this maturity goal?

11. What role do users/clients play in the development of test plans for a project?

Should they be present at any of the test plan reviews. If so, which ones, and

why?

12. Acquire a requirements specification document associated with a project at

work, or from your instructor, and create a system test plan appropriate for that

project (see Appendix II for a sample test plan).

R E F E R E N C E S

[1] R. Thayer, ed. Software Engineering Project Man-
agement, second edition, IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[2] G. Daich, G. Price, B. Ragland, M. Dawood, Soft-
ware Test Technologies Report, August 1994, Soft-
ware Technology Support Center (STSC), Hill Air
Force Base, UT.

[3] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a testing maturity model: part II,” CrossTalk,

Journal of Defense Software Engineering, Vol. 9,
No. 9, Sept. 1996, pp. 19–26.

[4] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990), copyright 1990
by IEEE, all rights reserved.

[5] IEEE Standard for Software Test Documentation
(IEEE Std 829–1983), copyright 1983 by IEEE, all
rights reserved.



2337.8 Process and the Engineer ing Discipl ines |

[6] IEEE Standard for Software Unit Testing (IEEE Std
1008–1987), copyright 1986 by IEEE, all rights re-
served.

[7] IEEE Standard for Software Verification and Val-
idation Plans (IEEE Std 1012–1986), copyright 1986
by IEEE, all rights reserved.

[8] J. Rakos, Software Project Management for Small-
to Medium-Sized Projects, Prentice Hall, Englewood
Cliffs, NJ, 1990.

[9] B. Boehm, “Software risk management: principles
and practices,” IEEE Software, Jan. 1991, pp. 32–41.

[10] B. Boehm, Software Engineering Economics,
Prentice Hall, Englewood Cliffs, NJ, 1981.

[11] D. Legg, “Synopsis of COCOMO,” Software En-
gineering Project Management, second edition, R.

Thayer, ed., IEEE Computer Society Press, Los Ala-
mitos, CA, 1997, pp. 230–245.

[12] T. Roper, Software Testing Management: Life on
the Critical Path, Prentice Hall, Englewood Cliffs, NJ,
1993.

[13] E. Dustin, J. Rashka, J. Paul, Automated Software
Testing, Addison-Wesley, Reading, MA, 1999

[14] G. Myers, The Art of Software Testing, John Wi-
ley, New York, 1979.

[15] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA. 1995.

[16] B. Hetzel, The Complete Guide to Software Test-
ing, second edition, QED Information Sciences, Inc.,
Wellesley, MA. 1988.



This page intentionally left blank 



8
T H E T E S T

O R G A N I Z A T I O N

8 . 0 Introducing the Test Special ist

When an organization has reached TMM level 2 it has accomplished a
great deal. Fundamental testing maturity goals have been achieved. There
are testing and debugging policies in place, which are available for all
project personnel to access. There is management support for these pol-
icies. Management ensures they are applied to all projects. Testing for
each project is planned. The test plan is prepared in conjunction with the
project plan so that project goals can be achieved. The organization has
institutionalized basic black and white box methods and applies them to
design, and execute tests on software that is being developed, acquired,
and maintained. The organization tests its software at several levels (unit,
integration, system, etc.) Moving up to TMM level 3 requires further
investment of organizational resources in the testing process. One of the
maturity goals at TMM level 3 calls for the “Establishment of a test
organization.” This is an important step for a software organization. It
implies a commitment to better testing and higher-quality software. This
commitment requires that testing specialists be hired, space be given to



236 | The Test Organizat ion

house the testing group, resources be allocated to the group, and career
paths for testers be established. It also implies that the functional and
managerial hierarchy of the organization be redesigned, changes in the
reporting structure be made, as well as changes be made to the organi-
zational culture. Although there are many costs to establishing a testing
group, there are also many benefits. By supporting a test group an or-
ganization acquires leadership in areas that relate to testing and quality
issues. For example, there will be staff with the necessary skills and mo-
tivation to be responsible for:

• maintenance and application of test policies;

• development and application of test-related standards;

• participating in requirements, design, and code reviews;

• test planning;

• test design;

• test execution;

• test measurement;

• test monitoring (tasks, schedules, and costs);

• defect tracking, and maintaining the defect repository;

• acquisition of test tools and equipment;

• identifying and applying new testing techniques, tools, and method-
ologies;

• mentoring and training of new test personnel;

• test reporting.

The staff members of such a group are called test specialists or test
engineers. Their primary responsibly is to ensure that testing is effective
and productive, and that quality issues are addressed. Testers are not
developers, or analysts, although background in these areas is very helpful
and necessary. Testers don’t repair code. However, they add value to a
software product in terms of higher quality and customer satisfaction.



2378.1 Ski l ls Needed by a Test Special ist |

They are not destructive; they are constructive. The organizational culture
needs to reflect this view.

Test specialists need to be educated and trained in testing and quality
issues. Over the last several years the body of knowledge required to
educate test specialists has been emerging, and courses at the graduate
level have been developed to address the educational needs of such a
group. This text was designed to support such a course and help you
develop skills as a test specialist. If your organization does not have a
testing function you can be the agent for change. With your newly ac-
quired technical and managerial knowledge you are more able to convince
the management of your company of the important role of such a group.

8 . 1 Ski l ls Needed by a Test Special ist

Given the nature of technical and managerial responsibilities assigned to
the tester that are listed in Section 8.0, many managerial and personal
skills are necessary for success in the area of work. On the personal and
managerial level a test specialist must have:

• organizational, and planning skills;

• the ability to keep track of, and pay attention to, details;

• the determination to discover and solve problems;

• the ability to work with others and be able to resolve conflicts;

• the ability to mentor and train others;

• the ability to work with users and clients;

• strong written and oral communication skills;

• the ability to work in a variety of environments;

• the ability to think creatively

The first three skills are necessary because testing is detail and prob-
lem oriented. In addition, testing involves policymaking, a knowledge of
different types of application areas, planning, and the ability to organize
and monitor information, tasks, and people. Testing also requires inter-



238 | The Test Organizat ion

actions with many other engineering professionals such as project man-
agers, developers, analysts, process personal, and software quality assur-
ance staff. Test professionals often interact with clients to prepare certain
types of tests, for example acceptance tests. Testers also have to prepare
test-related documents and make presentations. Training and mentoring
of new hires to the testing group is also a part of the tester’s job. In
addition, test specialists must be creative, imaginative, and experiment-
oriented. They need to be able to visualize the many ways that a software
item should be tested, and make hypotheses about the different types of
defects that could occur and the different ways the software could fail.

On the technical level testers need to have:

• an education that includes an understanding of general software en-
gineering principles, practices, and methodologies;

• strong coding skills and an understanding of code structure and be-
havior;

• a good understanding of testing principles and practices;

• a good understanding of basic testing strategies, methods, and tech-
niques;

• the ability and experience to plan, design, and execute test cases and
test procedures on multiple levels (unit, integration, etc.);

• a knowledge of process issues;

• knowledge of how networks, databases, and operating systems are
organized and how they work;

• a knowledge of configuration management;

• a knowledge of test-related documents and the role each documents
plays in the testing process;

• the ability to define, collect, and analyze test-related measurements;

• the ability, training, and motivation to work with testing tools and
equipment;

• a knowledge of quality issues.

All of these skills are summarized in Figure 8.1



2398.1 Ski l ls Needed by a Test Special ist |

In order to carry out testing tasks testers need to have knowledge of
how requirements, specifications, and designs are developed and how dif-
ferent methodologies can be applied. They should understand how errors
and defects are introduced into the software artifacts even at early stages
of the life cycle. Testers should have strong programming backgrounds
to help them visualize how code works, how it behaves, and the possible
defects it could contain. They also need coding experience to support the
development of the test harnesses which often involve a considerable cod-
ing effort in themselves.

Testers must have a knowledge of both white and black box tech-
niques and methods and the ability to use them to design test cases. Or-
ganizations need to realize that this knowledge is a necessary prerequisite
for tool use and test automation. Testers need to understand the need for

Personal and Managerial Skills

Organizational, and planning skills
Track and pay attention to detail
Determination to discover and solve problems
Work with others, resolve conflicts
Mentor and train others
Work with users/clients
Written/oral communication skills
Think creatively

Technical Skills

General software engineering principles and practices
Understanding of testing principles and practices
Understanding of basic testing strategies, and methods
Ability to plan, design, and execute test cases
Knowledge of process issues
Knowledge of networks, databases, and operating systems
Knowledge  of configuration management
Knowledge of test-related documents
Ability to define, collect, and analyze test measurements
Ability, training, and motivation to work with testing tools
Knowledge of quality issues

Tester Requirements The Tester

 

FIG. 8.1

Test specialist skills.



240 | The Test Organizat ion

multilevel tests and approaches used for testing at each level. It is impor-
tant that testers understand the role of test-related documents in the test-
ing process, so that they are willing to spend the time needed to prepare,
present, and preserve these items. Testers need to understand process is-
sues; how to evaluate a process, and the importance of measuring, defin-
ing, and improving a process. Testers also need to understand quality
measures such as reliability, maintainability, usability, and how to test
for them. In addition to all of these requirements, it is very important for
testers to be willing and able to work with testing tools and configuration
management systems. They need to have an awareness of new technical
and tools, be able to evaluate them, and apply them in the organization.
These skills will promote technology transfer. Finally, testers should have
some knowledge of the problem domain for which the software has been
written. This knowledge, for example, can help them to understand the
domain vocabulary, domain operations, and domain requirements and
constraints.

The list of skills and knowledge requirements needed to be a suc-
cessful test specialist is long and complex. Acquiring these skills takes
education, training, experience, and motivation. Organizations must be
willing to support such staff since they play a valuable role in the orga-
nizational structure and have a high impact on the quality of the software
delivered. If your organization is building a testing group it will have to
recruit people with these skills and offer appropriate benefits. Compe-
tition is keen since there is a scarcity of people that meet all of these
qualifications.

8 . 2 Bui lding a Testing Group

In Chapter 7, it was mentioned that organizing, staffing, and directing
were major activities required to manage a project and a process [1].
These apply to managing the testing process as well. Staffing activities
include filling positions, assimilating new personnel, education and train-
ing, and staff evaluation [1]. Directing includes providing leadership,
building teams, facilitating communication, motivating personnel, resolv-
ing conflicts, and delegating authority. Organizing includes selecting or-



2418.2 Bui lding a Testing Group |

ganizational structures, creating positions, defining responsibilities, and
delegating authority. Hiring staff for the testing group, organizing the
testing staff members into teams, motivating the team members, and in-
tegrating the team into the overall organizational structure are organizing,
staffing, and directing activities your organization will need to perform
to build a managed testing process.

Establishing a specialized testing group is a major decision for an
organization. The steps in the process are summarized in Figure 8.2. To
initiate the process, upper management must support the decision to es-
tablish a test group and commit resources to the group. Decisions must
be made on how the testing group will be organized, what career paths
are available, and how the group fits into the organizational structure (see
Section 8.3). When hiring staff to fill test specialist positions, management
should have a clear idea of the educational and skill levels required for
each testing position and develop formal job descriptions to fill the test
group slots. Dustin describes a typical job requisition for a test specialist
[2]. Included on this requisition are the job title, full time/part time, lo-
cation, salary, location, qualifications that are required (the applicant
must have these), qualifications that are desired (the recruiter is flexible
on these), and a description of the duties. When the job description has
been approved and distributed, the interviewing process takes place.

Interviews should be structured and of a problem-solving nature. The
interviewer should prepare an extensive list of questions to determine the
interviewee’s technical background as well as his or her personal skills
and motivation. Zawacki has developed a general guide for selecting tech-
nical staff members that can be used by test managers [3]. Dustin describes
the kinds of questions that an interviewer should ask when selecting a
test specialist [2]. When the team has been selected and is up and working
on projects, the team manager is responsible for keeping the test team
positions filled (there are always attrition problems). He must continually
evaluate team member performance. Bartol and Martin have written a
paper that contains guidelines for evaluation of employees that can be
applied to any type of team and organization [4]. They describe four
categories for employees based on their performance: (i) retain, (ii) likely
to retain, (iii) likely to release, (iv) and release. For each category, appro-
priate actions need to be taken by the manager to help employee
and employer. The reader should note that the papers by Zawacki and



242 | The Test Organizat ion

Upper management
support for test function

Establish test group
organization, career paths

Define education
and skill levels 

Develop job
description 

Title
Salary
Location
Qualifications
DutiesInterview candidates

Select test group
members 

FIG. 8.2

Steps in forming a test group.

Bartol and many more useful papers related to software project manage-
ment appear in Thayer [1]. The papers are relevant to managing testing
efforts as well.

8 . 3 The Structure of the Test Group

It is important for a software organization to have an independent testing
group. The group should have a formalized position in the organizational
hierarchy. A reporting structure should be established and resources al-
located to the group. The group should be staffed by people who have
the skills and motivation as described in Section 8.1 to be good testers.
They should be dedicated to establishing awareness of, and achieving,
existing software quality goals, and also to strengthening quality goals
for the future software products. They are quality leaders—the test and
quality policy makers. They measure quality, and have responsibilities for
ensuring the software meets the customers’ requirements. The term in-
dependence was used, and each organization must develop its own inter-
pretation and implementation of independence. In the TMM sense, in-
dependence for the testing group means that testers are recognized as



2438.3 The Structure of the Test Group |

engineering specialists. Testers are not considered to be developers, and
most importantly they report to management independent of develop-
ment. Testers are assigned and control their own budgets and resources.
They have different responsibilities, and because of the differences in re-
sponsibilities they evaluated in ways different from developers. This al-
lows testers to be objective and impartial, and unhindered by development
managerial pressures. To support this independence ideally the test group
should be a separate organizational entity or function. However, that is
not always possible or practical given the size of an organization and the
resources available.

In TMM level 1 and 2 organizations there is usually not a separate
testing function. This is true for many organizations. Testing is done by
developers; it is part of their responsibilities. Developers design test cases,
execute the tests and also perform fault localization duties which consist
of locating the faults, repairing the code, and retesting it. There are no
staff persons whose full-time responsibilities are concerned with testing.
In some cases there may be a decentralized nonpermanent group of staff
persons called testers who are associated with specific projects. Test plan-
ning is done by the project manager who hires and supervises the testers.
They are not independent, and are not part of a permanent testing group.
When a project is completed they may be terminated or become associated
with a different project. For these staff members there is no well-defined
career path to follow. Turnover rates may be high.

When an organization is reaching toward TMM level 3 it has a keen
awareness of the importance of testing and must make a commitment to
support a testing organization. It has policies, practices, and planning
capabilities in place to support a test organization. The test organization
could be a component of a software quality assurance organization that
is given testing responsibilities. Under those circumstances, the testers
would be supervised by an SQA manager. Organizations at higher levels
of the TMM, where reviews are a part of the testing process, may include
a function called the Independent Validation and Verification Group
(IV&V). This group sometimes exists as an internal entity or as indepen-
dent subcontractor. The group is responsible for conducting inspections
and walkthroughs as well as execution-based testing activities. They may
also do quality assurance work such as develop standards and conduct
audits.



244 | The Test Organizat ion

An organization that wants to grow in testing strength and capability
will eventually need to upgrade their testing function to the best case
scenario which is a permanent centralized group of dedicated testers with
the skills described earlier in this chapter. This group is solely responsible
for testing work. The group members are assigned to projects throughout
the organization where they do their testing work. When the project is
completed they return to the test organization for reassignment. They
report to a test manager or test director, not a project manager. In such
an organization testers are viewed as assets. They have defined career
paths to follow which contributes to long-term job satisfaction. Since they
can be assigned to a project at its initiation, they can give testing support
throughout the software life cycle. Because of the permanent nature of
the test organization there is a test infrastructure that endures. There is a
test knowledge base of test processes, test procedures, test tools, and test
histories (lessons learned). Dedicated staff is responsible for maintaining
a test case and test harness library.

A test organization is expensive, it is a strategic commitment. Given
the complex nature of the software being built, and its impact on society,
organizations must realize that a test organization is necessary and that
it has many benefits. By investing in a test organization a company has
access to a group of specialists who have the responsibilities and moti-
vation to:

• maintain testing policy statements;

• plan the testing efforts;

• monitor and track testing efforts so that they are on time and within
budget;

• measure process and product attributes;

• provide management with independent product and process quality
information;

• design and execute tests with no duplication of effort;

• automate testing;

• participate in reviews to insure quality;



2458.3 The Structure of the Test Group |

• work with analysts, designers, coders, and clients to ensure quality
goals are meet;

• maintain a repository of test-related information;

• give greater visibility to quality issues organization wide;

• support process improvement efforts.

The problem with evaluating test cost/benefit ratios for most organiza-
tions is that they don’t know the actual costs of testing, and they also do
not realize the costs of inadequate testing! Very often the costs that occur
after coding is complete are counted as testing costs. This includes the
costs of training, fault localization, fault repair, and analysis meetings.
To help support the ability to account for true testing costs and resource
use, the TMM calls for testing and debugging policies to be developed by
an organization at TMM level 2.

Hetzel estimates in most cases, direct testing costs are about 25% of
total development costs [5]. He also estimates that the costs of poor test-
ing may be much higher. At TMM level 2 testing costs except for those
associated with reviews can be calculated by test planners. This will give
management a baseline figure. At higher TMM levels the costs of reviews
and other testing activities can be folded in. Mangers can compare these
costs to the costs of poor testing that include: ineffective tests; duplicated
tests; repetitive and unproductive tests; repetitive debug, patch code, and
retest cycles; customer hot line expenses; failures in the field; repairs to
operational software; analysis/action meetings; and customer dissatisfac-
tion. In the worst case the latter can lead to expensive legal actions, all
of which could have been avoided with effective testing! (A good source
for anecdotal information related to poor development and testing prac-
tices is the book called The Day the Phones Stopped [6].)

Given a formal testing function in an organization, with test special-
ists available to perform the testing activities associated with software
projects, the question becomes how to effectively organize the testers as
specialized teams that are allocated to different software projects. There
are many different possibilities for team structures. These apply to any
type of team. They range from a democratic, or egoless, team with little
or no internal structure to the hierarchical team that has a definite head
and a formal reporting structure [7]. Industry specialists often recommend
a more hierarchical structure for the testing team. At the top of the hi-



246 | The Test Organizat ion

erarchy is a test manger. (In some organizations there may also be a test
director who is the managerial head of the test organization.) A typical
testing team assigned to a project will consist of 3–4 or more test spe-
cialists with a test team leader at the head of each team. If the project is
very large the number of testers rises and could go as high as 20–30. There
is some debate on what is a good tester/developer ratio. Ratios of 1/2,
2/3, or 1/4 are common [2]. This will depend on the nature of the software
under development. The test team usually consists of a test lead as the
head of the team. That person has the strongest testing background and
experience. Other team members are the test engineers and the junior
test engineers as shown in Figure 8.3. At higher levels of the TMM test
team members can also include usability engineers who work with users
throughout the software life cycle to ensure that usability requirements
are meet (see Chapter 12).

The duties of the team members may vary in individual organizations.
The following gives a brief description of the duties for each tester that
are common to most organizations.

The Test Manager

In most organizations with a testing function, the test manager (or test
director) is the central person concerned with all aspects of testing and
quality issues. The test manager is usually responsible for test policy mak-
ing, customer interaction, test planning, test documentation, controlling
and monitoring of tests, training, test tool acquisition, participation in
inspections and walkthroughs, reviewing test work, the test repository,
and staffing issues such as hiring, firing, and evaluation of the test team
members. He or she is also the liaison with upper management, project
management, and the quality assurance and marketing staffs.

The Test Lead

The test lead assists the test manager and works with a team of test en-
gineers on individual projects. He or she may be responsible for duties
such as test planning, staff supervision, and status reporting. The test lead
also participates in test design, test execution and reporting, technical
reviews, customer interaction, and tool training.



2478.4 The Technical Training Program |

Test manager

Test leader

Test engineer 1,
Test engineer 2, . . .  

Junior test engineer 1,
Junior test engineer 2, . . .

FIG. 8.3

The test team hierarchy.

The Test Engineer

The test engineers design, develop, and execute tests, develop test har-
nesses, and set up test laboratories and environments. They also give
input to test planning and support maintenance of the test and defect
repositories.

The Junior Test Engineer

The junior test engineers are usually new hires. They gain experience by
participating in test design, test execution, and test harness development.
They may also be asked to review user manuals and user help facilities
defect and maintain the test and defect repositories.

8 . 4 The Technical Training Program

Establishing a test organization is a key maturity goal at TMM level 3.
Another maturity goal at level 3 is to establish a technical training pro-
gram. The two goals are closely related and interdependent. One of the
principal objectives of a technical training program is to support the test
organization and the training of test specialists. A quality training pro-
gram ensures that members of the test organization continue to improve
their testing skills, and continually update their knowledge of technical



248 | The Test Organizat ion

and process issues related to testing. A training program as interpreted
by the TMM includes in-house courses and training sessions, college/uni-
versity courses, a college/university degree program, or courses taken at
a external commercial training center.

Establishing a training program is an additional commitment on the
part of an organization to support a high-quality testing staff and to pro-
mote continuous test process improvement. An organization can structure
its training program to suit its own development, acquisition, testing and
quality policies and goals. Because the training program covers a wide
variety of technical and managerial issues, many different topics are likely
to be the subject of in-house courses, training sessions, and university
classes. An organization can include under the umbrella of technical train-
ing sessions that cover topics such as:

• quality issues;

• measurement identification, collection, and analysis;

• testing techniques and methodologies;

• design techniques;

• tool usage (for all life cycle phases);

• configuration management;

• planning;

• process evaluation and improvement;

• policy development;

• technical review skills;

• software acquisition;

• project management skills;

• business skills

• communication skills.

Our greatest training concerns as testers are related to training in test case
design, measurement, tools for automated testing, planning, and process



2498.4 The Technical Training Program |

issues. At higher levels of the TMM our training requirements will focus
on technical review skills and statistical testing as well as other advanced
test-related topics. The training group should keep abreast of new testing
techniques, methods, and tools. They should be prepare courses and ma-
terials to instruct the testers in these new areas and they should also give
their support to technology transfer.

The TMM does not prescribe a particular format for the training
program. Each organization should develop its own guidelines and ma-
terials for training. It is important that members of the training team have:

• experience and education in the field of software engineering;

• good oral and written communication skills;

• strong technical skills;

• an enthusiasm for tool use and evaluation;

• willingness to serve as mentors;

• ability to support technology transfer.

From the viewpoint of the test organization, the training group needs to
support test planning, test measurement, test documentation, test tech-
niques, and tool usage. As the organization moves up the TMM levels
the knowledge required for testers grows in complexity. The training pro-
gram should help testers to acquire the knowledge and expertise they need
to improve their testing skills. To accomplish this goal training plans need
to be developed by teams of mangers and developers, testers, SQA, and
the training staff. There could be a master training plan and then a set of
subordinate plans for training members of specific teams. These can be
prepared as separate documents. In the training plans the following items
should be included:

• staffing requirements for the training team;

• identification of areas that have specific training needs;

• goals for the training courses/sessions should be set;

• a time frame (schedule) for the training courses should be set;



250 | The Test Organizat ion

• funding sources for the training programs need to be identified (a
funding mechanism to compensate staff for outside university courses
and commercial sessions needs to be set up);

• the materials, facilities, and tools needed should be identified;

• staff members who will receive the training should be identified;

• training evaluation criteria should be specified so that the effective-
ness of the training program can be measured.

Training programs represent a commitment of funds and resources.
An organization can decide to support an internal training group or out-
source technical training to specialized groups external to the organiza-
tion. Sources for technical training include educational institutions, and
commercial technical training centers. Appendix I has a listing of web
sites and other sources that are useful for identifying training programs
for testers.

8 . 5 Career Paths for Testers: An Industry Example

When an organization makes a commitment to establish a testing group,
one of the major issues of concern is how to keep highly skilled testers in
the group for the long term. In the past testers have been selected from
the ranks of the inexperienced and poorly trained. If the test group is to
attract and retain highly qualified staff, there must be established career
paths for the test group members so that they can view themselves as
valuable professionals and can improve the nature of their status and
rewards. Weyuker and co-authors describe such a career path for testers
at AT&T [8]. The researchers have identified a group of general engi-
neering skills that testers require such as a knowledge of computers, in-
formation systems, system architectures, software development methods,
and operating and database systems. Testers also need good communi-
cation skills and technical skills, for example in, test planning, test design,
test tool usage, and test execution. The need for these skills has been
described earlier in this chapter.

Weyuker and co-authors also describe the phases in a tester’s career
path in their organization, AT&T [8]. These phases or levels in a tester’s



2518.5 Career Paths for Testers: An Industry Example |

career path are shown in Figure 8.4 and are described below. They have
a rough correspondence with the tester hierarchy described in Section 8.3.
The junior test engineer roughly corresponds to the apprentice level as
described below. The test engineer has a correspondence to the mastery
level. The test leader overlaps with the specialization level, and the test
manger overlaps with the leader level. The top level in the AT&T career
path would correspond to a test division manager. Readers should note
that the AT&T approach is one of many possible approaches to test ca-
reer path definition. Each organization will need to establish its own ca-
reer path and responsibility levels for testers. These should be reflected in
the organizational test policy. (Note that test policy modification is usu-
ally required as an organization’s test process evolves and moves up the
levels of the TMM.)

‘‘Apprenticeship’’: A new staff member at AT&T enters the testing
group with a position called “software tester.” That person spends time
attending courses, seminars, and conferences to learn best testing practices
and core competency skills as performed both within and outside of the
organization. They are mentored by more experienced test group mem-
bers.

‘‘Mastery’’: After mastering core areas, testers assume more respon-
sibility. They hold the position of “software test engineers” and partici-
pate in test planning, test management, and test execution. They continue
to take courses and be mentored by upper-level testers.

‘‘Specialization’’: The next level of competency for a tester at AT&T
is to become a specialist in one or more areas of testing. The tester then
advances to the position of a “test specialist.” According to the AT&T
career description, test specialists should exhibit expertise in one or more
of the following areas: testing tools and automation, test environment
architecture, test equipment, architecture verification (involves perfor-
mance modeling, software reliability engineering, and security standards),
operations readiness testing (testers build test suites to determine whether
a software system is ready for production), and end-to-end testing (testing
products that span multiple applications, or business units).

‘‘Leadership’’: When a tester becomes a specialist in the one or more
specialization areas, then he or she becomes eligible to advance to “lead
software test specialist.” Testers in this position often need to coordinate
many testers working on complex projects. For this level, testers need



252 | The Test Organizat ion

Apprenticeship

Mastery

Specialization

Leadership

Top-level
tester

FIG. 8.4

The AT&T tester career path [8].

technical testing expertise as well as negotiation skills, process and project
management skills, and good oral and written communication skills.

‘‘Top Level Tester’’: The highest level in the tester hierarchy is that
of an “enterprise software tester.” This is a highly skilled individual with
breadth and depth of knowledge of software testing. The enterprise soft-
ware tester must have expertise in at least four of the specialization areas
including architecture verification. This person will work with top man-
agement, provide strategic direction for software testing, and advise the
organization on emerging software testing technologies. The enterprise
software tester serves as a mentor and speaker giving presentations at
both internal and external test training courses and conferences.

8 . 6 Tester Cert if icat ion

Most mature engineering professions address the issue of certification
which insures a level of competency for all practicing members of the
profession. In Chapter 1 it was mentioned that certification activities have
begun for the profession of software engineering in some states [9]. The
IEEE/ACM task forces on software engineering and the deliverables pro-
duced by these task forces support the emerging profession of software
engineer and a certification process. Certification is currently available to
testers. Note that the AT&T tester is encouraged, but not required, to be
certified in order to advance in his or her career. However, AT&T does
recognize certification as a technical accomplishment and an indicator of
a tester’s expertise and professional standing.



2538.7 Integrat ing Testing Activ it ies into the Software Life Cycle |

Certification for testers in the United States is available from two
organizations, the American Society for Quality (ASQ) and the Quality
Assurance Institute (QAI). Neither of these are licensing boards and if a
tester is certified by either organization this has no legal significance. Both
organizations require an examination and experience for certification.
The ASQ has compiled a body of knowledge based on the work of soft-
ware quality assurance professionals and a survey of ASQ members. Can-
didates for certification must show knowledge in areas that include:

• ethics;

• quality management;

• process knowledge;

• project management;

• measurement;

• testing;

• V&V (includes inspections);

• audits;

• configuration management.

Readers can get more information about these certification processes
from the organizational web sites: www.qaiusa.com and www.asq.org.
The British Computer Society also offers tester certification (www.bcs
.org.uk). It is hoped that in the future the IEEE and ACM will also offer
this service. Certification for testers is not yet required, but it probably
will be in the future along with certification for software engineers, es-
pecially in situations where the software is mission or safety critical.

8 . 7 Integrat ing Testing Activ it ies into the Software Life Cycle

Organizations with ad hoc testing processes soon realize that addressing
testing issues at the end of the software life cycle does not consistently
produce quality software that is on time and within budget. They learn



254 | The Test Organizat ion

through experience and through guidance from models like the TMM
and the V-model that testing activities need to begin as early as possible
in the life cycle. They also learn that testing is not only an execution-
based activity. There are a variety of testing activities that need be per-
formed before the end of the coding phase. These activities should be
carried out in parallel with development activities, and testers need to
work with developers and analysts so they can perform these activities
and tasks and produce a set of test deliverables. When a formal test or-
ganization has been established and testers are well educated and have
full responsibility for testing, then the full integration of testing activities
into the software life cycle becomes a much more realizable goal. The
availability of test specialists means that at each life cycle phase there are
personnel that are trained, motivated, and responsible for carrying out
test-related tasks. The V-model is a model that illustrates how testing
activities can be integrated into each phase of the standard software life
cycle. A version of the V-model is shown in Figure 8.5.

Individual organizations may interpret the V-model in different ways
since each block of the model is abstract enough to represent a variety of
tasks. However, specific activities assigned to each block should be com-
patible with organizational testing policies and the overall model philos-
ophy. Using the V-model as a framework we will look at test-related
activities in each life cycle phase, and the deliverables that result. Below
is an example for the distribution of activities.

Requirements Phase

Testers use requirements documents and interactions with users/clients to
develop the initial versions of system and acceptance tests based on func-
tional requirements, quality requirements, and the specification of system
behavior. Testers also work with users/clients to develop a usage profile
to provide support for system and acceptance tests. Black box testing
methods are used for test design. Discussions with requirements staff
helps to ensure that all requirements are testable. Testers, with the co-
operation of project managers, also initiate development of the master
test plan that describes the overall testing approach for the project. Items
1–15 for the master test plan as described in Chapter 7 can be sketched
out with the information at hand. Testing requirements and testing goals
are specified in the plan. Testing schedules and costs can be estimated.



2558.7 Integrat ing Testing Activ it ies into the Software Life Cycle |

Deliverables are (i) the initial version of the master test plan, (ii) initial
versions of system and acceptance tests, and (iii) an initial version of the
system test plan and acceptance test plan with the preliminary system and
acceptance tests attached (these may be a component of the master test
plan depending on organizational policy).

Design Phase

When design is complete, the system architecture has been described
and the structure of the system components is usually known for both

Specify requirements

Execute acceptance test

Execute system test

Specify/design Code

System, acceptance tests

Design Execute integration
tests

Specify/design Code

Integration tests

Code
Execute unit

tests

Specify/design Code

Unit tests

FIG. 8.5

The V-model.



256 | The Test Organizat ion

procedure- and object-oriented systems. Testers can interact with design-
ers to address any testability issues. The design documents can then be
used to develop integration tests and an integration test plan (if a separate
plan is specified). The master test plan can be reviewed and augmented
with new information as needed. If detailed design is complete enough,
then designs for unit test can also begin.

Deliverables are (i) a revised master/and or system test plan, (ii) an
integration test plan if specified, (iii) integration test plan attachments,
and (iv) test milestone reports (address progress in testing).

Coding Phase

Testers can complete unit test designs if this activity has already begun at
the end of the design phase. If not, they can carry out the necessary unit
test design tasks at this time. All other test plans can modified as needed
based on the detailed knowledge of the software available at the coding
phase. According to the V-model, work begins on the test harness code
for unit test. If the design details for the units are well known at design
time, work on the test harnesses can begin at the end of that phase and
continue on in parallel with the coding phase.

Deliverables are (i) revised master/system/integration test plans with
attached tests, (ii) unit test plan, with unit tests attached, (iii) test mile-
stone reports, and (iv) code for the unit test harnesses.

Test Execut ion

With guidance from the V-model, an organization has performed a great
deal of the testing work by the time that coding is complete, and they are
now well-prepared to execute the planned tests at the unit, integration,
and system levels. According to the model, coding the test harness for
unit and integration test is a task that is carried out before execution of
these tests. However, these tasks can also be done by testers in parallel
with the coding phase as mentioned previously.

Although the V-model itself does not formally call for test plan re-
views, organizations may do so before each level of testing execution
commences. The Extended/Modified V-model described in Chapters 1
and 10 allows for this. Finally, the V-model does not formally address
the need for developing additional tests that often occurs as testing pro-



2578.8 The Test Organizat ion, Technical Training Program, and Test Integrat ion |

gresses. Testers are often required to develop new and unplanned tests
because of conditions that arise, for example, to achieve coverage goals.
Existing tests may also have to be modified. These tasks can be carried
out as needed during the execution-based testing phases without disrupt-
ing the testing efforts, since the bulk of all the test planning and coding
work has already been accomplished. Therein lies the beauty of the V-
model, and the philosophy of integrating testing activities into the earlier
software life cycle phases.

Deliverables from this testing phase are (i) the tested code, (ii) test
logs and test incident reports, (iii) test milestone reports, (iv) test mea-
surement data, and (v) a test summary report.

8 . 8 The Test Organizat ion, Technical Training Program, and

Test Integrat ion: Support from the Three Crit ical Views

TMM level 3 has four maturity goals. Controlling and monitoring of test
is discussed in Chapter 9, and the supporting roles of the three critical
group members for that goal is discussed in that chapter. In this chapter
the other three level 3 maturity goals—establishing a test organization,
establishing a training program, and integration of testing into software
life cycle—are discussed. This section describes how managers, testers,
and users/clients can support the achievement and continuous implemen-
tation of these maturity goals. The maturity goals are highly interrelated
and responsibilities assigned to the three critical groups with respect to
these goals may overlap.

Provision for a test organization is a major financial and managerial
commitment for a software company. It implies strong interest in the
testing process, a recognition of its important role in software, develop-
ment acquisition, and maintenance. It represents a commitment to test
process evaluation and improvement. This investment also indicates to
the internal world of the organization, and to the external world of
users/clients, a commitment to greater software quality. It is a great mo-
rale booster for members of the testing teams, and gives recognition to
the value-added nature of the testing process. Contributions from each of
the three TMM critical groups are necessary to support this level 3 ma-
turity goal and to a achieve a good return on this investment. Roles for



258 | The Test Organizat ion

each of the three critical groups in supporting a test organization are
described below.

Managers play a very important role in supporting the test organi-
zation. They need to:

• ensure that the role and responsibilities of the test organization are
stated in the testing policy statement;

• make needed changes in the organizational reporting structure;

• establish standards, requirements, and career paths for the test group
staff;

• support cultural changes;

• provide resources, staff, and funding for the test organization;

• encourage cooperation between development, test, and SQA orga-
nizations;

• recruit and hire test specialists;

• evaluate and supervise testing personnel;

• periodically assess the maturity, effectiveness, and performance of the
test organization;

• support education and training of test group members;

• monitor the performance of the test group;

• propose and support test organization growth and test process im-
provement efforts.

Testers are the backbone of the test organization. Their major re-
sponsibilities have been described earlier in this chapter, and are reviewed
here. The role of a tester in a test organization is to:

• work with analysts, developers, and SQA staff to develop quality
software products;

• work with project managers and test managers on test planning and
monitoring;

• design test cases, test procedures, execute tests;



2598.8 The Test Organizat ion, Technical Training Program, and Test Integrat ion |

• prepare test documents;

• collect, analyze, and apply test-related measurements;

• contribute to test policy making;

• maintain the test and defect repositories;

• recruit new staff members;

• mentor new test staff members;

• establish product and process standards;

• evaluate and apply new testing techniques and tools;

• participate in technical reviews;

• contribute to test process evaluation and improvement

Users/clients do have interactions with the test organization and SQA
group to voice their requirements and to participate in acceptance and
usability test development. They make major contributions to the devel-
opment of operational or usage profiles and use cases. They may also give
feedback to management on the quality of user/client–tester interactions.

The integration of test activities into the software life cycle is an in-
dication of a growing level of test process quality and a dedication to
software quality. The integration process as we have discussed is sup-
ported by the V-model and its extensions or any other model that sup-
ports this integration goal. The following paragraphs describe the roles
of the three critical groups in the support for test integration activities.

Management supports integration of testing into the software life
cycle by:

• reviewing, approving, and adopting a test integration model such as
the V-model;

• ensuring that integration of testing activities is a part of the testing
policy and standards documents;

• ensuring that the integration of testing activities is applied throughout
the organization for all projects, and giving support for integration;



260 | The Test Organizat ion

• ensuring that all testers are trained to carry out integrated testing
activities;

• monitoring the integrated testing activities and deliverables, evalu-
ating them, and proposing improvements if needed.

Testers support test integration maturity goal by:

• working with management to review, approve, and institute a test
activities integration model;

• performing the required test activities throughout the software life
cycle as described in the test model, the organizations’ policy, and
standards documents;

• preparing all test deliverables that result from each of the integrated
testing activities.

Users/clients play their supporting roles in some the integrated testing
activities such as acceptance test planning and usage profile development
during the requirements and specifications phases.

A technical training program needs the support of management as it
requires an investment of organizational staff and resources. It also re-
quires cultural changes in the organization. Managers and staff need to
recognize the need for such a training program and the benefits it will
bring.

Management supports the training program by:

• ensuring that the training program is supported by organizational
policy;

• providing funding for the program, including staff, resources, train-
ing materials, tools, and laboratories;

• recruiting and hiring qualified staff for the training organization;

• ensuring that training plans are developed;

• monitoring the training program and evaluating its effectiveness.



2618.8 The Test Organizat ion, Technical Training Program, and Test Integrat ion |

Testers support the training program by:

• requesting training and advanced education to improve their testing
skills and capabilities;

• participating in training classes, doing homework, applying their
newly acquired knowledge and skills to organizational projects.

Users/clients are usually not involved in organizational training pro-
grams. However, in some cases they could be invited by the development
organization to participate in technical review, usability testing, and ac-
ceptance testing training sessions.

E X E R C I S E S

1. You are a test manager for a mid-sized software development organization.

Your company develops software in the telecommunication domain. You want to

hire a new tester for your team. Prepare a job description for the test engineer

position that you could use to screen applicants for the job. What type of inter-

views would you conduct? What are some of the questions you would ask a

candidate?

2. Discuss the advantages and disadvantages of having an independent test

group, that is, one that is a separate organizational entity with its own reporting

structure.

3. Suppose you are working for a very large software development organization.

Your company is often involved in developing very large and complex mission-

critical software for customers affiliated with the defense industry. Suggest ap-

proaches to organize a test group for your company, keeping in mind the size of

the company and the type of software developed. Give reasons for your choice.

4. For the organization described in Problem 1, prepare a job description for hiring

members of a technical training team.

5. Develop a training plan outline for instruction on test planning for the test group

in your organization.

6. Why is it so important to integrate testing activities into the software life cycle?



262 | The Test Organizat ion

7. Using a version of the V-model, describe the test-related activities that should

be done and why they should be done during the following phases of the software

life cycle: project initiation, requirements specification, design, and coding.

8. What role does management play in support of a technical training program?

9. What role do managers play in support of a test group?

10. What role do testers play in support of the integration of testing activities into

the software life cycle?

R E F E R E N C E S

[1] R. Thayer, ed. Software Engineering Project Man-
agement, second edition, IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[2] E. Dustin, J. Rashka, J. Paul, Automated Software
Testing, Addison-Wesley, Reading, MA, 1999.

[3] R. Zawacki, “How to pick Eagles,” Datamation
Magazine, Sept. 1995, pp. 115–16.

[4] K. Bartol, D. Martin, “Managing the consequences
of the DP turnover: a human resources planning per-
spective,” Proc. 20th ACM Computer Personnel Re-
search Conf., 1983, pp. 79–86.

[5] B. Hetzel, The Complete Guide to Software Test-
ing, second edition, QED Information Sciences, Inc.,
Wellesley, MA, 1988.

[6] L. Lee, The Day the Phones Stopped, Primus, New
York, 1992.

[7] M. Mantei, “The effect of programming team
structures on programming tasks,” CACM, Vol. 24,
No. 3, 1981, pp. 106–113.

[8] E. Weyuker, T. Ostrand, J. Brophy, R. Prasad,
“Clearing a career path for software testers,” IEEE Soft-
ware, Vol. 17, No. 2, March/April 2000, pp. 76–82.

[9] J. Speed. “What do you mean I can’t call myself a
software engineer,” IEEE Software, Nov./Dec. 1999,
pp. 45–50.



9
C O N T R O L L I N G A N D

M O N I T O R I N G T H E

T E S T I N G P R O C E S S

9 . 0 Defining Terms

In Chapter 1, software testing was described as a process. As is true for
all processes, the testing process has components that are the methods,
practices, standards, policies, and procedures associated with it. Processes
are instantiated by individual projects that use its associated practices,
methods, procedures, and so on, to achieve project goals. Goals include
assembling, developing, or evaluating a product. Engineers monitor and
control the processes that drive each engineering project. In order to do
so the project must first be planned by a engineering project manager
using the underlying process components as the planning framework. As
the project progresses it is monitored (tracked) and controlled with re-
spect to the plan. Monitoring and controlling are engineering manage-
ment activities, and should be practiced by software engineers as a part
of their professional engineering duties. The TMM supports controlling
and monitoring of testing with a maturity goal at level 3. A description
of these two activities follows.



264 | Control l ing and Monitor ing the Testing Process

Project monitoring (or tracking) refers to the activities and tasks managers engage

in to periodically check the status of each project. Reports are prepared that com-

pare the actual work done to the work that was planned.

Monitoring requires a set of tools, forms, techniques, and measures. A
precondition for monitoring a project is the existence of a project plan.

Project controlling consists of developing and applying a set of corrective actions

to get a project on track when monitoring shows a deviation from what was

planned.

If monitoring results show deviations from the plan have occurred,
controlling mechanisms must be put into place to direct the project back
on its proper track. Controlling a project is an important activity which
is done to ensure that the project goals will be achieved occurring to the
plan. Many managerial experts group the two activities into one called
“controlling” [1]. This author believes that separating the two activities
gives greater insight into the resources and skills required to carry them
both out effectively.

In the domain of software engineering, project managers monitor and
control the development process for each project. Plans for monitoring
and controlling are part of the overall project plan. Test managers, as
engineering specialists, need to apply these management activities to the
testing process for each individual project. In fact, a monitoring and con-
trolling component for the testing efforts in each project is strongly rec-
ommended as part of a test plan at TMM level 3 and above.

Thayer partitions what he calls “project controlling” into six major
tasks [1]. The following is a modified description of the tasks suggested
by Thayer. The description has been augmented by the author to include
supplemental tasks that provide additional support for the controlling
and monitoring functions.

1. Develop standards of performance. These set the stage for de-
fining goals that will be achieved when project tasks are correctly
accomplished.

2. Plan each project. The plan must contain measurable goals, mile-
stones, deliverables, and well-defined budgets and schedules that take
into consideration project types, conditions, and constraints.



2659.0 Defining Terms |

3. Establish a monitoring and reporting system. In the monitoring and
reporting system description the organization must describe the mea-
sures to be used, how/when they will be collected, what questions
they will answer, who will receive the measurement reports, and how
these will be used to control the project. Each project plan must de-
scribe the monitoring and reporting mechanisms that will be applied
to it. If status meetings are required, then their frequency, attendees,
and resulting documents must be described.

4. Measure and analyze results. Measurements for monitoring and con-
trolling must be collected, organized, and analyzed. They are then
used to compare the actual achievements with standards, goals, and
plans.

5. Initiate corrective actions for projects that are off track. These actions
may require changes in the project requirements and the project plan.

6. Reward and discipline. Reward those staff who have shown them-
selves to be good performers, and discipline, retrain, relocate those
that have consistently performed poorly.

7. Document the monitoring and controlling mechanisms. All the meth-
ods, forms, measures, and tools that are used in the monitoring and
controlling process must be documented in organization standards
and be described in policy statements.

8. Utilize a configuration management system. A configuration man-
agement system is needed to manage versions, releases, and revisions
of documents, code, plans, and reports.

It was Thayer’s intent that these activities and actions be applied to
monitor and control software development projects. However, these ac-
tivities/actions can be applied to monitor and control testing efforts as
well. The reader should note that several of these items have been covered
with respect to the testing process in previous sections of this text. Test
planning and testing goals have been discussed in Chapter 7. Chapter 8
discusses test staffing issues. In this chapter we will cover topics in
measurement, monitoring, reporting, and taking corrective actions.
We will briefly cover configuration management. Many of the activi-
ties/actions described in items 1–8 are also covered by papers appearing



266 | Control l ing and Monitor ing the Testing Process

in Thayer [1]. The author recommends that readers who do not have a
strong project management background refer to this material.

9 . 1 Measurements and Milestones for Monitor ing and Control l ing

All processes should have measurements (metrics) associated with them.
The measurements help to answer questions about status and quality of
the process, as well as the products that result from its implementation.
Measurements in the testing domain can help to track test progress, eval-
uate the quality of the software product, manage risks, classify and pre-
vent defects, evaluate test effectiveness, and determine when to stop test-
ing. Level 4 of the TMM calls for a formal test measurement program.
However, to establish a baseline process, to put a monitoring program
into place, and to evaluate improvement efforts, an organization needs to
define, collect, and use measurements starting at the lower levels of the
TMM.

To begin the collection of meaningful measurements each organiza-
tion should answer the following questions:

• Which measures should we collect?

• What is their purpose (what kinds of questions can they answer)?

• Who will collect them?

• Which forms and tools will be used to collect the data?

• Who will analyze the data?

• Who to have access to reports?

When these question have been addressed, an organization can start to
collect simple measurements beginning at TMM level 1 and continue to
add measurements as their test process evolves to support test process
evaluation and improvement and process and product quality growth. In
this chapter we are mainly concerned with monitoring and controlling of



2679.1 Measurements and Milestones for Monitor ing and Control l ing |

the testing process as defined in Section 9.0, so we will confine ourselves
to discussing measurements that are useful for this purpose. Chapter 11
will provide an in-depth discussion of how to develop a full-scale mea-
surement program applicable to testing. Readers will learn how measure-
ments support test process improvement and product quality goals.

The following sections describe a collection of measurements that
support monitoring of test over time. Each measurement is shown in italics
to highlight it. It is recommended that measurements followed by an as-
terisk (*) be collected by all organizations, even those at TMM level 1. The
reader should note that it is not suggested that all of the measurements
listed be collected by an organization. The TMM level, and the testinggoals
that an organization is targeting, affect the appropriateness of these mea-
sures. As a simple example, if a certain degree of branch coverage is not a
testing objective for a organization at this time, then this type of mea-
surement is not relevant. However, the organization should strive to in-
clude such goals in their test polices and plans in the future.

Readers familiar with software metrics concepts should note that
most of the measures listed in this chapter are mainly process measures;
a few are product measures. Other categories for the measures listed here
are (i) explicit, those that are measured directly from the process or prod-
uct itself, and (ii) derived, those that are a result of the combination of
explicit and/or other derived measures. Note that the ratios described are
derived measures.

Now we will address the question of how a testing process can be
monitored for each project. A test manager needs to start with a test plan.
What the manager wants to measure and evaluate is the actual work that
was done and compare it to work that was planned. To help support
this goal, the test plan must contain testing milestones as described in
Chapter 7.

Milestones are tangible events that are expected to occur at a certain time in the

project’s lifetime. Managers use them to determine project status.

Test milestones can be used to monitor the progress of the testing efforts
associated with a software project. They serve as guideposts or goals that
need to be meet. A test manger uses current testing effort data to deter-
mine how close the testing team is to achieving the milestone of interest.
Milestones usually appear in the scheduling component of the test plan



268 | Control l ing and Monitor ing the Testing Process

(see Chapter 7). Each level of testing will have its own specific milestones.
Some examples of testing milestones are:

• completion of the master test plan;

• completion of branch coverage for all units (unit test);

• implementation and testing of test harnesses for needed integration
of major subsystems;

• execution of all planned system tests;

• completion of the test summary report.

Each of these events will be scheduled for completion during a certain
time period in the test plan. Usually a group of test team members is
responsible for achieving the milestone on time and within budget. Note
that the determination of whether a milestone has been reached depends
on availability of measurement data. For example, to make the above
milestones useful and meaningful testers would need to have measure-
ments in place such as:

• degree of branch coverage accomplished so far;

• number of planned system tests currently available;

• number of executed system tests at this date.

Test planners need to be sure that milestones selected are meaningful for
the project, and that completion conditions for milestone tasks are not
too ambiguous. For example, a milestone that states “unit test is com-
pleted when all the units are ready for integration” is too vague to use
for monitoring progress. How can a test manager evaluate the condition,
“ready”? Because of this ambiguous completion condition, a test manager
will have difficulty determining whether the milestone has been reached.

During the monitoring process measurements are collected that re-
lates to the status of testing tasks (as described in the test plan), and
milestones. Graphs using test process data are developed to show trends
over a selected time period. The time period can be days, weeks, or
months depending on the activity being monitored. The graphs can be in



2699.1 Measurements and Milestones for Monitor ing and Control l ing |

the form of a bar graph as shown in Figure 9.1 which illustrates trends
for test execution over a 6-week period. They can also be presented in the
form of x,y plots where the y-axis would be the number of tests and the
x-axis would be the weeks elapsed from the start of the testing process
for the project. These graphs, based on current measurements, are pre-
sented at the weekly status meetings and/or at milestone reviews that are
used to discuss progress.

At the status meetings, project and test leaders present up-to-date
measurements, graphs and plots showing the status of testing efforts.
Testing milestones met/not met and problems that have occurred are dis-
cussed. Test logs, test incident reports, and other test-related documents
may be examined as needed. Managers will have questions about the
progress of the test effort. Mostly, they will want to know if testing is
proceeding according to schedules and budgets, and if not, what are the
barriers. Some of the typical questions a manager might ask at a status
meeting are:

Number
of tests

0

50

100

150

200

250

300

Week 1 Week 2 Week 3 Week 5 Week 6

Passed

Available

Executed
Number planned

FIG. 9.1

Graph showing trends in test

execution.



270 | Control l ing and Monitor ing the Testing Process

• Have all the test cases been developed that were planned for this date?

• What percent of the requirements/features have been tested so far?

• How far have we proceeded on achieving coverage goals: Are we
ahead or behind what we scheduled?

• How many defects/KLOC have been detected at this time? How many
repaired? How many are of high severity?

• What is the earned value so far? Is it close to what was planned (see
Section 9.1.3)?

• How many available test cases have been executed? How many of
these were passed?

• How much of the allocated testing budget has been spent so far? Is
it more or less than we estimated?

• How productive is tester X? How many test cases has she developed?
How many has she run? Was she over, or under, the planned amount?

The measurement data collected helps to answer these questions. In fact,
links between measurements and question are described in the Goals/
Questions/Metrics (GQM) paradigm reported by Basili [2]. In the case of
testing, a major goal is to monitor and control testing efforts (a maturity
goal at TMM level 3). An organizational team (developers/testers, SQA
staff, project/test managers) constructs a set of likely questions that
test/project managers are likely to ask in order to monitor and control
the testing process. The sample set of questions previously described is a
good starting point. Finally, the team needs to identify a set of measure-
ments that can help to answer these questions. A sample set of measures
is provided in the following sections. Any organizational team can use
them as a starting point for selecting measures that help to answer test-
related monitoring and controlling questions.

Four key items are recommended to test managers for monitoring
and controlling the test efforts for a project. These are:

(i) testing status;
(ii) tester productivity;



2719.1 Measurements and Milestones for Monitor ing and Control l ing |

(iii) testing costs;
(iv) errors, faults, and failures.

In the next sections we will examine the measurements required to track
these items. Keep in mind that for most of these measurements the test
planner should specify a planned value for the measure in the test plan.
During test the actual value will be measured during a specific time period,
and the two then compared.

9 . 1 . 1 M e a s u r e m e n t s f o r M o n i t o r i n g

T e s t i n g S t a t u s

Monitoring testing status means identifying the current state of the testing
process. The manager needs to determine if the testing tasks are being
completed on time and within budget. Given the current state of the test-
ing effort some of the questions under consideration by a project or test
manager would be the following:

• Which tasks are on time?

• Which have been completed earlier then scheduled, and by how
much?

• Which are behind schedule, and by how much?

• Have the scheduled milestones for this date been meet?

• Which milestones are behind schedule, and by how much?

The following set of measures will help to answer these questions. The
test status measures are partitioned into four categories as shown in Fig-
ure 9.2. A test plan must be in place that describes, for example, planned
coverage goals, the number of planned test cases, the number of require-
ments to be tested, and so on, to allow the manager to compare actual
measured values to those expected for a given time period.

1. Coverage Measures

As test efforts progress, the test manager will want to determine
how much coverage has been actually achieved during execution of the



272 | Control l ing and Monitor ing the Testing Process

Coverage

Black/white box

Test Case Development

Planned/available

Test Execution

Available/passed

Test Harness

Size/planned/available

FIG. 9.2

Types of testing status measurements.

tests, and how does it compare to planned coverage. Depending on cov-
erage goals for white box testing, a combination of the following are
recommended.

Degree of statement, branch, data flow, basis path, etc., coverage
(planned, actual)*

Tools can support the gathering of this data. Testers can also use ratios
such as:

Actual degree of coverage/planned degree of coverage

to monitor coverage to date.

For black box coverage the following measures can be useful:

Number of requirements or features to be tested*
Number of equivalence classes identified
Number of equivalence classes actually covered
Number or degree of requirements or features actually covered*

Testers can also set up ratios during testing such as:

Number of features actually covered/total number of features*



2739.1 Measurements and Milestones for Monitor ing and Control l ing |

This will give indication of the work completed to this date and the work
that still needs to be done.

2. Test Case Development

The following measures are useful to monitor the progress of test case
development, and can be applied to all levels of testing. Note that some
are explicit and some are derived. The number of estimated test cases
described in the master test plan is:

Number of planned test cases

The number of test cases that are complete and are ready for execution
is:

Number of available test cases

In many cases new test cases may have to be developed in addition to
those that are planned. For example, when coverage goals are not meet
by the current tests, additional tests will have to be designed. If mutation
testing is used, then results of this type of testing may require additional
tests to kill the mutants. Changes in requirements could add new test cases
to those that were planned. The measure relevant here is:

Number of unplanned test cases

In place of, or in addition to, test cases, a measure of the number planned,
available, and unplanned test procedures is often used by many organi-
zations to monitor test status.

3. Test Execut ion

As testers carry out test executions, the test manager will want to deter-
mine if the execution process is going occurring to plan. This next group
of measures is appropriate.

Number of available test cases executed*
Number of available tests cases executed and passed*
Number of unplanned test cases executed
Number of unplanned test cases executed and passed.



274 | Control l ing and Monitor ing the Testing Process

For a new release where there is going to be regression testing then these
are useful:

Number of planned regression tests executed
Number of planned regression tests executed and passed

Testers can also set up ratios to help with monitoring test execution. For
example:

Number of available test cases executed/number of available test
cases

Number of available test cases executed/number of available test
cases executed and passed

These would be derived measures.

4. Test Harness Development

It is important for the test manager to monitor the progress of the devel-
opment of the test harness code needed for unit and integration test so
that these progress in a timely manner according to the test schedule.
Some useful measurements are:

Lines of Code (LOC) for the test harnesses (planned, available)*

Size is a measure that is usually applied by managers to help estimate the
amount of effort needed to develop a software system. Size is measured
in many different ways, for example, lines of code, function points, and
feature points. Whatever the size measure an organization uses to measure
its code, it can be also be applied to measure the size of the test harness,
and to estimate the effort required to develop it. We use lines of code in
the measurements listed above as it is the most common size metric and
can be easily applied to estimating the size of a test harness. Ratios such
as:

Available LOC for the test harness code/planned LOC for the test
harnesses

are useful to monitor the test harness development effort over time.



2759.1 Measurements and Milestones for Monitor ing and Control l ing |

9 . 1 . 2 M e a s u r e m e n t s t o M o n i t o r

T e s t e r P r o d u c t i v i t y

Managers have an interest in learning about the productivity of their staff,
and how it changes as the project progresses. Measuring productivity in
the software development domain is a difficult task since developers are
involved in many activities, many of which are complex, and not all are
readily measured. In the past the measure LOC/hour has been used to
evaluate productivity for developers. But since most developers engage in
a variety of activities, the use of this measure for productivity is often not
credible. Productivity measures for testers have been sparsely reported.
The following represent some useful and basic measures to collect for
support in test planning and monitoring the activities of testers through-
out the project. They can help a test manger learn how a tester distributes
his time over various testing activities. For each developer/tester, where
relevant, we measure both planned and actual:

Time spent in test planning
Time spent in test case design*
Time spent in test execution*
Time spent in test reporting
Number of test cases developed*
Number of test cases executed*

Productivity for a tester could be estimated by a combination of:

Number of test cases developed/unit time*
Number of tests executed/unit time*
Number of LOC test harness developed/unit time*
Number of defects detected in testing/unit time

The last item could be viewed as an indication of testing efficiency. This
measure could be partitioned for defects found/hour in each of the testing
phases to enable a manager to evaluate the efficiency of defect detection
for each tester in each of these activities. For example:

Number of defects detected in unit test/hour
Number of defects detected in integration test/hour, etc.

The relative effectiveness of a tester in each of these testing activities could
be determined by using ratios of these measurements. Marks suggests as
a tester productivity measure [3]:



276 | Control l ing and Monitor ing the Testing Process

Number of test cases produced/week

All of the above could be monitored over the duration of the testing effort
for each tester. Managers should use these values with caution because a
good measure of testing productivity has yet to be identified. Two other
comments about these measures are:

1. Testers perform a variety of tasks in addition to designing and running
test cases and developing test harnesses. Other activities such as test plan-
ning, completing documents, working on quality and process issues also
consume their time, and those must be taken into account when produc-
tivity is being considered.

2. Testers should be aware that measurements are being gathered based
on their work, and they should know what the measurements will be used
for. This is one of the cardinal issues in implementing a measurement
program. All involved parties must understand the purpose of collecting
the data and its ultimate use.

9 . 1 . 3 M e a s u r e m e n t s f o r M o n i t o r i n g

T e s t i n g C o s t s

Besides tracking project schedules, recall that managers also monitor costs
to see if they are being held within budget. One good technique that
project managers use for budget and resource monitoring is called earned
value tracking. This technique can also be applied to monitor the use of
resources in testing. Test planners must first estimate the total number of
hours or budget dollar amount to be devoted to testing. Each testing task
is then assigned a value based on its estimated percentage of the total time
or budgeted dollars. This gives a relative value to each testing task, with
respect to the entire testing effort. That value is credited only when the
task is completed. For example, if the testing effort is estimated to require
200 hours, a 20-hour testing task is given a value of 20/200*100 or 10%.
When that task is completed it contributes 10% to the cumulative earned
value of the total testing effort. Partially completed tasks are not given
any credit. Earned values are usual presented in a tabular format or as a
graph. An example will be given in the next section of this chapter. The
graphs and tables are useful to present at weekly test status meetings.
Detailed discussions of earned value tracking can be found in Humphey



2779.1 Measurements and Milestones for Monitor ing and Control l ing |

[4], Rakos [5], and Hurst [6]. To calculate planned earned values we need
the following measurement data:

Total estimated time or budget for the overall testing effort
Estimated time or budget for each testing task

Earned values can be calculated separately for each level of testing. This
would facilitate monitoring the budget/resource usage for each individual
testing phase (unit, integration, etc.). We want to compare the above mea-
sures to:

Actual cost/time for each testing task*

We also want to calculate:

Earned value for testing tasks to date

and compare that to the planned earned value for a specific date. Section
9.2 shows an earned value tracking form and contains a discussion of
how to apply earned values to test tracking.

Other measures useful for monitoring costs such as the number of
planned/actual test procedures (test cases) are also useful for tracking
costs if the planner has a good handle on the relationship between these
numbers and costs (see Chapter 7).

Finally, the ratio of:

Estimated costs for testing/Actual costs for testing

can be applied to a series of releases or related projects to evaluate and
promote more accurate test cost estimation and higher test cost effective-
ness through test process improvement.

9 . 1 . 4 M e a s u r e m e n t s f o r M o n i t o r i n g E r r o r s ,

F a u l t s , a n d F a i l u r e s

Monitoring errors, faults, and failures is very useful for:

• evaluating product quality;

• evaluating testing effectiveness;



278 | Control l ing and Monitor ing the Testing Process

• making stop-test decisions;

• defect casual analysis;

• defect prevention;

• test process improvement;

• development process improvement.

Test logs, test incident reports, and problem reports provide test man-
agers with some of the raw data for this type of tracking. Test managers
usually want to track defects discovered as the testing process continues
over time to address the second and third items above. The other items
are useful to SQA staff, process engineers, and project managers. At
higher levels of the TMM where defect data has been carefully stored and
classified, mangers can use past defect records from similar projects or
past releases to compare the current project defect discovery rate with
those of the past. This is useful information for a stop-test decision (see
Section 9.3). To strengthen the value of defect/failure information, defects
should be classified by type, and severity levels should be established
depending on the impact of the defect/failure on the user. If a failure
makes a system inoperable it has a higher level of severity than one that
is just annoying. A example of a severity level rating hierarchy is shown
in Figure 9.3.

Some useful measures for defect tracking are:

Total number of incident reports (for a unit, subsystem, system)*
Number of incident reports resolved/unresolved (for all levels of

test)*
Number of defects found of each given type*
Number of defects causing failures of severity level greater than X

found (where X is an appropriate integer value)
Number of defects/KLOC (This is called the defect volume. The

division by KLOC normalizes the defect count)*
Number of failures*
Number of failures over severity level Y (where Y is an appropriate

integer value)
Number of defects repaired*
Estimated number of defects (from historical data)



2799.1 Measurements and Milestones for Monitor ing and Control l ing |

1.

2.

3.

4.

Catastrophic: a failure that could cause loss of life or property and/or loss of a system.

Critical: a failure that could cause major harm or major injury to life or property
and/or cause major damage to a software system.

Marginal: a failure that could cause minor harm or minor injury to life, or cause a
software system to perform poorly or reduce its availability.

Minor or Annoying: a failure that does not cause any significant harm or injury to life,
property or a software system, but does require repair.

FIG. 9.3

A sample severity level hierarchy.

Other failure-related data that are useful for tracking product reliability
will be discussed in later chapters.

9 . 1 . 5 M o n i t o r i n g T e s t E f f e c t i v e n e s s

To complete the discussion of test controlling and monitoring and the
role of test measurements we need to address what is called test effec-
tiveness. Test effectiveness measurements will allow managers to deter-
mine if test resources have been used wisely and productively to remove
defects and evaluate product quality. Test effectiveness evaluations allow
managers to learn which testing activities are or are not productive. For
those areas that need improvement, responsible staff should be assigned
to implement and monitor the changes. At higher levels of the TMM
members of a process improvement group can play this role. The goal is
to make process changes that result in improvements to the weak areas.
There are several different views of test effectiveness. One of these views
is based on use of the number of defects detected. For example, we can
say that our testing process was effective if we have successfully revealed
all defects that have a major impact on the users. We can make such an
evaluation in several ways, both before and after release.

1. Before release. Compare the numbers of defects found in testing for
this software product to the number expected from historical data. The
ratio is:

Number of defects found during test/number of defects estimated

This will give some measure of how well we have done in testing the
current software as compared to previous similar products. Did we find



280 | Control l ing and Monitor ing the Testing Process

more or fewer errors given the test resources and time period? This is not
the best measure of effectiveness since we can never be sure that the cur-
rent release contains the same types and distribution of defects as the
historical example.

2. After release. Continue to collect defect data after the software has
been released in the field. In this case the users will prepare problem
reports that can be monitored. Marks suggests we use measures such as
“field fault density” as a measure of test effectiveness. This is equal to:

Number of defects found/thousand lines of new and changed code
[3].

This measure is applied to new releases of the software.
Another measure suggested is a ratio of:

Pre-ship fault density/Post-ship fault density [3].

This ratio, sometimes called the “defect removal efficiency,” gives an in-
dication of how many defects remain in the software when it is released.
As the testing process becomes more effective, the number of predelivery
defects found should increase and postdelivery defects found should fall.
The value of the postship fault density (number of faults/KLOC) is cal-
culated from the problem reports returned to the development organi-
zation, so testers need to wait until after shipment to calculate this ratio.
Testers must examine the problem reports in detail when using the data.
There may be duplicate reports especially if the software is released to
several customers. Some problem reports are due to misunderstandings;
others may be requests for changes not covered in the requirements. All
of these should be eliminated from the count.

Other measurements for test effectiveness have been proposed. For
example, a measurement suggested by Graham is [7]:

Number of defects detected in a given test phase/total number of
defects found in testing.

For example, if unit test revealed 35 defects and the entire testing effort
revealed 100 defects, then it could be said that unit testing was 35%
effective. If this same software was sent out to the customer and 25 ad-
ditional defects were detected, then the effectiveness of unit test would



2819.1 Measurements and Milestones for Monitor ing and Control l ing |

then be 25/125, or 20%. Testers can also use this measure to evaluate
test effectiveness in terms of the severity of the failures caused by the
defects. In the unit test example, perhaps it was only 20% effective in
finding defects that caused severe failures.

The fault seeding technique as described in Section 9.3 could also be
applied to evaluate test effectiveness. If you know the number of seeded
faults injected and the number of seeded faults you have already found,
you can use the ratio to estimate how effective you have been in using
your test resources to date. Another useful measure, called the “detect
removal leverage (DRL)” described in Chapter 10 as a review measure-
ment, can be applied to measure the relative effectiveness of: reviews ver-
sus test phases, and test phases with respect to one another. The DRL sets
up ratios of defects found. The ratio denominator is the base line for
comparison. For example, one can compare:

DRL (integration/unit test) �

Number of defects found
integration test

Number of defects found
in unit test

Section 10.7 gives more details on the application of this metric. The costs
of each testing phase relative to its defect detecting ability can be ex-
pressed as:

Number of defects detected in testing phase X
Costs of testing in testing phase X

Instead of actual dollar amounts, tester hours, or any other indicator of
test resource units could also be used in the denominator. These ratios
could calculated for all test phases to compare their relative effectiveness.
Comparisons could lead to test process changes and improvements.

An additional approach to measuring testing effectiveness is described
by Chernak [8]. The main objectives of Chernak’s research are (i) to show
how to determine if a set of test cases (a test suite) is sufficiently effective
in revealing defects, and (ii) to show how effectiveness measures can lead
to process changes and improvements. The effectiveness metric called the
TCE is defined as follows:

Number of defects found by the test cases
TCE �

Total number of defects � 100



282 | Control l ing and Monitor ing the Testing Process

The total number of defects in this equation is the sum of the defects
found by the test cases, plus the defects found by what Chernak calls side
effects. Side effect are based on so-called “test-escapes.” These are soft-
ware defects that a test suite does not detect but are found by chance in
the testing cycle.

Test escapes occur because of deficiencies in the testing process. They
are identified when testers find defects by executing some steps or con-
ditions that are not described in a test case specification. This happens by
accident or because the tester gets a new idea while performing the as-
signed testing tasks. Under these conditions a tester may find additional
defects which are the test-escapes. These need to be recorded, and a casual
analysis needs to be done to develop corrective actions.

The use of Chernak’s metric depends on finding and recording these
types of defects. Not all types of projects are candidates for this type of
analysis. From his experience, Chernak suggests that client–server busi-
ness applications may be appropriate projects. He also suggests that a
baseline value be selected for the TCE and be assigned for each project.
When the TCE value is at or above the baseline then the conclusion is
that the test cases have been effective for this test cycle, and the testers
can have some confidence that the product will satisfy the uses needs. All
test case escapes, especially in the case of a TCE below the specified base-
line, should be studied using Pareto analysis and Fishbone diagram tech-
niques (described in Chapter 13), so that test design can be improved,
and test process deficiencies be removed. Chernak illustrates his method
with a case study (a client–server application) using the baseline TCE to
evaluate test effectiveness and make test process improvements. When the
TCE in the study was found to be below the baseline value (� 75 for this
case), the organization analyzed all the test-escapes, classified them by
cause, and built a Pareto diagram to describe the distribution of causes.
Incomplete test design and incomplete functional specifications were
found to be the main causes of test-escapes. The test group then addressed
these process issues, adding both reviews to their process and sets of more
“negative” test cases to improve the defect-detecting ability of their test
suites.

The TMM level number determined for an organization is also a
metric that can be used to monitor the testing process. It can be viewed



2839.2 Status Meetings, Reports, and Control Issues |

as a high-level measure of test process effectiveness, proficiency, and over-
all maturity. A mature, testing process is one that is effective.

The TMM level number that results from a TMM assessment is a
measurement that gives an organization information about the state of
its testing process. A lower score on the TMM level number scale indicates
a less mature, less proficient, less effective testing process state then a
higher-level score. The usefulness of the TMM level number as a mea-
surement of testing process strength, proficiency, and effectiveness is de-
rived not only from its relative value on the TMM maturity scale, but
also from the process profile that accompanies the level number showing
strong and weak testing areas. In addition, the maturity goals hierarchy
give structure and direction to improvement efforts so that the test process
can become more effective. Chapters 11, 15, and 16 will provide the
reader with more details.

9 . 2 Status Meetings, Reports, and Control Issues

Roughly forty measurements have been listed here that are useful for
monitoring testing efforts. Organizations should decide which are of the
most value in terms of their current TMM level, and the monitoring and
controlling goals they want to achieve. The measurement selection process
should begin with these goals, and compilation of a set of questions most
likely to be asked by management relating to monitoring and controlling
of the test process. The measurements that are selected should help to
answer the questions (see brief discussion of the Goal/Question/Metric
paradigm in Section 9.1). A sample set of questions is provided at the
beginning of this chapter. Measurement-related data, and other useful
test-related information such as test documents and problem reports,
should be collected and organized by the testing staff. The test manager
can then use these items for presentation and discussion at the periodic
meetings used for project monitoring and controlling. These are called
project status meetings.

Test-specific status meetings can also serve to monitor testing efforts,
to report test progress, and to identify any test-related problems. Testers
can meet separately and use test measurement data and related documents
to specifically discuss test status. Following this meeting they can then



284 | Control l ing and Monitor ing the Testing Process

participate in the overall project status meeting, or they can attend the
project meetings as an integral part of the project team and present and
discuss test-oriented status data at that time. Each organization should
decide how to organize and partition the meetings. Some deciding factors
may be the size of the test and development teams, the nature of the
project, and the scope of the testing effort.

Another type of project-monitoring meeting is the milestone meeting
that occurs when a milestone has been met. A milestone meeting is an
important event; it is a mechanism for the project team to communicate
with upper management and in some cases user/client groups. Major test-
ing milestones should also precipitate such meetings to discuss accom-
plishments and problems that have occurred in meeting each test mile-
stone, and to review activities for the next milestone phase. Testing staff,
project managers, SQA staff, and upper managers should attend. In some
cases process improvement group and client attendance is also useful.

Milestone meetings have a definite order of occurrence; they are held
when each milestone is completed. How often the regular statues meetings
are held depends on the type of project and the urgency to discuss issues.
Rakos recommends a weekly schedule as best for small- to medium-sized
projects [5]. Typical test milestone meeting attendees are shown in Figure
9.4. It is important that all test-related information be available at the
meeting, for example, measurement data, test designs, test logs, test in-
cident reports, and the test plan itself.

Status meetings usually result in some type of status report published
by the project manager that is distributed to upper management. Test
managers should produce similar reports to inform management of test
progress. Rakos recommends that the reports be brief and contain the
following items [5]:

• Activities and accomplishments during the reporting period. All tasks
that were attended to should be listed, as well as which are complete.
The latter can be credited with earned value amounts. Progress made
since the last reporting period should also be described.

• Problems encountered since the last meeting period. The report
should include a discussion of the types of new problems that have
occurred, their probable causes, and how they impact on the project.
Problem solutions should be described.



2859.2 Status Meetings, Reports, and Control Issues |

Test milestone meeting

Test team
Test manager
Project manager
SQA, process group
Test documents
Test data

Milestone Report

Activities
Problems
Test state
Expenses
Plans for next meeting

FIG. 9.4

Test milestone meetings, participants,

inputs, and outputs.

• Problems solved. At previous reporting periods problems were re-
ported that have now been solved. Those should be listed, as well as
the solutions and the impact on the project.

• Outstanding problems. These have been reported previously, but
have not been solved to date. Report on any progress.

• Current project (testing) state versus plan. This is where graphs using
process measurement data play an important role. Examples will be
described below. These plots show the current state of the project
(testing) and trends over time.

• Expenses versus budget. Plots and graphs are used to show budgeted
versus actual expenses. Earned value charts and plots are especially
useful here.

• Plans for the next time period. List all the activities planned for the
next time period as well as the milestones.

Preparing and examining graphs and plots using the measurement
data we have discussed helps managers to see trends over time as the test
effort progresses. They can be prepared for presentation at meetings and



286 | Control l ing and Monitor ing the Testing Process

included in the status report. An example bar graph for monitoring pur-
poses is shown in Figure 9.1. The bar graph shows the numbers for tests
that were planned, available, executed, and passed during the first 6
weeks of the testing effort. Note the trends. The number of tests executed
and the number passed has gone up over the 6 weeks, The number passed
is approaching the number executed. The graph indicates to the manager
that the number of executed tests is approaching the number of tests
available, and that the number of tests passed is also approaching the
number available, but not quite as quickly. All are approaching the num-
ber planned. If one extrapolates, the numbers should eventually converge
at some point in time. The bar graph, or a plot, allows the manager to
identify the time frame in which this will occur. Managers can also com-
pare the number of test cases executed each week with the amount that
were planned for execution.

Figure 9.5 shows another graph based on defect data. The total num-
ber of faults found is plotted against weeks of testing effort. In this plot
the number tapers off after several weeks of testing. The number of defects
repaired is also plotted. It lags behind defect detection since the code must
be returned to the developers who locate the defects and repair the code.
In many cases this be a very time-consuming process. Managers can also
include on a plot such as Figure 9.5 the expected rate of defect detection
using data from similar past projects. However, even if the past data are
typical there is no guarantee that the current software will behave in a
similar way. Other ways of estimating the number of potential defects use
rules of thumb (heuristics) such as “0.5–1% of the total lines of code”
[8]. These are at best guesses, and give managers a way to estimate the
number of defects remaining in the code, and as a consequence how long
the testing effort needs to continue. However, this heuristic gives no in-
dication of the severity level of the defects.

Hetzel gives additional examples of the types of plots that are useful
for monitoring testing efforts [9]. These include plots of number of re-
quirements tested versus weeks of effort and the number of statements
not yet exercised over time. Other graphs especially useful for monitoring
testing costs are those that plot staff hours versus time, both actual and
planned. Earned value tables and graphs are also useful. Table 9.1 is an
example [4].

Note that the earned value table shown in Table 9.1 has two parti-



2879.2 Status Meetings, Reports, and Control Issues |
T

ot
al

 f
au

lt
s 

fo
un

d

Testing effort in weeks

=  Faults found so far

=  Faults repaired so far

FIG. 9.5

Sample plot for monitoring fault

detection durings test.

tions, one for planned values and one for actual values. Each testing task
should be listed, as well as its estimated hours for completion. The total
hours for all the tasks is determined and the estimated earned value for
each task is then calculated based on its estimated percentage of the total
time as described previously. This gives a relative value to each testing
task with respect to the entire testing effort. The estimated earned values
are accumulated in the next column. When the testing effort is in progress,
the date and actual earned value for each task is listed, as well as the
actual accumulated earned values. In status report graphs, earned value
is usually plotted against time, and on the same graph budgeted expenses
and actual expenses may also be plotted against time for comparison.
Although actual expenses may be more than budget, if earned value is
higher than expected, then progress may be considered satisfactory [4,5].

The agenda for a status meeting on testing includes a discussion of
the work in progress since the last meeting period. Measurement data is
presented, graphs are produced, and progress is evaluated. Test logs and
incident reports may be examined to get a handle on the problems oc-
curring. If there are problem areas that need attention, they are discussed



288 | Control l ing and Monitor ing the Testing Process

and solutions are suggested to get the testing effort back on track (control
it). Problems currently occurring may be closely associated with risks
identified by the test manager through the risk analysis done in test plan-
ning. Recall that part of the planner’s job is identify and prioritize risks,
and to develop contingency plans to handle the risk-prone events if they
occur. If the test manager has done a careful job, these contingency plans
may be applied to the problem at hand. Suggested and agreed-upon so-
lutions should appear in the status report. The corrective actions should
be put in place, their effect on testing monitored, and their success/failure
discussed at the next status meeting.

As testing progresses, status meeting attendees have to make decisions
about whether to stop testing or to continue on with the testing efforts,
perhaps developing additional tests as part of the continuation process.
They need to evaluate the status of the current testing efforts as compared
to the expected state specified in the test plan. In order to make a decision
about whether testing is complete the test team should refer to the stop-
test criteria included in the test plan (see the next section for a discussion
on stop-test criteria). If they decide that the stop-test criteria have been
met, then the final status report for testing, the test summary report,
should be prepared. This is a summary of the testing efforts, and becomes
a part of the project’s historical database. At project postmortems the test
summary report can be used to discuss successes and failures that
occurred during testing. It is a good source for test lessons learned for
each project. The test summary report is described in more detail in Chap-
ter 7.

Testing

task

Estimated

earned

value

Estimated

hours

Cummulative

earned

value Date

Actual

earned

value

Cummulative

earned

value

Planned Actual

TABLE 9 .1

Sample earned value table [4].



2899.3 Criter ia for Test Complet ion |

9 . 3 Criter ia for Test Complet ion

In the test plan the test manager describes the items to be tested, test cases,
tools needed, scheduled activities, and assigned responsibilities. As the
testing effort progresses many factors impact on planned testing schedules
and tasks in both positive and negative ways. For example, although a
certain number of test cases were specified, additional tests may be re-
quired. This may be due to changes in requirements, failure to achieve
coverage goals, and unexpected high numbers of defects in critical mod-
ules. Other unplanned events that impact on test schedules are, for ex-
ample, laboratories that were supposed to be available are not (perhaps
because of equipment failures) or testers who were assigned responsibili-
ties are absent (perhaps because of illness or assignments to other higher-
priority projects). Given these events and uncertainties, test progress does
not often follow plan. Tester managers and staff should do their best to
take actions to get the testing effort on track. In any event, whether prog-
ress is smooth or bumpy, at some point every project and test manager
has to make the decision on when to stop testing.

Since it is not possible to determine with certainty that all defects
have been identified, the decision to stop testing always carries risks. If
we stop testing now, we do save resources and are able to deliver the
software to our clients. However, there may be remaining defects that will
cause catastrophic failures, so if we stop now we will not find them. As
a consequence, clients may be unhappy with our software and may not
want to do business with us in the future. Even worse there is the risk
that they may take legal action against us for damages. On the other hand,
if we continue to test, perhaps there are no defects that cause failures of
a high severity level. Therefore, we are wasting resources and risking our
position in the market place. Part of the task of monitoring and control-
ling the testing effort is making this decision about when testing is com-
plete under conditions of uncertainly and risk. Managers should not have
to use guesswork to make this critical decision. The test plan should have
a set of quantifiable stop-test criteria to support decision making.

The weakest stop test decision criterion is to stop testing when the
project runs out of time and resources. TMM level 1 organizations often
operate this way and risk client dissatisfaction for many projects. TMM
level 2 organizations plan for testing and include stop-test criteria in the



290 | Control l ing and Monitor ing the Testing Process

test plan. They have very basic measurements in place to support man-
agement when they need to make this decision. Shown in Figure 9.6 and
described below are five stop-test criteria that are based on a more quan-
titative approach. No one criteria is recommended. In fact, managers
should use a combination of criteria and cross-checking for better results.

The stop-test criteria are as follows.

1 . A l l t he P lanned Tes t s Tha t Were Deve loped Have Been Execu ted
and Passed .

This may be the weakest criterion. It does not take into account the actual
dynamics of the testing effort, for example, the types of defects found and
their level of severity. Clues from analysis of the test cases and defects
found may indicate that there are more defects in the code that the
planned test cases have not uncovered. These may be ignored by the test-
ers if this stop-test criteria is used in isolation.

2 . A l l Spec i f i ed Cove rage Goa l s Have Been Met .

An organization can stop testing when it meets its coverage goals as spec-
ified in the test plan. For example, using white box coverage goals we can
say that we have completed unit test when we have reached 100% branch
coverage for all units. Using another coverage category, we can say we
have completed system testing when all the requirements have been cov-
ered by our tests. The graphs prepared for the weekly status meetings can
be applied here to show progress and to extrapolate to a completion date.
The graphs will show the growth of degree of coverage over the time.

3 . The De tec t i on o f a Spec i f i c Number o f De fec t s Has Been Accomp l i shed .

This approach requires defect data from past releases or similar projects.
The defect distribution and total defects is known for these projects, and
is applied to make estimates of the number and types of defects for the
current project. Using this type of data is very risky, since it assumes the
current software will be built, tested, and behave like the past projects.
This is not always true. Many projects and their development environ-
ments are not as similar as believed, and making this assumption could



2919.3 Criter ia for Test Complet ion |

All planned tests
executed and passed

All coverage goals met

Detection of specific
number of defects

Rates of defect detection
fallen below a specified level

Fault seeding ratios
are favorable 

Stop Test

FIG. 9.6

Some possible stop-test criteria.

be disastrous. Therefore, using this stop-criterion on its own carries high
risks.

4 . The Ra tes o f De fec t De tec t i on fo r a Cer ta in T ime Per i od Have Fa l l en Be low
a Spec i f i ed Leve l .

The manager can use graphs that plot the number of defects detected per
unit time. A graph such as Figure 9.5, augmented with the severity level
of the defects found, is useful. When the rate of detection of defects of a
severity rating under some specified threshold value falls below that rate
threshold, testing can be stopped. For example, a stop-test criterion could
be stated as: “We stop testing when we find 5 defects or less, with impact
equal to, or below severity level 3, per week.” Selecting a defect detection
rate threshold can be based on data from past projects.

5 . Fau l t Seed ing Ra t i os A re Favo rab le .

Fault (defect) seeding is an interesting technique first proposed by Mills
[10]. The technique is based on intentionally inserting a known set of
defects into a program. This provides support for a stop-test decision. It
is assumed that the inserted set of defects are typical defects; that is, they
are of the same type, occur at the same frequency, and have the same
impact as the actual defects in the code. One way of selecting such a set



292 | Control l ing and Monitor ing the Testing Process

of defects is to use historical defect data from past releases or similar
projects.

The technique works as follow. Several members of the test team
insert (or seed) the code under test with a known set of defects. The other
members of the team test the code to try to reveal as many of the defects
as possible. The number of undetected seeded defects gives an indication
of the number of total defects remaining in the code (seeded plus actual).
A ratio can be set up as follows:

Detected seeded defects Detected actual defects
�

Total seeded defects Total actual defects

Using this ratio we can say, for example, if the code was seeded with 100
defects and 50 have been found by the test team, it is likely that 50% of
the actual defects still remain and the testing effort should continue. When
all the seeded defects are found the manager has some confidence that
the test efforts have been completed.

There are other stop-test criteria that can be used by organizations at
the higher levels of the TMM, for example, those based on reliability and
confidence levels. Those will be discussed in Chapter 12.

9 . 4 Software Configurat ion Management

Software systems are constantly undergoing change during development
and maintenance. By software systems we include all software artifacts
such as requirements and design documents, test plans, user manuals,
code, and test cases. Different versions, variations, builds, and releases
exist for these artifacts. Organizations need staff, tools, and techniques
to help them track and manage these artifacts and changes to the artifacts
that occur during development and maintenance. The Capability Matur-
ity Model includes configuration management as a Key Process Area at
level 2. This is an indication of its fundamental role in support of re-
peatable, controlled, and managed processes. To control and monitor the
testing process, testers and test mangers also need access to configuration
management tools and staff.

There are four major activities associated with configuration man-
agement. These are:



2939.4 Software Configurat ion Management |

1 . I den t i f i ca t i on o f the Con f i gu ra t i on I t ems

The items that will be under configuration control must be selected, and
the relationships between them must be formalized. An example relation-
ship is “part-of” which is relevant to composite items. Relationships are
often expressed in a module interconnection language (MIL). Figure 9.7
shows four configuration items, a design specification, a test specification,
an object code module, and source code module as they could exist in a
configuration management system (CMS) repository (see item 2 below
for a brief description of a CMS). The arrows indicate links or relation-
ships between them. Note in this example that the configuration man-
agement system is aware that these four items are related only to one
another and not to other versions of these items in the repository.

In addition to identification of configuration items, procedures for
establishment of baseline versions for each item must be in place.

Baselines are formally reviewed and agreed upon versions of software artifacts,

from which all changes are measured. They serve as the basis for further devel-

opment and can be changed only through formal change procedures.

Baselines plus approved changes from those baselines constitute the correct con-

figuration identification for the item. [11].

2 . Change Con t ro l

There are two aspects of change control—one is tool-based, the other
team-based. The team involved is called a configuration control board.
This group oversees changes in the software system. The members of the
board should be selected from SQA staff, test specialists, developers, and
analysts. It is this team that oversees, gives approval for, and follows up
on changes. They develop change procedures and the formats for change
request forms. To make a change, a change request form must be prepared
by the requester and submitted to the board. It then reviews and ap-
proves/disapproves. Only approved changes can take place. The board
also participates in configuration reporting and audits as described fur-
ther on in this section.

In addition to the configuration control board, control of configu-
ration items requires a configuration management system (CMS) that will



294 | Control l ing and Monitor ing the Testing Process

store the configuration items in a repository (or project database) and
maintain control and access to those items. The CMS will manage the
versions and variations of the items. It will keep track of the items and
their relationships with one another. For example, developers and testers
need to know which set of test cases is associated with which design item,
and which version of object code is associated with which version of
source code? The CMS will provide the information needed to answer
these questions by supporting relationships as shown in Figure 9.7. It also
supports baseline versions for each configuration item, and it only allows
designated engineers to make changes to a configuration item after formal
approval by the change control board. The software engineer must check-

Sample Module
design document

Other versions

Other design docs

Other design docs

Sample module
object code

Other versions

Other object code

Other object code

Sample module
test specifications

Other versions

Other test spec

Other test spec

Sample module
source code

Other versions

Other source code

Other source code

Configuration Management Tool Repository

FIG. 9.7

Sample configuration items.



2959.4 Software Configurat ion Management |

out the item undergoing change from the CMS. A copy of it is made in
her work station. When the changes are complete, and they are reviewed,
the new version is “checked in” to the CMS, and the version control
mechanism in the CMS creates the newest version in its repository. Re-
lationships to existing configuration items are updated. The CMS controls
change-making by ensuring that an engineer has the proper access rights
to the configuration item. It also synchronizes the change-making process
so that parallel changes made by different software engineers do not over-
write each other. The CMS also allows software engineers to create builds
of the system consisting of different versions and variations of object and
source code.

3. Conf igurat ion status report ing

These reports help to monitor changes made to configuration items. They
contain a history of all the changes and change information for each
configuration item. Each time an approved change is made to a config-
uration item, a configuration status report entry is made. These reports
are kept in the CMS database and can be accessed by project personnel
so that all can be aware of changes that are made. The reports can answer
questions such as:

• who made the change;

• what was the reason for the change;

• what is the date of the change;

• what is affected by the change.

Reports for configuration items can be disturbed to project members
and discussed at status meetings.

4. Conf igurat ion audits

After changes are made to a configuration item, how do software engi-
neers follow up to ensure the changes have been done properly? One way
to do this through a technical review, another through a configuration
audit. The audit is usually conducted by the SQA group or members of
the configuration control board. They focuses on issues that are not cov-



296 | Control l ing and Monitor ing the Testing Process

ered in a technical review. A checklist of items to cover can serve as the
agenda for the audit. For each configuration item the audit should cover
the following:

(i) Compliance with software engineering standards. For example, for
the source code modules, have the standards for indentation, white
space, and comments been followed?

(ii) The configuration change procedure. Has it been followed correctly?
(iii) Related configuration items. Have they been updated?
(iv) Reviews. Has the configuration item been reviewed?

Why is configuration management of interest to testers? Configura-
tion management will ensure that test plans and other test-related docu-
ments are being prepared, updated, and maintained properly. To support
these objectives, Ayer has suggested a test documentation checklist to be
used for configuration audits to verify the accuracy and completeness of
test documentation [12]. Configuration management also allows the tes-
ter to determine if the proper tests are associated with the proper source
code, requirements, and design document versions, and that the correct
version of the item is being tested. It also tells testers who is responsible
for a given item, if any changes have been made to it, and if it has been
reviewed before it is scheduled for test.

Configuration management is a complex set of activities. To support
configuration management, organizational policy should require each
project to have an associated configuration management plan that de-
scribes the staff, tools, policies, and resources required. Organizations can
get started using the information found in IEEE standards documents
[13,14]. Readers who want additional information can consult papers by
Tichy and the text by Ayer [12,15]

9 . 5 Control l ing and Monitor ing: Three Crit ical Views

Controlling and monitoring of the testing process is a maturity goal at
TMM level 3. Establishing a test organization and a test training program
are also maturity goals at this level. The goals are mutually supportive.
Controlling and monitoring is best carried out by a group of test special-
ists who have the focus, training, and expertise to do the job. They are
the staff persons responsible for test planning, test design, test execution,



2979.5 Control l ing and Monitor ing: Three Crit ical Views |

and test reporting and are therefore in the best position to control and
monitor testing (review Chapter 8). When describing the three critical
views with respect to the controlling and monitoring maturity goal we
can now assume that test specialists and test managers will carry out this
role, since a test organization is now established and training is available.
Developers may not be heavily involved.

From the manager’s view, support for the controlling and monitoring
of testing includes the following commitments.

• Testing policy statements are updated with the participation and ap-
proval of management. The updated policy statements dictate a role
for controlling and monitoring of testing efforts. Mechanisms to ac-
complish controlling and monitoring of test are outlined in the test
policy statement and described in detail in SQA and standards doc-
uments. Management ensures that controlling and monitoring activ-
ities are part of each test plan.

• Adequate funding, training, and resources are given to support con-
trolling and monitoring activities including measurement collection.

• Managers assign responsibilities for controlling and monitoring.

• Managers participate in status and audit meetings, contribute to
problem-solving sessions, and support follow-up for corrective
actions.

Since there is now a test group we will consider the test manager’s
view for controlling and monitoring as well. We add the following activ-
ities, tasks, and responsibilities.

• Working with upper management/project management to develop
controlling and monitoring policies for testing.

• Working with SQA to develop standards for test-related artifacts and
standards for quality-related procedures.

• Developing test plans with appropriate resources set aside for con-
trolling and monitoring.

• Selecting appropriate measurements to guide controlling and moni-
toring of test.



298 | Control l ing and Monitor ing the Testing Process

• Ensuring all appropriate test documents are prepared such as test logs
and test incident reports.

• Collecting, analyzing, and presenting test-related measurements and
data to interested management and staff.

• Setting up periodic test status meetings, leading discussions, and pre-
senting all relevant material at test status meetings.

Managers

Testers

Users/Clients

Policies, resources for controlling,
    monitoring leadership role in
   status meetings
Developing test plans
Selecting, analyzing measurements
Presentations at status meetings
Test summary reporting
Support training program
Develop training plans
Hire training staff
Make policy changes to reflect the
    integration of testing
Adopt a V-like model
Provide support for integration
Monitor integration of testing
   activities
Support for test group
Hire test staff
Evaluate test staff

Developing test plans
Selecting, collecting, and
    analyzing measurements and
    problem reports
Participate in status meetings
Participate in training classes
Maintain test repository
Mentor test staff members
Recruit test staff members
Contribute to test process
    improvement
Participate in tech reviews
Interact with SQA and process
    groups
Participate in test process
    improvement
Perform required testing activities
    throughout life cycle

Attend milestone meetings
Report problems
Interact with testing staff
Support development of usage
    profile and usability test plans

Achievement of
TMM level 3
maturity goals

Test process Evolution

Improved testing process 

Proceed to TMM level 4 goals

FIG. 9.8

Contributions of three critical groups

to TMM level 3 maturity goals.



2999.5 Control l ing and Monitor ing: Three Crit ical Views |

• Initiating and following-up corrective actions when problems occur
during testing.

• Preparing and presenting the test summary report.

• Assigning responsibilities to testers for corrective actions that address
test-related problems.

• Following up and reporting on corrective actions taken.

• Supporting the installation of a CMS and playing a role on the con-
figuration control board.

The tester’s role in controlling and monitoring is as follows:

• Collecting and analyzing test measurements.

• Participation in test status meetings.

• Training in tools and methods for test process monitoring and con-
trolling, including configuration management.

• Serving as members of the change control board.

• Completing follow-up activities for corrective actions.

• Preparing test-related documents such as test logs and test incident
reports.

• Contributing to test summary report.

The users/client role in controlling and monitoring of test is limited.
These are examples of user/client impact in this area of testing.

• Attendance at special test milestone meetings. If the software is being
developed for a specific client, the development organization may
invite a user/client group to attend a test milestone meeting to show
progress.

• Stop-test criteria for acceptance test. In the case of software custom-
built for a specific client, the client should be asked to give input on
stop-test criteria that indicate the completeness of acceptance test.



300 | Control l ing and Monitor ing the Testing Process

• Test effectiveness. If an organization is measuring test-effectiveness
using postrelease problem reports, the users/client will play an im-
portant role in reporting problems and insuring they are returned to
the proper personnel in the development organization.

As a final note, this chapter and Chapter 8 provide background ma-
terial to support individuals and organizations working toward achieving
the maturity goals described in level 3 of the TMM. For review, a sum-
mary of the contributions of the three critical groups to TMM level 3
maturity goals is shown in Figure 9.8.

K E Y T E R M S

Baseline

Milestone

Project controlling

Project monitoring

E X E R C I S E S

1. Suppose you are a test manager. What are the milestones you would select for

a unit test plan, an integration test plan, and a system test plan?

2. What measurements would you suggest for monitoring test status during sys-

tem test for a large application with no mission- or safety-critical features?

3. For the system in Problem 2, suggest appropriate measurements for monitoring

tester productivity.

4. For the system in Problem 2, suggest appropriate measurements for monitoring

testing costs.

5. For the system in Problem 2, suggest appropriate measurements for monitoring

defects/faults and failures.

6. Some of your customers have suggested that the number of defects found in

the software that was delivered to them is unacceptable in future releases. You

are concerned that your test effectiveness is poor. What measurements could you



3019.5 Control l ing and Monitor ing: Three Crit ical Views |

use to evaluate your current test effectiveness and any changes in effectiveness

due to improvements in your process? How could you evaluate the relative effec-

tiveness of each of your testing phases?

7. For a given small-sized software system the test group found 7 defects in

design review, 24 defects in unit test, and 13 in integration test. What is the defect

removal leverage of reviews and integration test with respect to unit test?

8. Figure 9.1 shows a plot that illustrates trends in test execution using number

of tests versus weeks of testing. What other test-related measures could you plot

to show testing trends for a test status meeting?

9. Suppose a test group was testing a mission-critical software system. The group

has found 85 out of the 100 seeded defects. If you were the test manager, would

you stop testing at this point? Explain your decision. If in addition you found 70

actual nonseeded defects, what would be your decision and why?

10. What should be included in a milestone report for testing? Who should prepare

the report, and who should be included on the distribution list?

11. Which groups do you think should contribute to membership of a configuration

control board and why?

12. A test plan has as a goal 100% branch coverage for all units. The test effort

is running behind schedule and current status of coverage for all units is 87%. The

manager is under pressure and is thinking of stopping unit test at this point. The

project is a straightforward business application. The development group has im-

plemented similar applications in the past. Advise the manager about this decision.

What types of data will be useful to support a decision?

13. Your team is developing a patient record system for a medical group that will

contain vital patient information as well as billing data for the medical practice.

This is the first time your company is developing software for this domain. The

test manger is developing the test plan and is deciding on appropriate stop test

criteria for this project. Which of the stop test criteria described in this chapter

do you believe is appropriate for this project? Give reasons for your choice(s).

14. What is the role of the tester in supporting the monitoring and controlling of

testing?



302 | Control l ing and Monitor ing the Testing Process

R E F E R E N C E S

[1] R. Thayer, ed. Software Engineering Project Man-
agement, second edition, IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[2] V. Basili, D. Weiss, “A methodology for collecting
valid software engineering data,” IEEE Transactions
on Software Engineering, Vol. SE-10, No. 6, 1984,
pp. 728–738.

[3] D. Marks, Testing Very Big Systems, McGraw-Hill,
New York, 1992.

[4] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.

[5] J. Rakos, Software Project Management for Small-
to Medium-Sized Projects, Prentice Hall, Englewood
Cliffs, NJ, 1990.

[6] P Hurst, “Software project management: threads of
control,” in Software Engineering Project Manage-
ment, second edition, R. Thayer, ed., IEEE Computer
Society Press, Los Alamitos, CA, 1997, pp. 410–422.

[7] D. Graham, “Measuring the effectiveness and ef-
ficiency of testing,” Proc. Software Testing, Paris,
France, June 1996.

[8] Y. Chernak, “Validating and improving test-case
effectiveness,” IEEE Software, Vol. 16, No. 1, 2001,
pp. 81–86.

[9] B. Hetzel, The Complete Guide to Software Test-
ing, second edition, QED Information Sciences, Inc.,
Wellesley, MA. 1988.

[10] H. Mills, On the Statistical Validation of Com-
puter Programs, Technical Report FSC-72-6015, IBM
Federal Systems Division, Gaithersburg, MD, 1972.

[11] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990), copyright 1990
by IEEE, all rights reserved.

[12] S. Ayer, F. Patrinostro, Software Configuration
Management, McGraw-Hill, Inc., New York, 1992.

[13] IEEE Guide to Software Configuration Manage-
ment (ANSI/IEEE Std 1042-1987), copyright 1988 by
IEEE, all rights reserved.

[14] IEEE Standard for Software Configuration Man-
agement Plans (IEEE Std. 828-1990), copyright 1990
by IEEE, all rights reserved.

[15] W. Tichy, “Design, implementation, and evalua-
tion of a revision control system,” Proc. Sixth Inter-
national Conf. Software Engineering, 1982, pp. 58–67.



R E V I E W S A S A

T E S T I N G A C T I V I T Y

1 0 . 0 Expanding the Testing Activ ity Umbrel la

In Chapter 1 several software engineering terms related to testing were
presented. The terms validation and verification were defined and two
definitions for testing were given. The latter are repeated here as a means
for initiating a discussion of two major types of testing for software. Other
descriptions of the term “testing” are found in IEEE software engineering
standards documents and guides [1]. The term “software” here is used in
the broadest sense to mean source code and all of its associated artifacts,
for example, requirements and design documents, test plans, and user
manuals.

Testing is generally described as a group of procedures carried out to evaluate

some aspect of a piece of software.

Testing can be described as a process used for revealing defects in software and

for establishing that the software has attained a specified degree of quality with

respect to selected attributes.



304 | Reviews as a Testing Activ ity

The definitions for testing outline analysis objectives that relate to
evaluation, (revealing) defects, and quality. We can use two approaches
to achieve these objectives:

(i) static analysis methods where the software artifact is examined man-
ually, or with a set of tools, but not executed;

(ii) dynamic analysis methods where the software artifact is executed
using a set of input values, and its output behavior is then examined
and compared to what is expected.

Dynamic execution can only be applied to the software code. We use
dynamic execution as a tool to detect defects and to evaluate quality
attributes of the code. This testing option is not applicable for the majority
of the other software artifacts. Among the questions that arise are: How
can we evaluate or analyze a requirements document, a design document,
a test plan, or a user manual? How can we effectively preexamine the
source code before execution? One powerful tool that we can use is a
manual static testing technique that is generally known as the technical
review. Most software deliverables can be tested using review techniques
as shown in Figure 10.1.

The technical review involves a group of people who meet to evaluate
a software-related item. A general definition for a review is given in Chap-
ter 2 and repeated below.

A review is a group meeting whose purpose is to evaluate a software artifact or a

set of software artifacts.

The general goals for the reviewers are to:

• identify problem components or components in the software artifact
that need improvement;

• identify components of the software artifact that do not need
improvement;

• identify specific errors or defects in the software artifact (defect
detection);

• ensure that the artifact conforms to organizational standards.



30510.0 Expanding the Testing Activ ity Umbrel la |

Deliverable

Reviews

Execution

Requirements

Specifications

Design

Code

Test plans

User manuals

Quality Check/
Testing Approach

Quality Check/
Testing Approach

FIG. 10.1

Role of reviews in testing software

deliverables.

Other review goals are informational, communicational, and educa-
tional, whereby review participants learn about the contents of the de-
veloping software artifacts to help them understand the role of their own
work and to plan for future stages of development. Reviews often rep-
resent project milestones and support the establishment of a baseline for
a software artifact. Thus, they also have a role in project management,
project monitoring, and control. Review data can also have an influence
on test planning. The types and quantity of defects found during review
can help test planners select effective classes of tests, and may also have
an influence testing goals. In some cases clients/users attend the review
meetings and give feedback to the development team, so reviews are also
a means for client communication. To summarize, the many benefits of
a review program are:

• higher-quality software;

• increased productivity (shorter rework time);

• closer adherence to project schedules (improved process control);

• increased awareness of quality issues;



306 | Reviews as a Testing Activ ity

• teaching tool for junior staff;

• opportunity to identify reusable software artifacts;

• reduced maintenance costs;

• higher customer satisfaction;

• more effective test planning;

• a more professional attitude on the part of the development staff.

Not all test educators, practitioners, and researchers consider tech-
nical reviews to be a testing activity. Some prefer to consider them in a
special category called verification testing; others believe they should be
associated with software quality assurance activities. The author, as well
as many others, for example, Hetzel [2], hold the position that testing
activities should cover both validation and verification, and include both
static and dynamic analyses. The TMM structure supports this view. If
one adheres to this broader view of testing, then the author argues the
following:

(i) Reviews as a verification and static analysis technique should be con-
sidered a testing activity.

(ii) Testers should be involved in review activities.

Also, if you consider the following:

(i) a software system is more than the code; it is a set of related artifacts;
(ii) these artifacts may contain defects or problem areas that should be

reworked, or removed; and
(iii) quality-related attributes of these artifacts should be evaluated;

then the technical review is one of the most important tools we can use
to accomplish these goals. In addition, reviews are the means for testing
these artifacts early in the software life cycle. It gives us an early focus on
quality issues, helps us to build quality into the system from the beginning,
and, allows us to detect and eliminate errors/defects early in the software
life cycle as close as possible to their point of origin. If we detect defects
early in the life cycle, then:



30710.1 Types of Reviews |

• they are easier to detect;

• they are less costly to repair;

• overall rework time is reduced;

• productivity is improved;

• they have less impact on the customer.

Use of the review as a tool for increasing software quality and de-
veloper productivity began in the 1970s. Fagen [3] and Myers [4] wrote
pioneering papers that described the review process and its benefits. This
chapter will discuss two types of technical reviews, inspections, and walk-
throughs. It will show you how they are run, who should attend, what
the typical activities and outputs are, and what are the benefits. Having
a review program requires a commitment of organizational time and re-
sources. It is the author’s goal to convince you of the benefits of reviews,
their important role in the testing process, their cost effectiveness as a
quality tool, and why you as a tester should be involved in the review
process.

1 0 . 1 Types of Reviews

Reviews can be formal or informal. They can be technical or managerial.
Managerial reviews usually focus on project management and project
status. The role of project status meetings is discussed in Chapter 9. In
this chapter we will focus on technical reviews. These are used to:

• verify that a software artifact meets its specification;

• to detect defects; and

• check for compliance to standards.

Readers may not realize that informal technical reviews take place
very frequently. For example, each time one software engineer asks an-
other to evaluate a piece of work whether in the office, at lunch, or over
a beer, a review takes place. By review it is meant that one or more peers



308 | Reviews as a Testing Activ ity

have inspected/evaluated a software artifact. The colleague requesting the
review receives feedback about one or more attributes of the reviewed
software artifact. Informal reviews are an important way for colleagues
to communicate and get peer input with respect to their work. There are
two major types of technical reviews—inspections and walkthroughs—
which are more formal in nature and occur in a meeting-like setting.
Formal reviews require written reports that summarize findings, and in
the case of one type of review called an inspection, a statement of
responsibility for the results by the reviewers is also required. The two
most widely used types of reviews will be described in the next several
paragraphs.

1 0 . 1 . 1 I n s p e c t i o n s a s a T y p e o f

T e c h n i c a l R e v i e w

Inspections are a type of review that is formal in nature and requires
prereview preparation on the part of the review team. Several steps are
involved in the inspection process as outlined in Figure 10.2. The respon-
sibility for initiating and carrying through the steps belongs to the in-
spection leader (or moderator) who is usually a member of the technical
staff or the software quality assurance team. Myers suggests that the in-
spection leader be a member of a group from an unrelated project to
preserve objectivity [4].

The inspection leader plans for the inspection, sets the date, invites
the participants, distributes the required documents, runs the inspection
meeting, appoints a recorder to record results, and monitors the follow-
up period after the review. The key item that the inspection leader pre-
pares is the checklist of items that serves as the agenda for the review.
The checklist varies with the software artifact being inspected (examples
are provided later in this chapter). It contains items that inspection par-
ticipants should focus their attention on, check, and evaluate. The in-
spection participants address each item on the checklist. The recorder
records any discrepancies, misunderstandings, errors, and ambiguities; in
general, any problems associated with an item. The completed checklist
is part of the review summary document.

The inspection process begins when inspection preconditions are met
as specified in the inspection policies, procedures, and plans. The inspec-



30910.1 Types of Reviews |

Initiation

Preparation

Inspection meeting

 Reporting results 

Rework and
follow-up

Defect database

Metric database

Entry criteria

Exit

Inspection policies
and plans 

Checklist

FIG. 10.2

Steps in the inspection process.

tion leader announces the inspection meeting and distributes the items to
be inspected, the checklist, and any other auxiliary material to the par-
ticipants usually a day or two before the scheduled meeting. Participants
must do their homework and study the items and the checklist. A personal
preinspection should be performed carefully by each team member [3,5].
Errors, problems, and items for discussion should be noted by each in-
dividual for each item on the list. When the actual meeting takes place
the document under review is presented by a reader, and is discussed as
it read. Attention is paid to issues related to quality, adherence to stan-
dards, testability, traceability, and satisfaction of the users/clients require-
ments. All the items on the checklist are addressed by the group as a
whole, and the problems are recorded. Inspection metrics are also re-



310 | Reviews as a Testing Activ ity

corded (see Section 10.7). The recorder documents all the findings and
the measurements.

When the inspection meeting has been completed (all agenda items
covered) the inspectors are usually asked to sign a written document that
is sometimes called a summary report that will be described in Section
10.4.6. The inspection process requires a formal follow-up process. Re-
work sessions should be scheduled as needed and monitored to ensure
that all problems identified at the inspection meeting have been addressed
and resolved. This is the responsibility of the inspection leader. Only when
all problems have been resolved and the item is either reinspected by the
group or the moderator (this is specified in the summary report) is the
inspection process completed.

1 0 . 1 . 2 W a l k t h r o u g h s a s a T y p e o f

T e c h n i c a l R e v i e w

Walkthroughs are a type of technical review where the producer of the
reviewed material serves as the review leader and actually guides the pro-
gression of the review [6]. Walkthroughs have traditionally been applied
to design and code. In the case of detailed design or code walkthroughs,
test inputs may be selected and review participants then literally walk
through the design or code with the set of inputs in a line-by-line manner.
The reader can compare this process to a manual execution of the code.
The whole group “plays computer” to step through an execution lead by
a reader or presenter. This is a good opportunity to “pretest” the design
or code. If the presenter gives a skilled presentation of the material, the
walkthrough participants are able to build a comprehensive mental (in-
ternal) model of the detailed design or code and are able to both evaluate
its quality and detect defects. Walkthroughs may be used for material
other than code, for example, data descriptions, reference manuals, or
even specifications [6].

Some researchers and practitioners believe walkthroughs are efficient
because the preparer leads the meeting and is very familiar with the item
under review. Because of these conditions a larger amount of material can
be processed by the group. However, many of the steps that are manda-
tory for an inspection are not mandatory for a walkthrough. Comparing
inspections and walkthroughs one can eliminate the checklist and the



31110.2 Developing a Review Program |

preparation step (this may prove to be a disadvantage to the review team)
for the walkthrough. In addition, for the walkthrough there usually no
mandatory requirement for a formal review report and a defect list. There
is also no formal requirement for a follow-up step. In some cases the
walkthrough is used as a preinspection tool to familiarize the team with
the code or any other item to be reviewed.

There are other types of technical reviews, for example, the round-
robin review where there is a cycling through the review team members
so that everyone gets to participate in an equal manner. For example, in
some forms of the round-robin review everyone would have the oppor-
tunity to play the role of leader. In another instance, every reviewer in a
code walkthrough would lead the group in inspecting a specific line or a
section of the code [6]. In this way inexperienced or more reluctant re-
viewers have a chance to learn more about the review process. In subse-
quent sections of this chapter the general term review will be used in the
main to represent the inspection process, which is the review type most
formal in nature. Where specific details are relevant for other types of
reviews, such as round-robin or walkthroughs, these will be mentioned
in the discussion.

1 0 . 2 Developing a Review Program

Reviews are an effective tool used along with execution-based testing to
support defect detection, increased software quality, and customer satis-
faction. Reviews should be used for evaluating newly developing products
as well as new releases or versions of existing software. If reviews are
conducted on the software artifacts as they are developed throughout the
software life cycle, they serve as filters for each artifact. A multiple set of
filters allows an organization to separate out and eliminate defects, in-
consistencies, ambiguities, and low-quality components early in the soft-
ware life cycle. If we compare the process of defect detection during re-
views and execution-based testing/debugging we can see that the review
process may be more efficient for detecting, locating, and repairing these
defects, especially in the code, for the following reasons:

1. When testing software, unexpected behavior is observed because
of a defect(s) in the code. The symptomatic information is what the de-



312 | Reviews as a Testing Activ ity

veloper works with to find and repair (fix) the defect. In most cases, in
order to locate the defect, the developer must build a mental (internal)
model of the code to determine what it does and how it works. The
developer looks for discrepancies in the code that render it different from
what is expected. A casual relationship must be established between a
found discrepancy in the code, and the unexpected behavior in order to
make a repair. These complex cognitive processes take place in a separate
context from testing (observation of the failure). This is true even if the
developer and tester are the same person. In addition, model building
during testing is often done in haste and under deadline pressures. The
many details involved are not recorded properly, making the likelihood
of incorrect or incomplete fixes higher than during a review.

In contrast reviews are a more orderly process. They concentrate on
stepping through the reviewed item focusing on specific areas. During a
review there is a systematic process in place for building a real-time mental
model of the software item. The reviewers step through this model-
building process as a group. If something unexpected appears it can be
processed in the context of the real-time mental model. There is a direct
link to the incorrect, missing, superfluous item and a line/page/figure that
is of current interest in the inspection. Reviewers know exactly where
they are focused in the document or code and where the problem has
surfaced. They can basically carry out defect detection and defect locali-
zation tasks at the same time. Compare the review process to execution-
based testing and debugging (fault localization), which are two separate
processes. Testing reveals the defect, but its location is usually unknown.
Because of the circumstances that occur during a review it is much easier
fix problems/defects properly in the rework/ follow-up period. The defect
location task, which is sometimes the most difficult and time-consuming
task associated with debugging, has already been done. In addition, the
fixes are more likely to be correct after a review session that a testing
session because of the better quality of the mental models developed, and
also because there is less pressure for a quick fix (the ship date for the
software is further in the future during review time).

2. Reviews also have the advantage of a two-pass approach for defect
detection. Pass 1 has individuals first reading the reviewed item and pass
2 has the item read by the group as a whole. If one individual reviewer



31310.3 The Need for Review Pol ic ies |

did not identify a defect or a problem, others in the group are likely to
find it. The group evaluation also makes false identification of de-
fects/problems less likely. Individual testers/ developers usually work
alone, and only after spending many fruitless hours trying to locate a
defect will they ask a colleague for help.

3. Inspectors have the advantage of the checklist which calls their
attention to specific areas that are defect prone. These are important clues.
Testers/developers may not have such information available.

1 0 . 3 The Need for Review Pol ic ies

TMM level 4 calls for establishment of a formal organizational review
program, although it is recommended that at lower TMM levels reviews
of selected items such as the code take place. The formal review program
may begin initially with plans to train a limited number of review leaders
and formally review one or two key project deliverables. The program
can gradually increase in scope to cover all major life cycle deliverables.
The incremental introduction of reviews allows for cultural adaptation
and for a gradual realization of the benefits of the review program [7].
The implementation of a review program represents a large investment
of organizational resources and changes in organizational polices and
culture. However, in the long run an organization will realize the many
benefits of such a program. This section of the chapter addresses some of
the issues that arise when developing a review program.

Since reviews require many changes in organization processes and
culture, a set of review-related policies must be developed and supported
by management. At TMM level 4 there is an infrastructure in place to
support the review program and its policies. For example, the following
are present:

(i) testing policies with an emphasis on defect detection and quality, and
measurements for controlling and monitoring;

(ii) a test organization with staff devoted to defect detection and quality
issues;



314 | Reviews as a Testing Activ ity

(iii) policies and standards that define requirements, design, test plan, and
other documents;

(iv) organizational culture with a focus on quality products and quality
processes.

All of these are needed for the review program to be successful
Review policies should specify when reviews should take place, what

is to be reviewed, types of reviews that will take place, who is responsible,
what training is required and what the review deliverables are. Review
procedures should define the steps and phases for each type of review.
Policies should ensure that each project has an associated project plan,
test plan, configuration management plan, and a review plan, and/or a
software quality assurance plan. Project plans and the review plans should
ensure that adequate time and resources are available for reviews and that
cycle time is set aside for reviews. Managers need to follow-up and enforce
the stated policies. This becomes very difficult when projects are behind
schedule and over budget. Only strong managerial commitment will lead
to a successful review program.

1 0 . 4 Components of Review Plans

Reviews are development and maintenance activities that require time and
resources. They should be planned so that there is a place for them in the
project schedule. An organization should develop a review plan template
that can be applied to all software projects. The template should specify
the following items for inclusion in the review plan.

• review goals;

• items being reviewed;

• preconditions for the review;

• roles, team size, participants;

• training requirements;

• review steps;



31510.4 Components of Review Plans |

• checklists and other related documents to be disturbed to partici-
pants;

• time requirements;

• the nature of the review log and summary report;

• rework and follow-up.

We will now explore each of these items in more detail.

1 0 . 4 . 1 R e v i e w G o a l s

As in the test plan or any other type of plan, the review planner should
specify the goals to be accomplished by the review. Some general review
goals have been stated in Section 9.0 and include (i) identification of
problem components or components in the software artifact that need
improvement, (ii) identification of specific errors or defects in the software
artifact, (iii) ensuring that the artifact conforms to organizational stan-
dards, and (iv) communication to the staff about the nature of the product
being developed. Additional goals might be to establish traceability with
other project documents, and familiarization with the item being re-
viewed. Goals for inspections and walkthroughs are usually different;
those of walkthroughs are more limited in scope and are usually confined
to identification of defects.

1 0 . 4 . 2 P r e c o n d i t i o n s a n d I t e m s t o B e R e v i e w e d

Given the principal goals of a technical review—early defect detection,
identification of problem areas, and familiarization with software arti-
facts—many software items are candidates for review. In many organi-
zations the items selected for review include:

• requirements documents;

• design documents;

• code;

• test plans (for the multiple levels);

• user manuals;



316 | Reviews as a Testing Activ ity

• training manuals;

• standards documents.

Note that many of these items represent a deliverable of a major life
cycle phase. In fact, many represent project milestones and the review
serves as a progress marker for project progress. Before each of these items
are reviewed certain preconditions usually have to be met. For example,
before a code review is held, the code may have to undergo a successful
compile. The preconditions need to be described in the review policy state-
ment and specified in the review plan for an item. General preconditions
for a review are:

(i) the review of an item(s) is a required activity in the project plan.
(Unplanned reviews are also possible at the request of management,
SQA or software engineers. Review policy statements should include
the conditions for holding an unplanned review.)

(ii) a statement of objectives for the review has been developed;
(iii) the individuals responsible for developing the reviewed item indicate

readiness for the review;
(iv) the review leader believes that the item to be reviewed is sufficiently

complete for the review to be useful [8].

The review planner must also keep in mind that a given item to be
reviewed may be too large and complex for a single review meeting. The
smart planner partitions the review item into components that are of a
size and complexity that allows them to be reviewed in 1–2 hours. This
is the time range in which most reviewers have maximum effectiveness.
For example, the design document for a procedure-oriented system may
be reviewed in parts that encompass:

(i) the overall architectural design;
(ii) data items and module interface design;
(iii) component design.

If the architectural design is complex and/or the number of components
is large, then multiple design review sessions should be scheduled for each.
The project plan should have time allocated for this.



31710.4 Components of Review Plans |

1 0 . 4 . 3 R o l e s , P a r t i c i p a n t s , T e a m S i z e , a n d

T i m e R e q u i r e m e n t s

Two major roles that need filling for a successful review are (i) a leader
or moderator, and (ii) a recorder. These are shown in Figure 10.3. Some
of the responsibilities of the moderator have been described. These include
planning the reviews, managing the review meeting, and issuing the re-
view report. Because of these responsibilities the moderator plays an im-
portant role; the success of the review depends on the experience and
expertise of the moderator. Reviewing a software item is a tedious process
and requires great attention to details. The moderator needs to be sure
that all are prepared for the review and that the review meeting stays on
track. Reviewers often tire and become less effective at detecting errors if
the review time period is too long and the item is too complex for a single
review meeting. The moderator/planner must ensure that a time period is
selected that is appropriate for the size and complexity of the item under
review. There is no set value for a review time period, but a rule of thumb
advises that a review session should not be longer than 2 hours [3]. Re-
view sessions can be scheduled over 2-hour time periods separated by
breaks. The time allocated for a review should be adequate enough to
ensure that the material under review can be adequately covered.

The review recorder has the responsibility for documenting defects,
and recording review findings and recommendations, Other roles may
include a reader who reads or presents the item under review. Readers
are usually the authors or preparers of the item under review. The au-
thor(s) is responsible for performing any rework on the reviewed item. In
a walkthrough type of review, the author may serve as the moderator,
but this is not true for an inspection. All reviewers should be trained in
the review process.

The size of the review team will vary depending type, size, and com-
plexity of the item under review. Again, as with time, there is no fixed
size for a review team. In most cases a size between 3 and 7 is a rule of
thumb, but that depends on the items under review and the experience
level of the review team. Of special importance is the experience of the
review moderator who is responsible for ensuring the material is covered,
the review meeting stays on track, and review outputs are produced. The
minimal team size of 3 ensures that the review will be public [6].



318 | Reviews as a Testing Activ ity

Review leader

Responsibilities

Review planning
Preparing checklists
Distributing review documents
Managing the review meeting
Issuing review reports
Follow-up oversight

Review recorder
Recording and documenting
    problems, defects, findings,
    and recommendations 

Reader

Reviewers

Present review item
Perform any needed rework on
    reviewed item

Attend review training sessions
Prepare for reviews
Participate in review meetings
Evaluate reviewed item
Perform rework where
    appropriate

FIG. 10.3

Review roles.

Organizational policies guide selection of review team members.
Membership may vary with the type of review. As shown in Figure 10.4
the review team can consist of software quality assurance staff members,
testers, and developers (analysts, designers, programmers). In some cases
the size of the review team will be increased to include a specialist in a
particular area related to the reviewed item; in other cases “outsiders”
may be invited to a review to get a more unbiased evaluation of the item.
These outside members may include users/clients. Users/clients should cer-
tainly be present at requirements, user manual, and acceptance test plan
reviews. Some recommend that users also be present at design and even
code reviews. Organizational policy should refer to this issue, keeping in
mind the limited technical knowledge of most users/clients.

In many cases it is wise to invite review team members from groups



31910.4 Components of Review Plans |

Review Team Members

SQA staff Testers
Developers

(Analysts, designers,
programmers)

Users/clients Specialists

= Optional attendance

FIG. 10.4

Review team membership constituency.

that were involved in the preceding and succeeding phases of the life cycle
document being reviewed. These participants could be considered to be
outsiders. For example, if a design document is under review, it would be
useful to invite a requirements team representative and a coding team
member to be a review participant since correctness, consistency, imple-
mentability, and traceability are important issues for this review. In ad-
dition, these attendees can offer insights and perspectives that differ from
the group members that were involved in preparing the current document
under review. It is the author’s option that testers take part in all major
milestone reviews to ensure:

• effective test planning;

• traceability between tests, requirements, design and code elements;

• discussion, and support of testability issues;

• support for software product quality issues;

• the collection and storage of review defect data;

• support for adequate testing of “trouble-prone” areas.

Testers need to especially interact with designers on the issue of testability.
A more testable design is the goal. For example, in an object-oriented
system a tester may request during a design review that additional meth-
ods be included in a class to display its state variables. In this case and



320 | Reviews as a Testing Activ ity

others, it may appear on the surface that this type of design is more ex-
pensive to develop and implement. However, consider that in the long
run if the software is more testable there will be two major positive effects:

(i) the testing effort is likely to be decreased, thus lowering expenses,
and

(ii) the software is likely to be of higher quality, thus increasing customer
satisfaction.

1 0 . 4 . 4 R e v i e w P r o c e d u r e s

For each type of review that an organization wishes to implement, there
should be a set of standardized steps that define the given review proce-
dure. For example, the steps for an inspection are shown in Figure 10.2.
These are initiation, preparation, inspection meeting, reporting results,
and rework and follow-up. For each step in the procedure the activities
and tasks for all the reviewer participants should be defined. The review
plan should refer to the standardized procedures where applicable.

1 0 . 4 . 5 R e v i e w T r a i n i n g

Review participants need training to be effective. Responsibility for re-
viewer training classes usually belongs to the internal technical training
staff. Alternatively, an organization may decide to send its review trainees
to external training courses run by commercial institutions. Review par-
ticipants, and especially those who will be review leaders, need the train-
ing. Test specialists should also receive review training. Suggested topics
for a training program are shown in Figure 10.5 and described below.
Some of the topics can be covered very briefly since it is assumed that the
reviewers (expect for possible users/clients) are all technically proficient.

1 . Rev i ew o f P rocess Concep ts .

Reviewers should understand basic process concepts, the value of process
improvement, and the role of reviews as a product and process improve-
ment tool.



32110.4 Components of Review Plans |

Topic1.
    Basic concepts

Topic 2.
    Review of quality issues

Topic 3.
    Review of standards

Topic 4.
    Understanding the material to be reviewed

Topic 5.
    Defect and problem types

Topic 6.
    Communication and meeting management skills

Topic 7.
    Review documentation and record keeping

Topic 8.
    Special instructions

Topic 9.
    Practice review sessions

Review Training Topics

FIG. 10.5

Topics for review training sessions.

2 . Rev i ew o f Qua l i t y I s sues .

Reviewers should be made familiar with quality attributes such as cor-
rectness, testability, maintainability, usability, security, portability, and
so on, and how can these be evaluated in a review.

3 . Rev i ew o f O rgan i za t i ona l S tandards fo r So f tware Ar t i f ac t s .

Reviewers should be familiar with organizational standards for software
artifacts. For example, what items must be included in a software docu-
ment; what is the correct order and degree of coverage of topics expected;
what types of notations are permitted. Good sources for this material are
IEEE standards and guides [1,9,10].

4 . Unders tand ing the Mate r i a l t o Be Rev iewed .

Concepts of understanding and how to build mental models during com-
prehension of code and software-related documents should be covered.



322 | Reviews as a Testing Activ ity

A critical issue is how fast a reviewed document should be read/checked
by an individual and by the group as a whole. This applies to require-
ments, design, test plans and other documents, as well as source code. A
rate of 5–10 pages/hour or 125–150 LOC/hour for a review group has
been quoted as favorable [7]. Reading rates that are too slow will make
review meetings ineffective with respect to the number of defects found
per unit time. Readings that are too fast will allow defects and problems
to go undetected.

5 . De fec t and Prob lem Types .

Review trainees need to become aware of the most frequently occurring
types of problems or errors that are likely to occur during development.
They need to be aware what their causes are, how they are transformed
into defects, and where they are likely to show up in the individual deliv-
erables. The trainees should become familiar with the defect type cate-
gories, severity levels, and numbers and types of defects found in past
deliverables of similar systems. Review trainees should also be made
aware of certain indicators or clues that a certain type of defect or prob-
lem has occurred [3]. The definitions of defects categories, and mainte-
nance of a defect data base are the responsibilities of the testers and SQA
staff.

6 . Commun ica t i on and Mee t i ng Management Sk i l l s .

These topics are especially important for review leaders. It is their re-
sponsibility to communicate with the review team, the preparers of the
reviewed document, management, and in some cases clients/user group
members. Review leaders need to have strong oral and written commu-
nication skills and also learn how to conduct a review meeting. During a
review meeting there are interactions and expression of opinion from a
group of technically qualified people who often want to be heard. The
review leader must ensure that all are prepared, that the meeting stays on
track, that all get a chance to express their opinions, that the proper
page/code document checking rate is achieved, and that results are re-
corded. Review leaders also must trained so that they can ensure that
authors of the document or artifact being reviewed are not under the
impression that they themselves are being evaluated. The review leader
needs to uphold the organizational view that the purpose of the review is



32310.4 Components of Review Plans |

to support the authors in improving the quality of the item they have
developed. Policy statements to this effect need to be written and ex-
plained to review trainees, especially those who will be review leaders.

Skills in conflict resolution are very useful, since very often reviewers
will have strong opinions and arguments can dominate a review session
unless there is intervention by the leader. There are also issues of power
and control over deliverables and aspects of deliverables and other hidden
agenda that surface during a review meeting that must be handled by the
review leader. In this case people and management skills are necessary,
and sometime these cannot be taught. They come through experience.

7 . Rev i ew Documenta t i on and Reco rd Keep ing .

Review leaders need to learn how to prepare checklists, agendas, and logs
for review meetings. Examples will be provided for some of these docu-
ments later in this chapter. Other examples can be found in Freedman
and Weinberg [6], Myers [11], and Kit [12]. Checklists for inspections
should be appropriate for the item being inspected. Checklists in general
should focus on the following issues:

• most frequent errors;

• completeness of the document;

• correctness of the document;

• adherence to standards.

Section 10.4.5 has a more detailed discussion of checklists.

8 . Spec ia l I ns t ruc t i ons .

During review training there may be some topics that need to be covered
with the review participants. For example, there may be interfaces with
hardware that involve the reviewed item, and reviewers may need some
additional background discussion to be able to evaluate those interfaces.

9 . P rac t i ce Rev i ew Sess i ons .

Review trainees should participate in practice review sessions. There are
very instructive and essential. One option is for instructors to use existing



324 | Reviews as a Testing Activ ity

documents that have been reviewed in the past and have the trainees do
a practice review of these documents. Results can be compared to those
of experienced reviewers, and useful lessons can be learned from problems
identified by the trainees and those that were not. Instructors can discuss
so-called “false positives” which are not true defects but are identified as
such. Trainees can also attend review sessions with experienced reviewers
as observers, to learn review lessons.

In general, training material for review trainees should have adequate
examples, graphics, and homework exercises. Instructors should be pro-
vided with the media equipment needed to properly carry out instruction.
Material can be of the self-paced type, or for group course work.

1 0 . 4 . 6 R e v i e w C h e c k l i s t s

Inspections formally require the use of a checklist of items that serves as
the focal point for review examinations and discussions on both the in-
dividual and group levels. As a precondition for checklist development
an organization should identify the typical types of defects made in past
projects, develop a classification scheme for those defects, and decide on
impact or severity categories for the defects. If no such defect data is
available, staff members need to search the literature, industrial reports,
or the organizational archives to retrieve this type of information.

Checklists are very important for inspectors. They provide structure
and an agenda for the review meeting. They guide the review activities,
identify focus areas for discussion and evaluation, ensure all relevant
items are covered, and help to frame review record keeping and mea-
surement. Reviews are really a two-step process: (i) reviews by individ-
uals, and (ii) reviews by the group. The checklist plays its important role
in both steps. The first step involves the individual reviewer and the review
material. Prior to the review meeting each individual must be provided
with the materials to review and the checklist of items. It is his respon-
sibility to do his homework and individually inspect that document using
the checklist as a guide, and to document any problems he encounters.
When they attend the group meeting which is the second review step,
each reviewer should bring his or her individual list of defect/problems,
and as each item on the checklist is discussed they should comment. Fi-



32510.4 Components of Review Plans |

nally, the reviewers need to come to a consensus on what needs to be
fixed and what remains unchanged.

Each item that undergoes a review requires a different checklist that
addresses the special issues associated with quality evaluation for that
item. However each checklist should have components similar to those
shown in Table 10.1. The first column lists all the defect types or potential
problem areas that may occur in the item under review. Sources for these
defect types are usually data from past projects. Abbreviations for de-
tect/problem types can be developed to simplify the checklist forms. Status
refers to coverage during the review meeting—has the item been dis-
cussed? If so, a check mark is placed in the column. Major or minor are
the two severity or impact levels shown here. Each organization needs to
decide on the severity levels that work for them. Using this simple severity
scale, a defect or problem that is classified as major has a large impact
on product quality; it can cause failure or deviation from specification. A
minor problem has a small impact on these; in general, it would affect a
nonfunctional aspect of the software. The letters M, I, and S indicate
whether a checklist item is missing (M), incorrect (I), or superfluous (S).

In this section we will look at several sample checklists. These are
shown in Tables 10.2–10.5. One example is the general checklist shown
in Table 10.2, which is applicable to almost all software documents. The
checklist is used is to ensure that all documents are complete, correct,
consistent, clear, and concise. Table 10.2 only shows the problem/defect
types component (column) for simplicity’s sake. All the components as
found in Table 10.1 should be present on each checklist form. That also
holds true for the checklists illustrated in Tables 10.3–10.5.

The recorder is responsible for completing the group copy of the
checklist form during the review meeting (as opposed to the individual
checklist form completed during review preparation by each individual
reviewer). The recorder should also keep track of each defect and where
in the document it occurs (line, page, etc.). The group checklist can appear
on a wallboard so that all can see what has been entered. Each individual
should bring to the review meeting his or her own version of the checklist
completed prior to the review meeting.

In addition to using the widely applicable problem/defect types shown
in Table 10.2 each item undergoing review has specific attributes that



326 | Reviews as a Testing Activ ity

should be addressed on a checklist form. Some examples will be given in
the following pages of checklist items appropriate for reviewing different
types of software artifacts.

Requirements Reviews

In addition to covering the items on the general document checklist as
shown in Table 10.2, the following items should be included in the check-
list for a requirements review.

• completeness (have all functional and quality requirements described
in the problem statement been included?);

• correctness (do the requirements reflect the user’s needs? are they
stated without error?);

• consistency (do any requirements contradict each other?);

• clarity (it is very important to identify and clarify any ambiguous
requirements);

• relevance (is the requirement pertinent to the problem area? require-
ments should not be superfluous);

• redundancy (a requirement may be repeated; if it is a duplicate it
should be combined with an equivalent one);

• testability (can each requirement be covered successfully with one or
more test cases? can tests determine if the requirement has been sat-
isfied?);

Problem/defect

type Status Major Minor M I S

TABLE 10 .1

Example components for an inspection

checklist.



32710.4 Components of Review Plans |

Problem/Defect Type: General Checklist

Coverage and completeness
Are all essential items completed?
Have all irrelevant items been omitted?
Is the technical level of each topic addressed properly for this document?
Is there a clear statement of goals for this document? Are the goals consistent with policy?

Correctness
Are there any incorrect items?
Are there any contradictions?
Are there any ambiguities?

Clarity and Consistency
Are the material and statements in the document clear?
Are the examples clear, useful, relevant, correct?
Are the diagrams, graphs, illustrations clear, correct, use the proper notation, effective, in the proper place?
Is the terminology clear, and correct?
Is there a glossary of technical terms that is complete and correct?
Is the writing style clear (nonambiguous)?

References and Aids to Document Comprehension
Is there an abstract or introduction?
Is there a well-placed table of contents?
Are the topics or items broken down in a manner that is easy to follow and is understandable?
Is there a bibliography that is clear, complete and correct?
Is there an index that is clear, complete and correct?
Is the page and figure numbering correct and consistent?

TABLE 10 .2

A sample general review checklist for

software documents.

• feasibility (are requirements implementable given the conditions un-
der which the project will progress?).

Users/clients or their representatives should be present at a require-
ments review to ensure that the requirements truly reflect their needs, and
that the requirements are expressed clearly and completely. It is also very
important for testers to be present at the requirements review. One of
their major responsibilities it to ensure that the requirements are testable.
Very often the master or early versions of the system and acceptance test
plans are included in the requirements review. Here the reviewers/testers
can use a traceability matrix to ensure that each requirement can be cov-
ered by one or more tests. If requirements are not clear, proposing test
cases can be of help in focusing attention on these areas, quantifying



328 | Reviews as a Testing Activ ity

imprecise requirements, and providing general information to help resolve
problems.

Although not on the list above, requirements reviews should also
ensure that the requirements are free of design detail. Requirements focus
on what the system should do, not on how to implement it.

Design Reviews

Designs are often reviewed in one or more stages. It is useful to review
the high level architectural design at first and later review the detailed
design. At each level of design it is important to check that the design is
consistent with the requirements and that it covers all the requirements.
Again the general checklist is applicable with respect to clarity, complete-
ness, correctness and so on. Some specific items that should be checked
for at a design review are:

• a description of the design technique used;

• an explanation of the design notation used;

• evaluation of design alternatives (it is important to establish that de-
sign alternatives have been evaluated, and to determine why this par-
ticular approach was selected);

• quality of the high-level architectural model (all modules and their
relationships should be defined; this includes newly developed mod-
ules, revised modules, COTS components, and any other reused mod-
ules; module coupling and cohesion should be evaluated.);

• description of module interfaces;

• quality of the user interface;

• quality of the user help facilities;

• identification of execution criteria and operational sequences;

• clear description of interfaces between this system and other software
and hardware systems;

• coverage of all functional requirements by design elements;



32910.4 Components of Review Plans |

• coverage of all quality requirements, for example, ease of use, port-
ability, maintainability, security, readability, adaptability, perfor-
mance requirements (storage, response time) by design elements;

• reusability of design components;

• testability (how will the modules, and their interfaces be tested? how
will they be integrated and tested as a complete system?).

For reviewing detailed design the following focus areas should also be
revisited:

• encapsulation, information hiding and inheritance;

• module cohesion and coupling;

• quality of module interface description;

• module reuse.

Both levels of design reviews should cover testability issues as described
above. In addition, measures that are now available such as module com-
plexity, which gives an indication of testing effort, can be used to estimate
the extent of the testing effort. Reviewers should also check traceability
from tests to design elements and to requirements. Some organizations
may re-examine system and integration test plans in the context of the
design elements under review. Preliminary unit test plans can also be ex-
amined along with the design documents to ensure traceability, consis-
tency, and complete coverage. Other issues to be discussed include lan-
guage issues and the appropriateness of the proposed language to
implement the design.

Code Reviews

Code reviews are useful tools for detecting defects and for evaluating code
quality. Some organizations require a clean compile as a precondition for
a code review. The argument is that it is more effective to use an auto-
mated tool to identify syntax errors than to use human experts to perform
this task. Other organizations will argue that a clean compile makes re-



330 | Reviews as a Testing Activ ity

viewers complacent. Under these circumstances reviewers may not be as
diligent in checking for defects since they will assume the compiler has
detected many of them.

Code review checklists can have both general and language-specific
components. The general code review checklist can be used to review code
written in any programming language. There are common quality features
that should be checked no matter what implementation language is se-
lected. Table 10.3 shows a list of items that should be included in a general
code checklist.

The general checklist is followed by a sample checklist that can be
used for a code review for programs written in the C programming lan-
guage. The problem/defect types are shown in Table 10.4. When devel-
oping your own checklist documents be sure to include the other columns
as shown in Table 10.1. The reader should note that since the language-
specific checklist addresses programming-language-specific issues, a dif-
ferent checklist is required for each language used in the organization.

Test Plan Reviews

Test plans are also items that can be reviewed. Some organizations will
review them along with other related documents. For example, a master
test plan and an acceptance test plan could be reviewed with the require-
ments document, the integration and system test plans reviewed with the
design documents, and unit test plans reviewed with detailed design doc-
uments [2]. Other organizations, for example, those that use the Ex-
tended/Modified V-model, may have separate review meetings for each
of the test plans. In Chapter 7 the components of a test plan were dis-
cussed, and the review should insure that all these components are present
and that they are correct, clear, and complete. The general document
checklist can be applied to test plans, and a more specific checklist can
be developed for test-specific issues. An example test plan checklist is
shown in Table 10.4. The test plan checklist is applicable to all levels of
test plans.

Other testing products such as test design specifications, test proce-
dures, and test cases can also be reviewed. These reviews can be held in
conjunction with reviews of other test-related items or other software



33110.4 Components of Review Plans |

Problems/Defect Types: General Code Checklist

Design Issues
Does each unit implement a single function?
Are there instances where the unit should be partitioned?
Is code consistent with detailed design?
Does the code cover detailed design?

Data Items
Is there an input validity check?
Arrays—check array dimensions, boundaries, indices.
Variables—are they all defined, initiated? have correct types and scopes been checked?
Are all variables used?

Computations
Are there computations using variables with inconsistent data types?
Are there mixed-mode computations?
Is the target value of an assignment smaller than the right-hand expression?
Is over- or underflow a possibility (division by zero)?
Are there invalid uses of integers or floating point arithmetic?
Are there comparisons between floating point numbers?
Are there assumptions about the evaluation order in Boolean expressions?
Are the comparison operators correct?

Control Flow Issues
Will the program, module or, unit eventually terminate?
Is there a possibility of an infinite loop, a loop with a premature exit, a loop that never executes?

Interface Issues
Do the number and attributes of the parameters used by a caller match those of the called routine? Is the order
of parameters also correct and consistent in caller and callee?
Does a function or procedure alter a parameter that is only meant as an input parameter?
If there are global variables, do they have corresponding definitions and attributes in all the modules that use
them?

Input/output Issues
Have all files been opened for use?
Are all files properly closed at termination?
If files are declared are their attributes correct?
Are EOF or I/O errors conditions handed correctly?
Is I/O buffer size and record size compatible?

Portability Issues
Is there an assumed character set, and integer or floating point representation?
Are their service calls that may need to be modified?

Error Messages
Have all warnings and informational messages been checked and used appropriately?

Comments/Code Documentation
Has the code been properly documented? are there global, procedure, and line comments where appropriate?
Is the documentation clear, and correct, and does it support understanding?

Code Layout and White Space
Has white space and indentation been used to support understanding of code logic and code intent?

Maintenance
Does each module have a single exit point?
Are the modules easy to change (low coupling and high cohesion)?

TABLE 10 .3

A sample general code review checklist.



332 | Reviews as a Testing Activ ity

Problems/Defect Types C Programming Language Checklist

Data Items
Are all variables lowercase?
Are all variables initialized?
Are variable names consistent, and do they reflect usage?
Are all declarations documented (except for those that are very simple to understand)?
Is each name used for a singe function (except for loop variable names)?
Is the scope of the variable as intended?

Constants
Are all constants in uppercase?
Are all constants defined with a “#define”?
Are all constants used in multiple files defined in an INCLUDE header file?

Pointers
Are pointers declared properly as pointers?
Are the pointers initialized properly?

Control
Are if/then, else, and switch statements used clearly and properly?

Strings
Strings should have proper pointers.
Strings should end with a NULL.

Brackets
All curly brackets should have appropriate indentations and be matched.

Logic Operators
Do all initializations use an “�” and not an “��”?
Check to see that all logic operators are correct, for example, use of �/��, and �.

Computations
Are parentheses used in complex expressions and are they used properly for specifying precedences?
Are shifts used properly?

TABLE 10 .4

A sample code review checklist for C

programs.

items. For example, Hetzel suggests that test specifications be reviewed
with the detailed design document, and that test cases and test procedures
be evaluated at a code review [2].

Additional examples of checklists for reviewing software artifacts can
be found in Hetzel [2], Myers [4,11], Kit [12] and Humphrey [13]. The
IEEE standards for document descriptions also contain helpful informa-
tion for reviewers [9,10]. It is recommended that each organization create
its own checklists that reflect organizational policies and quality goals.



33310.5 Report ing Review Results |

Problems/Defect Types: Test Plan Review

Test Items
Are all items to be tested included in the test plan?
Has each requirement, feature and, design element been covered in the test plan?
Has the testing approach been clearly described?
Have pass/fail criteria been clearly described?
Have suspension and resumption criteria been clearly described?
Have all the test deliverables been included?

Staffing Scheduling and Responsibilities
Have the testing tasks been defined, allocated, and scheduled?
Are the schedules and responsibilities compatible with the overall project schedule?
Have training needs been addressed and provided for in the schedule?

The Test Environment
Has the test environment been described clearly, and does it include hardware and software needs, laboratory
space, data bases, etc.?
Has time for setting up and tearing down the environment been allocated?

Testing Risks
Have all the risks associated with testing the software product been identified and analyzed in the test plan?

Testing Costs
Does the plan account for testing costs?
Are testing costs compatible to those specified in the project plan?

Test Plan Attachments
Have all the test design specifications been completed?
Are they in conformance with organizational standards?
Has a traceability matrix been developed to insure all requirements, features, and design elements have been
covered in the tests?
Have the test cases been specified? are they correct, and complete?
Has there been a description of the design approach for the test cases?
Are the proper links between test cases, test procedures, and test design specifications established?
Have black and white box testing methods been applied properly and appropriately?
Are the tests adequate for each item?
For integration test, has the approach to integration been included, explained, and documented?
Have the test procedures been documented? are they complete and according to standards?
Have posttest documentation requirements been specified?
Have the users been given ample opportunity to give inputs to acceptance test?

TABLE 10 .5

A sample checklist for a test plan

review.

1 0 . 5 Report ing Review Results

Several information-rich items result from technical reviews. These items
are listed below. The items can be bundled together in a single report or



334 | Reviews as a Testing Activ ity

distributed over several distinct reports. Review polices should indicate
the formats of the reports required. The review reports should contain
the following information.

1. For inspections—the group checklist with all items covered and com-
ments relating to each item.

2. For inspections—a status, or summary, report (described below)
signed by all participants.

3. A list of defects found, and classified by type and frequency. Each
defect should be cross-referenced to the line, pages, or figure in the
reviewed document where it occurs.

4. Review metric data (see Section 10.7 for a discussion).

The inspection report on the reviewed item is a document signed by
all the reviewers. It may contain a summary of defects and problems
found and a list of review attendees, and some review measures such as
the time period for the review and the total number of major/minor de-
fects. The reviewers are responsible for the quality of the information in
the written report [6]. There are several status options available to the
review participants on this report. These are:

1. Accept: The reviewed item is accepted in its present form or with
minor rework required that does not need further verification.

2. Conditional accept: The reviewed item needs rework and will be ac-
cepted after the moderator has checked and verified the rework.

3. Reinspect: Considerable rework must be done to the reviewed item.
The inspection needs to be repeated when the rework is done.

Before signing their name to such a inspection report reviewers need
to be sure that all checklist items have been addressed, all defects re-
corded, and all quality issues discussed. This is important for several rea-
sons. Very often when a document has passed an inspection it is viewed
as a baseline item for configuration management, and any changes from
this baseline item need approval from the configuration management
board. In addition, the successful passing of a review usually indicates a
project milestone has been passed, a certain level of quality has been
achieved, and the project has made progress toward meeting its objectives.



33510.5 Report ing Review Results |

A milestone meeting is usually held, and clients are notified of the com-
pletion of the milestone.

If the software item is given a conditional accept or a reinspect, a
follow-up period occurs where the authors must address all the items on
the problem/defect list. The moderator reviews the rework in the case of
a conditional accept. Another inspection meeting is required to reverify
the items in the case of a “reinspect” decision.

For an inspection type of review, one completeness or exit criterion
requires that all identified problems be resolved. Other criteria may be
required by the organization. In addition to the summary report, other
outputs of an inspection include a defect report and an inspection report.
These reports are vital for collecting and organizing review measurement
data. The defect report contains a description of the defects, the defect
type, severity level, and the location of each defect. On the report the
defects can be organized so that their type and occurrence rate is easy to
determine. IEEE standards suggest that the inspection report contain vital
data such as [8]:

(i) number of participants in the review;
(ii) the duration of the meeting;
(iii) size of the item being reviewed (usually LOC or number of pages);
(iv) total preparation time for the inspection team;
(v) status of the reviewed item;
(vi) estimate of rework effort and the estimated date for completion of

the rework.

This data will help an organization to evaluate the effectiveness of the
review process and to make improvements.

The IEEE has recommendations for defect classes [8]. The classes are
based on the reviewed software items’ conformance to:

• standards;

• capability;

• procedures;

• interface;

• description.



336 | Reviews as a Testing Activ ity

A defect class may describe an item as missing, incorrect, or superfluous
as shown in Table 10.1. Other defect classes could describe an item as
ambiguous or inconsistent [8]. Defects should also be ranked in severity,
for example:

(i) major (these would cause the software to fail or deviate from its
specification);

(ii) minor (affects nonfunctional aspects of the software).

A ranking scale for defects can be developed in conjunction with a failure
severity scale as described in Section 9.1.4.

A walkthrough review is considered complete when the entire docu-
ment has been covered or walked through, all defects and suggestions for
improvement have been recorded, and the walkthrough report has been
completed. The walkthrough report lists all the defects and deficiencies,
and contains data such as [8]:

• the walkthrough team members;

• the name of the item being examined;

• the walkthrough objectives;

• list of defects and deficiencies;

• recommendations on how to dispose of, or resolve the deficiencies.

Note that the walkthrough report/completion criteria are not as formal
as those for an inspection. There is no requirement for a signed status
report, and no required follow-up for resolution of deficiencies, although
that could be recommended in the walkthrough report.

A final important item to note: The purpose of a review is to evaluate
a software artifact, not the developer or author of the artifact. Reviews
should not be used to evaluate the performance of a software analyst,
developer, designer, or tester [3]. This important point should be well
established in the review policy. It is essential to adhere to this policy for
the review process to work. If authors of software artifacts believe they
are being evaluated as individuals, the objective and impartial nature of
the review will change, and its effectiveness in revealing problems will be
minimized [3].



33710.7 Review Metr ics |

1 0 . 6 Review, Rework and Fol low-Up

If problems/defects have been identified in the reviewed items there must
be a rework period so that all of these are resolved by the authors of the
reviewed item. This is especially true for inspections where the rework
follow-up period is mandatory. The rework/follow-up periods embody a
set of tasks similar to those associated with fault localization when
applied to code. The problems/defects have been detected and localized
during the review meeting. During rework and follow-up the defects/
problems are repaired and then the item is retested by the review mod-
erator or the review group as a whole. One scenario that may occur during
rework is that a decision to disregard or redesign an extremely problem
prone item has to be made. This may be costly and time consuming, but
may in the long run be the best choice.

In the review follow-up period it is the responsibility of the review
moderator to insure that all the proper rework has been done. The review
summary should specify if the item needs to be reinspected by the mod-
erator, or subject to a rereview by the entire review team when the rework
is completed.

1 0 . 7 Review Metr ics

It is important to collect measurement data related to the review process
so that the review process can be evaluated, made visible as a testing tool,
and improved (made more effective). The defect data collected from a
review is also very useful for predicting product quality, analyzing the
development process, performing defect casual analysis, and establishing
defect prevention activities. The two latter activities are associated with
the higher levels of the TMM and are discussed in Chapter 13.

Some basic measurements that can be collected from any type of re-
view are as follows:

1. Size of the item reviewed. For a code review, size can be measured in
lines of code. For detailed design, lines of pseudo code can be counted.
For other documents, the number of pages can be used as a size mea-
sure. If test cases or test procedures are being reviewed, then the actual
number of these can be counted.



338 | Reviews as a Testing Activ ity

2. The review time. This is usually the time for the group review meeting
in hours.

3. The number of defects found. This can be expressed in many ways.
For example, the total number of defects (major/minor), number of
defects sorted by category, and frequency of occurrence. The defect
categories may be different for the different items that are reviewed.

4. The number of defects that have escaped and were found in later
review and testing activities, and finally in operation by the user. This
will tell you how good your review filtering process was.

These four items can be directly measured. There are other measures that
can be derived from combinations of these measures such as:

5. The number of defects found per hour of review time.
6. The number of defects found per page or per LOC.
7. The LOC or pages of document that were reviewed per hour.

Humphrey describe two additional useful review measures [13]:

8. Defect removal leverage (DRL). This a ratio of the defect detection
rates from two review or test phases and can be expressed as:

Defects/hour (review or test phase X)
DRL �

Defects/hour (review or test phase Y)

Suppose you wanted to compare the relative rates of defect detection
between code review and unit test. You could express this as:

Defects/hour in code review
DRL �

Defects/hour in unit test

The DRL is a simple calculation that provides a great deal of information
about the relative effectiveness of various defect filtering or testing activ-
ities. Another useful measure described by Humphrey is called the phase
yield [13]. This is calculated as:

Phase yield � 100 *

Defects removed in review
or test phase X

Defects removed in phase X � net escapes
from review or test phase X



33910.7 Review Metr ics |

You may not be able to calculate the phase yield until the software is
being used by the clients to determine the actual number of net escapes.
If you limit escapes to include those found through the execution-based
testing phases, then you can estimate the phase yield before the software
goes to the client.

Spensor has used some of these measurements to show the growth of
a software inspection program at Applicon [7]. The program was intro-
duced over a 2-year period in that organization. Among the first year’s
activities were the creation of a toolkit of checklists and handouts, intro-
duction of a 2-day course for inspection leaders, creation of an inspection
database in Excel, support for inspection of software project documents
and code, and the collection and reporting of inspection data monthly to
the engineering staff. In the second year the planned activities included
inspection overview presentations to senior management and project
mangers, mandatory inspection of requirements and specifications for all
major projects, and a requirement that at least 20% of the people in each
project group have inspection leadership training. The inspection mea-
surements and the actual data collected over the 2-year period can be
summarized as follows [7]:

Inspection measurement Data from 2-year period

Number of document
inspections

Increased from 39 to 100

Number of code inspections Increased from 9 to 63
Average time to find and fix a

major problem
Went from 0.8 hours to 0.9 hours

Average effectiveness
(documents)

Increased from 2.3 problems/page
to 2.5 problems/pages

Average effectiveness (code) Went from 28.7 major
problems/KLOC to 53.3 major
problems/KLOC

Average checking rates 9.9 pages/hour (docs), 300
LOC/hour (code) to 9.1
pages/hour (docs), 200
LOC/hour (code)

Number staff completing
inspection leader training

Increased from 48 to 70

Certified leaders Increased from 8 to 28



340 | Reviews as a Testing Activ ity

Note that the checking rates did slow down in the second year; how-
ever, the number of problems identified increased, indicating the slower
rate had a positive impact on the detection of problems. The time to find
a major problem also increased, but the number of problems found in-
creased at a greater rate, again indicating a more effective inspection pro-
cess. The inspection program was declared a success. Many managers
now require inspections of more than the two mandatory documents. The
inspection leader’s role also acquired a great deal of status among the
staff, and emphasis on, and attention to, quality issues has increased.
Collecting, analyzing, and applying review measurements are among the
keys to success reported in the article. The author believes that measure-
ments are important to give added visibility to the benefits of inspections,
and that they are useful for improving and optimizing the inspection
process.

1 0 . 8 Support from the Extended/Modif ied V-Model

A TMM level 4 maturity goal recommends that an organization establish
a review program and apply the review process to major life cycle deliv-
erables. The Extended/Modified V-model as shown in Chapter 1 and
again reproduced here in Figure 10.6 can be used as a framework to
introduce review activities into the development or maintenance process.
According to the model, reviews begin at requirements time and continue
through development at the conclusion of each major life cycle phase.
During execution-based testing phases reviews are conducted at each level
of testing for the associated test plans. Use of the Extended/Modified V-
model is optional, and each organization should establish its own policy
for review scheduling, keeping in mind that it is beneficial to remove
problems as close as possible to their point of origin. Readers should note
that other options for scheduling of test plan reviews are discussed in
Section 10.4.6.

1 0 . 9 The Self-Check or Personal Review

Inspections and walkthroughs are activities where peer groups meet to
evaluate and improve a software artifact. Their introduction goes back



34110.9 The Self-Check or Personal Review |

to early history of programming. One other type of review that has been
used since the origins of programming is the self-check, sometimes called
the desk-check. It was primarily applied to code. Before the advent of
interactive tools, the desk-check was used by programmers to detect de-
fects in order to improve code quality and productivity. The typical de-

Specify requirements

Execute acceptance test

Execute system test

Requirements
review

System acceptance
test plan review/audit

Specify/design Code

System/acceptance tests

Design Execute integration
tests

Design review Integration test plan
review/audit

Specify/design Code

Integration tests

Code
Execute unit

tests

Code reviews Unit test plan
review/audit

Specify/design Code

Unit tests

FIG. 10.6

The Extended/Modified V-model.



342 | Reviews as a Testing Activ ity

velopment scenario in the early days of programming was as follows. A
developer would submit a program for processing (usually on a set of
punch cards) to the computer operator. The program was placed on a
batch-processing queue, and over a period of several hours the program
would be submitted first to the to the compiler, then to a linker, and
finally a loader. After loading, run time software would provide the nec-
essary environment for executing the program in the language it was writ-
ten in. If there were any compile, link, or run-time errors the program
was removed from the batch-processing queue and returned to the de-
veloper. With very little aid from tools, the developer had to identify the
source of the problem. In the case of compile and link errors the developer
would proceed to identify and repair them and resubmit the code. If there
were additional compile or link errors, the program was returned again
over a period of hours. This cycle would be repeated until all compile/link
errors were removed.

When all the compile and link errors were removed, then the program
could be run provided the loader could allocate the needed amount of
memory. If there were run-item errors then the submit, wait, return, re-
pair, and resubmit cycle was repeated to remove logic and other pro-
gramming errors until the program ran correctly. Even for the relatively
noncomplex programs that were developed in the 1960s and 1970s, this
process was very time consuming. The best tool a developer could use to
avoid these multiple cycles was a self- or desk-check of the code. Each
individual developer would read their code carefully, and play computer
(walk through it with test cases) to detect syntax, link, and logic-based
defects. The process was very cost effective and still is!

Unfortunately, with the advent of interactive tools, the self-check has
been eliminated from the personal development process for most software
engineers. From her own personal experience and that of others, the au-
thor recommends this practice to every software engineer for any work
product being developed. In fact, Watts Humphrey includes a personal
design and code review as part of the Personal Software Process (PSP) he
has developed [13]. Humphrey recommends that each software engineer
have personal review goals, define a personal review process, collect in-
dividual review measurements, and use defined checklists for their per-
sonal design and code reviews. He gives a strong argument for the per-
sonal review as being an effective tool for defect detection. On the



34310.10 Reviews and the TMM Crit ical Views |

personal level, review data can also be used for personal process improve-
ment, and for defect analysis and prevention [13]. Figure 10.7 shows the
role of the personal review in a series of quality evaluation steps. Both on
the group and personal levels, reviews are an effective testing activity:
they are cost effective and have many benefits.

1 0 . 1 0 Reviews and the TMM Crit ical Views

The many benefits of reviews have been reported in the literature and in
software engineering texts. The arguments for use of reviews are strong
enough to convince organizations that they should use reviews as a
quality- and productivity-enhancing tool. One of the maturity goals that
must be satisfied to reach level 4 of the TMM is to establish a review
program. This implies that a formal review program needs to be put in
place, supported by policies, resources, training, and requirements for
mandatory reviews of software artifacts. The artifacts selected for man-
datory review should be identified in the review policy statement, and

Personal design review

Group design review

Personal code review

Test

Group code review

FIG. 10.7

A role for the personal review.



344 | Reviews as a Testing Activ ity

should include major life cycle deliverables such as requirements docu-
ments, design documents, code, test plans, and user manuals. The three
critical groups play the following roles in achieving this maturity goal.

Managers ensure that a review policy is developed, documented, and
made available for all interested parties. The policy should describe what
will be reviewed, the type of reviews that are held, which are mandatory,
what are the conditions to hold an unplanned review, what are review
pre- and postconditions, what are review steps, who will attend the review
meeting, what kind of training is necessary for the reviewers, and who
receives the review summary reports. Management should ensure that the
policy supports the impartially of reviews; only an item is being reviewed,
not its authors! Management must also enforce these policies.

A review plan template should be developed for each type of review.
For inspections, checklists should be developed, as well as templates for
summary reports. Problem types need to be classified for data collection
purposes. Problem data should be stored as a part of the project history
and used for execution-based testing planning and later on for defect
prevention activities. Managers need to enforce the mandatory review
requirements for the selected software items. Upper management needs
to work with project managers to ensure that project plans provide time
and resources for reviewing project deliverables. Managers also should
support the review process by providing training, and resources for the
review process.

Testers support the review program by working with management
and software engineers to develop review polices and plans. They serve
as review leaders, review instructors, and review participants as pre-
scribed in the review policy statements. Testers also attend review training
sessions as needed. As review meeting participants, testers give input on
quality issues and are responsible for ensuring that testability require-
ments are addressed. There must be a focus on quality attributes (includ-
ing testability) early in the software life cycle. Testers have responsibilities
for review follow-up work as described in the testing policy, review policy
and review plans. Another important responsibility of the testers is to
work with SQA staff to (i) identify classes and severity levels for review
defects, (ii) analyze and store review defect data, and (iii) develop check-
lists for the reviewed items.



34510.10 Reviews and the TMM Crit ical Views |

Testers should use current and past review defect data to help them
in test planning and test design. This is an important point, not empha-
sized enough when test planning is discussed. The reason is that many
organizations have immature testing processes; they do have regular re-
views; do not classify, collect and adequately store the defect data col-
lected from reviews; and in many cases testers do not attend critical doc-
ument reviews meetings. At TMM level 4 there is a framework in place
to collect, store, analyze, and apply this important data.

Problem and defect data gathered during reviews has the potential to
guide testers in the development of test plans. For example, in a design
review, high complexity modules are identified, as well as areas of high
coupling and low cohesion. Faulty data and control structures, and faulty
module interfaces, are also identified. These are areas where a tester can
invest testing resources and plan appropriate tests to ensure that these
problems have not been carried over into the program code. Another
review-related scenario that testers may be involved in is the case where
reviewed code is still found to be extremely faulty during testing. A re-
peated inspection may be called for. Decisions will also have to be made
on the wisdom of continuing the testing effort for this item or disregard-
ing/redesigning the faulty item.

Users and clients support the review process by participating in re-
view training and attending review sessions as indicated in the review
policy. For example, attendance at requirements, acceptance test plan,
and user manual reviews are vital to ensure software quality and satis-
faction of user needs and requirements. Communication between clients
and developers, testers, and analysts is greatly fostered during review
activities.

K E Y T E R M S

Review

Testing

E X E R C I S E S

1. Which software artifacts are candidates for review, and why?



346 | Reviews as a Testing Activ ity

2. A software engineering group is developing a mission-critical software system

that guides a commercial rocket to its proper destination. This is a new product;

the group and its parent organization have never built such a product before. There

is a debate among the group as to whether an inspection or walkthrough is the

best way to evaluate the quality of the code. The company standards are ambig-

uous as to which review type should be used here. Which would you recommend

and why?

3. What size of a review team would you recommend for the project in Problem

2, and why? What are the different roles for members of the review team? Which

groups should send representatives to participate in the review?

4. Suppose you were a member of a technical training team. Describe the topics

that you would include for discussion in training sessions for review leaders.

5. Describe the special role of the review recorder.

6. Discuss the importance of review follow-ups and rework.

7. Based on knowledge of your own coding process and the types of defects that

typically appear in your code, design a personal code checklist. Apply it in con-

junction with your next programming project, and record your observations. Record

your conclusions as to its usefulness for reducing the number of defects in your

code.

8. Arrange a practice code inspection session with your classmates or colleagues.

Use a personal checklist, or one developed by your organization. If there are train-

ing materials, your inspection team and you should familiarize yourselves with

them. Review code you have developed or code developed by a team member.

Appoint a leader and recorder, and note the time to inspect the code, the number

of lines inspected, and the number and types of defects found. Analyze your find-

ings and write a review report describing the strengths and weaknesses of your

inspection procedure.

9. Your organization has just begun a review program. What are some of the

metrics you would recommend for collection to evaluate the effectiveness of the

program?

10. There is some debate as to whether code should be compiled and then re-

viewed, or vice versa. Based on your own experiences give an opinion on this

matter.



34710.10 Reviews and the TMM Crit ical Views |

11. Suppose a group of testers has found 10 defects in unit test and 5 in integra-

tion test. What is the DRL for these test phases with unit test as the base for

comparison? For the same piece of code, under review prior to test, 35 defects

were detected. Compute the DRL for the review versus unit test. Based only on

this information, which defect-filtering activity was most effective, and why? If

we consider the defects found in unit and integration tests to be code review

phase escapes, what is the phase yield for the code review? What does the phase

yield measurement tell us about the relative effectiveness of a particular testing/

review activity?

12. How can adaptation of a model such as the Extended/Modified V-model help

support a review program?

13. How can review data from past projects be used to aid testers working on

current projects?

R E F E R E N C E S

[1] IEEE Standards Collection for Software Engineer-
ing, 1994 edition, Institute of Electrical and Electronics
Engineers, Inc., New York, 1994.

[2] B. Hetzel, The Complete Guide to Software Test-
ing, second edition, QED Information Sciences, Inc.,
Wesley, MA. 1988.

[3] M. Fagen, “Design and code inspections to reduce
errors in program development,” IBM Systems Jour-
nal, Vol. 15, No. 3, 1976, pp. 182–211.

[4] G. Myers, “A controlled experiment in program
testing and code walkthroughs/inspections,” CACM,
1978, pp. 760–768.

[5] C. Sauer, D. Jeffery, L. Land, P. Yetton, “The ef-
fectiveness of software development technical reviews:
a behaviorally motivated program of research,” IEEE
Transactions on Software Engineering, Vol. 26, No. 1,
2000, pp. 1–14.

[6] P. Freedman, G. Weinberg, Handbook of Walk-
throughs, Inspections, and Technical Reviews, Dorest
House Publishing, New York, 1990.

[7] B. Spencer, “Software inspections at Applicon,”
CrossTalk, Journal of Defense Software Engineering,
Vol. 7, No. 10. Oct., 1994, pp. 11–17.

[8] IEEE Standard for Software Reviews and Audits
(IEEE Std 1028-1988), copyright 1989 by IEEE, all
rights reserved.

[9] IEEE Recommended Practices for Software Design
Descriptions (ANSI/IEEE Std 1016–1987), copyright
1987 by IEEE, all rights reserved.

[10] IEEE Recommended Practices for Software Re-
quirements Specification (IEEE Std 830–1993). Copy-
right 1994 by IEEE, all rights reserved.

[11] G. Myers, The Art of Software Testing, John Wi-
ley, New York, 1979. E. Kit

[12] E. Kit, Software Testing in the Real World,
Addison-Wesley, Reading, MA, 1995.

[13] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.



This page intentionally left blank 



A M E A S U R E M E N T P R O G R A M

T O S U P P O R T P R O D U C T

A N D P R O C E S S Q U A L I T Y

1 1 . 0 The Need for a Formal Test Measurement Program

In preceding chapters of this text procedures and practices have been
presented that support increasing levels of testing process proficiency, as
well as improved software product quality. These procedures and prac-
tices have been discussed within the framework of TMM maturity levels
and goals. In order to implement these goals, management and staff have
worked together to:

• develop testing and debugging policies;

• develop training programs;

• assemble teams of qualified staff;



350 | A Measurement Program to Support Product and Process Qual ity

• define, collect, and apply simple test-related measurements for con-
trolling and monitoring of tests;

• implement test planning;

• institutionalize basic testing techniques and methods;

• develop a technical review program;

• implement a simple defect repository.

Achieving these goals has had the benefit of putting into place a technical,
managerial, and staffing infrastructure capable of continuous support
for testing process improvements. With this infrastructure in place, a for-
mal test measurement program can be established to encourage further
growth and accomplishment. Such a program is essential for engineering
both product and process. Indeed, if we consider ourselves to be members
of an engineering profession then measurements and a measurement pro-
gram must assume a central role in our practice. In our field, measure-
ments are essential for achieving engineering goals such as:

• quantitative management of the testing process;

• evaluating the quality and effectiveness of the testing process;

• assessing the productivity of the testing personnel;

• estimating and tracking testing costs;

• monitoring test process improvement efforts;

• developing quantitative quality goals for software work products;

• supporting software quality evaluation;

• test process optimization;

• defect prevention;

• software quality control.

Note that a formal test measurement program in the context of these goals
has two focal areas: it supports both process and product quality evalu-
ation and improvement.



35111.0 The Need for a Formal Test Measurement Program |

A formal test measurement program must be carefully planned and
managed. Measurements to be collected should be identified, and deci-
sions made on how they should be organized, stored, and used, and by
whom. Intelligent tools should support data collection and analysis so
that software engineers do not feel burdened by the measurement process
and can give it their fullest support.

This text has covered measurement topics in previous chapters. For
example, Chapter 9 introduced measurements in the context of the TMM
level 3 maturity goal, “controlling and monitoring of the testing process.”
Chapter 9 also suggested that an organization should begin to collect data
related to the testing process starting at TMM level 1. Some initial mea-
surements that have been suggested include:

Size of the software product (KLOC)
Number of requirements or features to be tested
Number of incident reports
Number of defects/KLOC
Number of test cases developed
Costs for each testing task
Number of test cases executed

These measurements, and others as described in Chapter 9, are both pro-
cess and product related. For example, measurements in the categories of
monitoring test status, tester productivity, and testing costs are useful for
understanding the current testing process state, showing project trends,
and monitoring improvement efforts. Measurements relating to errors,
faults (defects), and failures as described in Chapter 9 can help testers
to evaluate product quality. Additional defect-related measures are de-
scribed in Chapter 3. In that chapter it was recommended that an orga-
nization at the lower TMM levels begin to assemble defect-related mea-
surements in the context of a simple defect repository. The recommended
practice was that defects found in each project should be catalogued with
respect to attributes such as defect type, phase injected, phase detected,
and impact on the users. Other defect-related data such as frequency of
occurrence and time to repair were also recommended for inclusion.

Realizing the need for measurement, and collecting and applying a
simple group of measurements, are first steps for developing a measure-
ment program in an organization. Organizations at TMM levels 1



352 | A Measurement Program to Support Product and Process Qual ity

through 3 usually find themselves at this stage of measurement practice.
When the first steps have been taken, an organization needs to evolve
further in its measurement practices. In fact, a hierarchy of metrics ac-
ceptance and practice has been described by Grady [1] derived from his
experiences at Hewlett-Packard (HP). He observed that a measurement
(metrics) program evolves and passes through the following phases:

(i) acceptance of the need for measurement;
(ii) project trend data available;
(iii) common terminology; data comparisons;
(iv) experiments validating best practices with data;
(v) data collection automated; analysis with expert system support.

These phases imply that (i) an organization should realize that measure-
ment can support improvement in process and product quality, (ii) mea-
surements should be used to track project direction and for guidance in
future related projects, (iii) measurements should be defined for the over-
all organization so data can be compared over many projects (so you
aren’t comparing apples and oranges), (iv) measurements should be used
to evaluate and then validate best practices, and (v) automated tools (with
intelligent components) should be available to support software engineers
in collecting and analyzing data.

In order to achieve quantitative quality control of both process and
product, measurements additional to those suggested in Chapters 3 and
9 are needed. Moving toward TMM level 4, an organization will realize
the need for these additional measures to achieve greater levels of test
process maturity. Anticipating these needs the TMM calls for a formal
test measurement program as a maturity goal to be achieved at level 4.

For most organizations it may be practical to implement such a test
measurement program as a supplement to a general measurement pro-
gram. A general measurement program can support overall process im-
provement. This is illustrated in the Capability Maturity Model which
has associated with each Key Process Area (KPA) a common feature called
“measurement and analysis” [2]. Implicit in the CMM structure is the
importance of measurement for process evaluation and improvement
and for achieving higher levels of software quality. In the TMM the



35311.1 Some Measurement-Related Definit ions |

need for a test measurement program is more explicit as reflected in the
measurement-related maturity goal at TMM level 4. Implicit support for
measurement comes from recommendations for measurement collection
and application at TMM levels 3 and below.

1 1 . 1 Some Measurement-Related Definit ions

Before we begin the discussion of steps to initiate a measurement pro-
gram, some basic definitions need to be presented. Two of these defini-
tions appear in Chapter 2 and will be repeated here for review. Relevant
definitions also appear in IEEE standards documents, and in a metrics
text and a paper by Fenton. [3–6].

Measure

A measure is an empirical objective assignment of a number (or symbol) to an

entity to characterize a particular attribute.

Measurement

Measurement is the act of measuring.

Metr ic

(A similar definition can be applied to the term “software quality
metric.”)

A metric is a quantitative measure of the degree to which a system, system com-

ponent, or process possesses a given attribute [4].

Qual i ty attr ibute

A characteristic of software or a genetic term that is applied to quality factor,

subfactor, or metric value [3].



354 | A Measurement Program to Support Product and Process Qual ity

Qual i ty factor

A management-oriented attribute of a piece of software that contributes to its

quality [3].

Qual i ty subfactor

A decomposition of a quality factor or subfactor into its technical components [3].

Qual i ty requirement

A requirement that a software attribute be present in the software to satisfy a

contract, standard, specification, or any other formal or binding document [3].

1 1 . 2 In it iat ing a Measurement Program

How does one begin to implement a formal measurement program? A first
step would be to form a measurement committee, team, or task force to
plan for the program and oversee its implementation. This team couldhave
members from management, development, testing, process, and software
quality assurance groups. The work of Grady and Caswell as described in
their text entitled Software Metrics: Establishing aCompanywideProgram
is a useful guide to initiate such a effort. Their work is based on experiences
with a very successful measurement program initiated at Hewlett-Packard
(HP) [7]. They describe the key role of a team called the “Metrics Council”
which was responsible for implementing the program.

The major steps useful for putting a general measurement program
into place are described in the Grady and Caswell text [7]. These steps,
adapted from the text, are shown in Figure 11.1, and are described here
with permission from Pearson Education. The following discussion of the
steps is augmented with comments relating to a test measurement com-
ponent. Keep in mind that the measurement program phases described
below can be implemented as:

• a general measurement program with a test measurement program as
a component;

• a stand-alone test measurement program.



35511.2 Init iat ing a Measurement Program |

Test
engineers SQA

Software
engineers

Measurement group

Process
engineers

Initiation and oversight Define goals

Feedback loop

1.

Assign responsibility2.

Do homework3.

Define initial measures4.

Be sales rep5.

Acquire tools6.

Train staff7.

Give visibility8.

Create database9.

Evolution and
continuous support

10.

FIG. 11.1

Phases in establishing and maintaining

a measurement program from Software

Metrics: Establishing a Companywide

Program by Grady and Caswell.

Adapted with permission from Pearson

Education, Upper Saddle River, NJ [7].

The latter could work well in an organization that lacks a general mea-
surement program, and is working on achieving TMM maturity goals. In
this case the organization may wish to begin with the implementation of
a specialized test-oriented measurement program that will eventually
evolve into a general measurement program. Under these circumstances,
where there are limited resources, this approach may be very attractive.

The measurement program steps as described by Grady and Caswell
are as follows [7]:



356 | A Measurement Program to Support Product and Process Qual ity

1 . De f i ne Company /P ro j ec t Goa l s w i th Respec t t o the

Measuremen t P rog ram.

An organization should have some clear indication of goals to be achieved
with respect to the measurement program. The goal statement should
answer questions such as the purpose of the program, what the measure-
ments will be used for, who will use them, how much the organization is
willing to invest in the program, what are the benefits/risks of a program,
which levels of management support the program, and what is the priority
level of the program?

For the testing domain, testing measurement program goals should
be established. These can supplement a test or SQA policy statement.

2 . Ass ign Respons ib i l i t y .

The organization should decide who will be responsible for implementing
and overseeing the measurement program. This decision indicates the
functional organization/group and specific members of that organiza-
tion/group responsible for carrying out measurement goals and policies.
The constituency of a measurement program team could include members
from development, test, process improvement, and/or a software quality
assurance group. The extent of the group depends on the size of the or-
ganization, its structure, the resources it is willing to expend, and the
scope of the measurement program.

Responsible staff should assemble a measurement program plan that
outlines the goals, procedures, resources, staff, tasks, and costs involved.
Assigning responsibilities helps to give visibility to the measurement pro-
gram, and supports the cultural changes it invokes. The group responsible
for measurement will also be the change agents and will support the ad-
aptation of the metrics program throughout the organization. Grady and
Caswell compare the role of the measurement program team to that of a
team of sale representatives (see item 5), in light of their responsibility to
sell the usefulness of the program to managers, developers, testers, and
other technical personnel.

A good approach to developing a stand-alone test measurement pro-
gram is to have it fall under the umbrella of the testing organization,
possibly in conjunction with SQA staff. This group should define the
measures to collect, design forms to collect the measures, select tools for
assistance in collection and analysis, and contact the technical training



35711.2 Init iat ing a Measurement Program |

group to provide proper training as described in phase 7 below. Specific
personnel who will collect, analyze, and apply the measurements should
be identified. As part of their measurement program responsibilities, test
personal should be involved in collecting defect data, and they should
take part in establishing and maintaining the defect repository.

3 . Ga the r Background Mate r i a l .

To support the developing measurement program, measurement group
members and responsible staff should search the literature to identify use-
ful measurements and the procedures and practices required to support
the specific objectives of their organization. Measures that support pro-
cess and product quality evaluation allow for the observation of trends
and support estimations using data from past projects are particularity
useful. For guidance in this area, books by Grady [1] and by Grady and
Caswell [7] are very helpful. These books have an extensive bibliography
with many sources and references. For testers, a useful source is Chapter
9 of this text and sections at the end of this chapter which provide an
ample collection of measurements. Additional references are found in the
appendices of this text. Perry also has a list of test measurements [8].

In terms of homework to be done, it is also useful for the measure-
ment group to consult the IEEE standards document, Software Quality
Metrics Methodology, which describes an approach to establishing qual-
ity requirements and identifying quality metrics [3]. In this context, the
standards document contains a framework for defining quality factors,
subfactors, and metrics that can be applied to measuring the quality of a
software system. Finally, the measurement team may also want to consult
the IEEE standard for Software Productivity Metrics as an additional
information source [9].

4 . De f i ne the In i t i a l Me t r i c s to Co l l ec t .

Given that background information has been collected, goals for the pro-
gram have been set, and responsibilities assigned, the measurement group
will next need to identify and define an initial set of measurements. These
should be simple, easy to collect and use, and cost effective. The group
needs to be sure that the selected metrics are valid, that is, that each



358 | A Measurement Program to Support Product and Process Qual ity

measure is a proper numerical characteristic of the claimed attribute [5].
For example, a valid measure of the attribute program length must really
be a measure of that characteristic; it should not contradict an intuitive
notion of what length is. Fenton has a discussion of how validation has
been performed for existing metrics [5].

Metrics related to software size, number of defects, and effort are
recommended by Grady and Caswell to initiate the measurement pro-
gram. In the test measurement domain these can be mapped to measures
such as the size of test harness (lines of test harness code), number of test
cases developed, number of test cases executed/unit time, number of de-
fects/lines of code, and costs of testing tasks.

The metrics need to be standardized for overall organizational use.
For example, if software engineers are collecting measurements on soft-
ware size the measurement group will need to decide on units for size. If
a line of code is used as a unit, then the group must define what is meant
by a line of code, and how to count a line of code. Line-counting tools
that are based on coding and counting standards will greatly facilitate the
collection of size measures.

In addition to the standards, the measurement group will also need
to design forms for collecting the data that can be applied organization-
wide. At Hewlett-Packard the forms defined a common terminology for
the organization. These were filled out and sent to the designated group
or team which incorporated the data into a database. An example form
for collecting size data is found in Figure 11.2.

5 . Be a Sa les Represen ta t i ve .

This is the measurement program development phase where the team
takes on a salesman’s role. They will need to convince the members of
the technical staff of the usefulness of the measures, starting with the
initial set. If the measurement team is convincing, then the staff will be
motivated and later commit to implementing a more extensive set of mea-
surements. Project managers/test managers should also be convinced of
measurement benefits so that they will allocate resources for measurement
collection and analysis, and apply the measurements to evaluate and im-
prove process and product quality.



35911.2 Init iat ing a Measurement Program |

Product Identifier ___________
Name _____________________
Release Number ____________

Programming Language ___________
Date  ___________________________
Line Counting Tool  ______________

Number of compiler directives

Number of data declarations

Number of executable lines

Number of noncommented source lines (subtotal)

Number of comment lines

Number of blank lines

Total lines

Lines of documentation

The X Corporation
Size Measurement Form

FIG. 11.2

Sample measurement collection form.

6 . Acqu i re Too l s fo r Au tomated Co l l ec t i on and Ana l ys i s .

To ease the burden that measurement imposes on the technical staff, tools
should be acquired or developed in-house to facilitate the data collec-
tion/analysis process. The tools can simplify data collection, increase the
accuracy of the data, reduce time expended, and support consistency and
completeness. For the testing domain tools such as coverage analyzers
(see Chapter 14) can greatly facilitate measurement of the degree of cov-
erage during testing. Tools that perform statistical analysis, draw plots,
and output trend reports are also very useful.

7 . T ra in the S ta f f .

At TMM level 3 a technical training program is in place to support this
measurement program requirement. The presence of a training program



360 | A Measurement Program to Support Product and Process Qual ity

in the context of the TMM introduces the staff to quality issues, and
facilitates preparing developers/testers for the collection and analysis of
measurement data and the use of measurement tools (see Chapter 8). The
CMM also calls for a training program as one of its Key Process Areas
(KPA) at CMM level 3 [2]. This program should support metrics training.
If an organization does not have a training program, one should be
established that includes full coverage of quality and measurement
concepts.

Training gives visibility to the measurement program, and supports
the accurate and consistent collection and analysis of the data. With
proper training staff members will gain an appreciation of the benefits of
the measurement program. Training also helps to ensure that the mea-
surement program will be applied across the organization.

Another issue that needs to be addressed here is a human or cultural
issue—people do not like to be measured. Initially they may have a very
negative view of the measurement program. Properly trained staff and
management need to ensure that goals for all measurements are specified
and that anonymity of individuals is retained where possible. In order to
get the full cooperation of all concerned staff members they need to be
assured that the measures collected will not be used against them. Man-
agement and trained staff should set up the proper cultural environment
to support the measurement program. A major task of the measurement
program sales representatives as described in phase 5 is to insure that all
of these concerns are addressed.

8 . G i ve V i s i b i l i t y t o Measuremen t P rog ram Successes ,

and Promote the Exchange o f Ideas .

Successful application of measurements should be made visible within the
organization. This promotes motivation and pride in the program for the
participants and attracts other interested parties. A newsletter, and/or a
series of internal presentations, can be used to promote the exchange of
ideas. Outside publication of books and papers also promotes this goal.

9 . C rea te Measuremen t Da tabases .

Data is an organizational asset! Therefore the measurements collected
should be stored in one or more databases so the information is available
for use in current and future projects. Storing the measurement data sys-



36111.2 Init iat ing a Measurement Program |

tematically using a database system will promote standardized data def-
initions and data usage throughout the organization for purposes such
as:

• process analysis and improvement efforts;

• defect prevention activities;

• trend analysis;

• software quality evaluation and improvement;

• planning/cost/effort estimation.

The measurement team must ensure that the measurements are validated
before being stored and used for decision making. A discussion of mea-
surement validation is beyond the scope of this book. Good sources of
material on this subject include books by Grady and Caswell, Fenton, and
IEEE standards documents [3,5,7].

Many different kinds of measurements may be collected and utilized
by an organization, and this may result in the need for more that one
database system to store and retrieve the measurement information. For
example, there may be a project database, a test database, a review da-
tabase, and a detect database (repository). A test database is a good place
to store test measurements from all projects, for example, measurements
such as:

Degree of statement, branch, data flow, basis path, etc., coverage—
planned/actual

Number or degree of requirements or features covered—planned/
actual

Number of planned test cases
Number of planned tests cases executed and passed
Size of the test harness (LOC)
Estimated time and/or budget for each testing task
Actual time/and or budget for each testing task
Number of test cases developed/unit time

Many other test-related measurements are useful and could be included



362 | A Measurement Program to Support Product and Process Qual ity

in such a database. Section 11.4 describes a more complete set of test-
related measurements that are appropriate for each of the TMM levels.

As part of the discussion of measurement databases we return to the
defect repository, which is essentially a database for storing and retrieving
defect-related measurements. The benefits of having this information
available were described in Chapter 3. The presence of a test organization
and training and review programs as described for TMM level 3 supports
the development and maintenance of the defect repository. The existence
of the formal measurement program called for at TMM level 4 also gives
strong support for the evolution of such a repository. An organization at
TMM level 4 is in the position of having dedicated and trained testing
staff, and in the context of the measurement program these staff members
can (i) refine an existing classification taxonomy for the defects developed
at lower TMM levels; and (ii) develop standards that specify the infor-
mation to be stored with each unit of defect data. Figure 11.3 shows the
contents of an example defect record suitable for a defect database or-
ganized by project. Additional information can be added to a defect rec-
ord when the practice of defect causal analysis is introduced at TMM
level 5 (see discussion of defect prevention in Chapter 13).

In addition to defect, review, and test data, there are many other types
of measurements that can be associated with organizational projects. As
stated in phase 4 of the measurement program description, an organiza-
tion must decide on which measurements are most useful to achieve its
goals. The costs and benefits of collecting these measurements, and main-
taining the measurement databases, should be evaluated. After a mea-
surement is deemed to be beneficial, decisions should be made on how
the measurement will be validated, stored, and utilized.

10 . P rov ide Con t i nuous Suppor t f o r the Measuremen t P rog ram.

A measurement program is not a static entity. For a measurement pro-
gram to contribute to organizational efforts for product and process im-
provement on a continual basis it needs a permanent group of overseers
who will carry out phases 1–9 in response to the continuous evolution of
organizational polices and goals. New measures may be introduced, and
existing measures and measurement standards may be modified or retired.
Hewlett-Packard (HP) has a Metrics Council which initiated, and contin-



36311.2 Init iat ing a Measurement Program |

Defect ID

Date detected

Project ID (product name, release ID)

Defect type

Location of occurrence (module ID)

Defect origin

Phase injected

Phase detected

Symptoms (description of SW behavior)

Defect repair time/cost of repair

Tester/inspector name(s)

Identifier of related problem report

Defect Repository

FIG. 11.3

Sample defect record contents.

ues to oversee, its measurement program [7]. The council has about 20
members selected from various HP divisions representing developers and
quality assurance groups. Since the measurement program was put in
place the council has continued to meet about twice a year, one time for
a major meeting that lasts over several days and features workshops and
speakers. A minor meeting is also scheduled principally for information
exchange and recognition of current measurement efforts. The council
sees its principal missions as:

• being responsible for measurement standards change and approval;

• keeping abreast of research efforts;

• performing measurement-related experiments and reporting results;

• publication of metrics information and results internally;

• keeping the measurement program visible throughout the
organization;



364 | A Measurement Program to Support Product and Process Qual ity

• providing motivation and enthusiasm to staff;

• being actively involved in software process improvement efforts.

In addition to the Metrics Council at HP, a body called the Software
Engineering Lab (SEL) continually supports the measurement program.
It works with members of the council, resolving critical issues and moni-
toring action items that surface during the council meetings. The SEL also
provides references/papers from the literature to the council in support of
phase 3 activities.

Each organization needs to decide on a group/team structure that will
provide continuous support for its measurement program. The structure
should be a good fit in terms of the organizational units, and available
resources and goals for the program. A variety of staff should be selected
for membership in the group; for example, developers, testers, process
engineers, and software quality assurance group members as shown in
Figure 11.1. There are major costs associated with setting up such a pro-
gram, but the benefits are well documented [1,2,7].

1 1 . 3 Software Qual ity Evaluation

Developing a test measurement program is one of the maturity goals to
be achieved at TMM level 4. Another related maturity goal at level 4 calls
for software quality evaluation to ensure that the software meets its re-
quirements and that the customer is satisfied with the product. One of
the purposes of software quality evaluation at this level of the TMM is
to relate software quality issues to the adequacy of the testing process.
Software quality evaluation involves defining quality attributes, quality
metrics, and measurable quality goals for evaluating software work prod-
ucts. Quality goals are tied to testing process adequacy since a mature
testing process must lead to software that is at least correct, reliable, us-
able, maintainable, portable, and secure.

Software quality evaluation is supported by having a dedicated test-
ing group, technical training, a review program, and a measurement pro-
gram in place. Addressing the maturity goals at each level of the TMM
will ensure that the necessary staff and programs are part of the organi-
zational infrastructure.



36511.3 Software Qual ity Evaluation |

Each software product will have different quality requirements.
Therefore, test and quality plans should include a specification of tests
(both static and dynamic) that will ensure that the quality requirements
are met. Quality requirements are often expressed in terms of quality
factors such as reliability, functionality, maintainability, and usability.
Some of these may not directly measurable, and so they need to be de-
composed further into quality subfactors and finally into a set of metrics.
This type of decomposition hierarchy is shown in Figure 11.4. It is
adapted from material discussed in the IEEE Standard for a Software
Quality Metrics Methodology [3].

To examine the nature of a decomposition we will use the quality
factor “maintainability” as our first example. Maintainability is defined
in IEEE standards as ‘‘an attribute that relates to the amount of effort
needed to make changes in the software’’ [3]. Maintainability, according
to the standard, can be partitioned into the quality subfactors: testability,
correctability, and expandability.

Testability is usually described as an indication of the degree of testing
effort required.

Correctability is described as the degree of effort required to correct
errors in the software and to handle user complaints.

Expandability is the degree of effort required to improve or modify
the efficiency or functions of the software.

Each of these subfactors have measures associated with them such as
time to close a problem report, number of test cases required to achieve
branch coverage, change count, and change size [3].

Another decomposition example is the quality factor functionality
which is described as ‘‘an attribute that relates to the existence of certain
properties and functions that satisfy stated or implied user needs.’’ It can
be decomposed into the subfactors [3]:

Completeness: The degree to which the software possesses the necessary
and sufficient functions to satisfy the users needs.

Correctness: The degree to which the software performs its required func-
tions.

Security: The degree to which the software can detect and prevent
information leak, information loss, illegal use, and system resource
destruction.



366 | A Measurement Program to Support Product and Process Qual ity

Software system-quality
requirements

Quality factor

Quality factor

Quality factor

Quality
subfactors

Metric Metric Metric

FIG. 11.4

A quality requirement decomposition

scheme [3].

Compatibility: The degree to which new software can be installed without
changing environments and conditions that were prepared for the re-
placed software.

Interoperability: The degree to which the software can be connected easily
with other systems and operated.

These subfactors also have measures associated with them that can be
collected for software quality evaluation. For example, completeness can
be estimated using the ratio of number of completed documents or soft-
ware components to the total number of planned documents or software
components.

In addition to maintainability and functionality, the IEEE standard
document for Software Quality Metrics Methodology also has examples
of other quality factors such as efficiency, portability, reliability, and us-
ability [3]. The document also describes the subfactors associated with
these factors. For each of these selected there will be a group of measure-



36711.3 Software Qual ity Evaluation |

ments that can be defined for them in the context of a measurement pro-
gram (an iteration of phase 4). The standards document also describes a
five-step methodology that guides an organization in establishing quality
requirements, applying software metrics that relate to these requirements,
and analyzing and validating the results. These steps can be applied by
an organization that is addressing the TMM level 4 maturity goal of
“software quality evaluation.” The steps support the development of
quality requirements as specified in the TMM. In this context the TMM
recommends that:

• resources be allocated in project, test, and quality plans so that quality
requirements can be achieved;

• client input for the development of the requirements is essential, and
should be solicited;

• acceptance test(s) be the setting in which the user/client group can
assess whether the quality requirements have been met.

The five steps in the IEEE-recommended methodology are shown in
Figure 11.5 and are described below [3]. As the reader proceeds through
the steps the importance of, and interdependencies between, a measure-
ment program, a training program, and dedicated testing staff will be-
come apparent.

1 . Es tab l i sh So f tware Qua l i t y Requ i remen ts .

This requires a list of quality factors to be selected, prioritized, and quan-
tified at the start of product development or when changes are being made
to an existing product. The quality requirements should be represented
in the form of direct or predictive values, for example, reliability as
“mean-time-to-failure,” which can be measured directly or “number of
design and code defects,” which may be an indicator or predictor of
reliability.

The requirements are used to guide and monitor product develop-
ment. Clients should be part of the team that establishes the requirements.
The requirements should be prioritized and their feasibility analyzed.
Conflicting requirements should be identified and the conflicts resolved.
Clients should also actively participate in acceptance testing where the



368 | A Measurement Program to Support Product and Process Qual ity

Software quality metrics methodology,
adapted from IEEE Std 1061-1992

Establish software quality
requirements

1.

Identify the relevant software
quality metrics

2.

Implement the software quality
metrics

3.

Analyze the software quality
metrics results

4.

Validate the software quality
metrics

5.

FIG. 11.5

Steps in Software Quality Metrics

Methodology adapted from IEEE Std

1061–1992 [5].

final evaluation with respect to quality requirements will be made.
During the software development life cycle testers should be part of the
team that determines whether the evolving software is meeting the quality
requirements.

2 . I den t i f y the Re levan t So f tware Qua l i t y Met r i c s .

A decomposition as shown in Figure 11.3 is applied to each requirement
(factor) to identify quality subfactors and metrics. The metrics selected
should be validated metrics. For each metric selected assign a target value,
a critical value, and a range that should be achieved during development.
These may be called planned, best, and worst values as prescribed by
Gilb’s work and discussed below. The framework and the target values
for the metrics should be viewed by clients, managers, and technical staff.
This step also supports a cost–benefit analysis for implementation of the
metrics.

3 . Imp lemen t the So f tware Qua l i t y Met r i c s .

The data to be collected should be described. A procedure for collection
should be established. Pilot projects can be selected to test the measure-
ment procedures. As a project progresses the data is collected. Part of the



36911.3 Software Qual ity Evaluation |

testing effort would be to collect quality-related data such as degree of
coverage, complexity, test plan completeness, and so on. Time and tools
should be allocated in the project and test plans for collecting data.

4 . Ana l y ze the Met r i c s Resu l t s .

The measurement results are analyzed and reported to help monitor the
project and to evaluate the evolving software. Metrics that indicate low
quality for software components should be subject to further scrutiny.
Further scrutiny may lead to alternative conclusions, for example:

(i) the software should be redesigned;
(ii) the software should be discarded;
(iii) the software should be left unchanged.

Actions based on such evaluations should be cautious since measurements
are not infallible and poor evaluations may not necessarily mean the soft-
ware will perform poorly in operation.

5 . Va l i da te the So f tware Qua l i t y Met r i c s .

The purpose of metrics validation is to identify process and product met-
rics that can predict specified quality factor values. Quality factors, as we
have learned, are quantitative representations of quality requirements. If
the metrics we have selected are to be useful to us, they need to indicate
accurately whether the quality requirements have been achieved or are
likely to be achieved in the future. If predictive metrics have been used
they need to be validated to determine if they accurately measure their
associated factors. To consider a metric valid it must demonstrate a high
degree of association with the quality factor it represents. Criteria for
validity evaluation are given in the IEEE standards document [3]. Finally,
it should be noted that in many cases, if a predictive metric is used in a
different environment it may need revalidation.

In addition to the IEEE standards documents, support for software
quality evaluation also comes from the work of Gilb [10]. Among his
contributions is a template called an “attribute specification format tem-
plate” that can be used to clearly describe measurable system attributes.
These templates can be very useful for documenting quality requirements



370 | A Measurement Program to Support Product and Process Qual ity

for a given project (as described in step 2 in the software quality metrics
methodology).

Among the template components described by Gilb are [10]:

Scale: describes the scale (measurement units) that will be used for the
measurement; for example, time in minutes to do a simple repair.

Test: This describes the required practical tests and measurement tools
needed to collect the measurement data.

Plan: This is the value or level an organization plans to achieve for this
quality metric. It should be of a nature that will satisfy the users/clients.
(An example would be a planned system response time of 5 seconds.)

Best: This is the best level that can be achieved; it may be state-of-the-art,
an engineering limit for this particular development environment, but is
not an expected level to be reached in this project. (An example would
be a best system response time of 3.5 seconds.)

Worst: This indicates the minimal level on the measurement scale for ac-
ceptance by the users/clients. Any level worse than this level indicates total
system failure, no matter how good the other system attributes are. (An
example would be a system response time of 6 seconds.)

Now: This is the current level for this attribute in an existing system. It
can be used for comparison with planned and worst levels for this project.

See: This template component provides references to more detailed or
related documents.

It should be noted the “Test” component of the template can be specified
for testing activities that occur in different phases of software develop-
ment, for example,

Test (design phase) Fagen inspection
Test (unit test) Standard unit test procedures
Test (system test) Performance and stress

Some examples of product- and process-related measurement descrip-
tions that can be collected by testers are shown below. Product-related



37111.3 Software Qual ity Evaluation |

measures may be associated with quality goals for the project. Descriptive
remarks are also included to support data collection.

Suppose a quality goal is to reach a specified level of performance. It
is appropriate for testers to collect data during system test relating to:

Response time. Record time in seconds for processing and responding to
a user request. (Descriptive remarks for data collection: An average value
for the response time should be derived from not less than 75 represen-
tative requests, both under normal load and under stress conditions.)

Memory usage. Record number of bytes used by the application and for
overhead. (Descriptive remarks for data collection: Data should be col-
lected for normal and heavy stress and volume.)

To address quality goals such as testability, the following can be collected
by the testers:

Cyclomatic complexity. (Descriptive remarks for data collection: McCabes’
cyclomatic complexity should be calculated using tool support. Collect
during detailed design and/or code. If value of complexity is greater than
10, review, and seriously consider redesign.)

Number of test cases required to achieve a specified coverage goal. Count
for code structures such as statement or branch. (Descriptive remarks for
data collection: Testers initially estimate number based on structure of
pseudo code during detailed design. Revise during coding and make
proper modifications to test plan attachments.)

Testing effort-unit test. Record cumulative time in hours for testers to exe-
cute unit tests for an application. (Descriptive remarks for data collection:
Collect data from daily time logs of qualified testers. Convert time into
costs using compensation data.)

For addressing goals with respect to maintainability, the following
measurements are appropriate for testers to collect:

Number of changes to the software. (Descriptive remarks for data collec-
tion: Count number of problem reports)

Mean time to make a change or repair. Record mean-time-to-repair
(MTTR) in time units of minutes. (Descriptive remarks for data collec-



372 | A Measurement Program to Support Product and Process Qual ity

tion: Use daily repair logs from actual defects repaired or conduct tests
with artificially injected defects of typical types for this project. Consult
defect repository for examples. The log sample should contain logs from
at least four qualified maintainers. Total time includes time for finding,
correcting, and retesting a change/repair. Time can be converted to costs
using compensation data)

For additional sources of information on software quality evaluation,
testers and SQA staff can refer to the work of Grady and Caswell who
describe the Hewlett-Packard approach to defining and measuring quality
attributes [7]. These researchers have a quality attribute model called
FURPS, whose high-level components include functionality (F), usability
(U), reliability (R), performance (P), and supportability (S). FURPS are
decomposable into lower level and measurable quality attributes. Other
sources for quality attribute hierarchies have been reported; for example,
in the work of McCall [11] and Boehm [12]. The International Organi-
zation for Standards also has a collection of key quality attributes—
ISO/IECIS 9126 [13].

1 1 . 4 Measurements and TMM Levels

Although the TMM does not call for a formal measurement program until
level 4, it is important for organizations at all TMM levels to collect
measurements to help define a baseline process, to aid in process under-
standing, and to provide support for achievement of testing maturity
goals. Measurement also benefit organizations in the following areas:

• identification of testing strengths and weaknesses;

• providing insights into the current state of the testing process;

• evaluating testing risks;

• benchmarking;

• improving planning;

• improving testing effectiveness;



37311.4 Measurements and TMM Levels |

• evaluating and improving product quality;

• measuring productivity;

• determining level of customer involvement and satisfaction;

• supporting controlling and monitoring of the testing process;

• comparing processes and products with those both inside and outside
the organization.

Previous discussions in this text have advised that an organization
should begin a measurement effort with a simple set of measures and
expand the set as it reaches for higher levels of the TMM. Measurements
selected should provide support for achieving and maintaining testing
goals and best testing practices. Managers should keep in mind that add-
ing measurement responsibilities to those already assigned to developers
and testers results in an increase in their work load. Simple tools should
be made available to each software engineer to support data collection.
Examples of recommended tools are:

• spreadsheet programs;

• database programs;

• personal digital assistant;

• laptop computer.

More sophisticated tools to collect and record data, and to issue reports,
are introduced at higher TMM levels as described in Chapter 14.

The next several subsections in this chapter describe a set of mea-
surements that are applicable at each of the TMM levels. These measure-
ments are recommended and not mandatory. Organizations can select a
small number of initial measurements and build on these as their test
process matures.

1 1 . 4 . 1 M e a s u r e m e n t s f o r T M M L e v e l 1

TMM level 1 has no maturity goals. However, it is important for orga-
nizations to begin to collect basic measurements at this level. In this way



374 | A Measurement Program to Support Product and Process Qual ity

an organization begins to build a historical database of project data that
is invaluable for achieving higher levels of test process proficiency and
general process maturity. The basic measurements suggested for TMM 1
are aimed at establishing a baseline process and preparing the organiza-
tion for addressing TMM level 2 maturity goals. Some examples of initial
measurements to collect at TMM level 1 are listed below. Support for
these choices comes from the work of Grady and Caswell who recom-
mend these classes of measurements to initiate a measurement program
[7].

The suggested measurements for TMM level 1 are:

• Size measurements

Size of the software product (KLOC)
Size of the test harness
Number of requirements or features to be tested
Number of test cases developed
Number of test cases executed

• Defect measurements

Number of incident reports
Number of defects/KLOC

• Cost/Effort

Costs for the project as a whole
Hours spent in testing tasks
Costs of the testing efforts.

Size is an important measurement used for project and test planning,
cost/effort estimations, risk evaluation, productivity measures, and for
normalization of other product and process attributes. A normalization
example is defect density which is total number of defects/KLOC. Size in
the testing domain can be represented in several ways. For example, the
size of the test harness, the number of requirements or features to be
tested, the number of test cases developed, and executed, all give an in-
dication of the volume of the testing effort and can be useful for the test
planner. Automated line counters can be used to count lines of code and



37511.4 Measurements and TMM Levels |

will work to produce consistent counts for all projects if they are based
on a line counting standard and adherence to a coding standard [14].

In addition to size, defect data should be collected by an organization
at lower levels of the TMM so that there is a documented record of the
actual number found in its software products. The overall defect count
can later be partitioned by test phases and identification of “phase in-
jected” and “phase found” for each defect (see measurements for TMM
level 2). The defect data will help to evaluate software quality, support
improvements in the development and testing processes, and provide the
basis for initiating a defect repository.

The cost measurements listed above will assist with test cost estima-
tion when test planning is formally initiated at TMM level 2. By collecting
the cost/effort measurements an organization begins to assemble a his-
torical cost database that is invaluable for estimating these items in future
projects.

1 1 . 4 . 2 M e a s u r e m e n t s f o r T M M L e v e l 2

At TMM level 2 an organization should select measurements that con-
tinue to support baselining the testing process and also achievement and
sustainment of level 2 maturity goals. There are three maturity goals at
this level: “Establishing a test planning process,” “Developing testing and
debugging goals and policies,” and “Institutionalizing basic testing tech-
niques and methods.” To support test planing, the size and cost/effort
metrics previously suggested for TMM level 1 are useful. In addition,
measures of the distribution of time/effort in the various testing phases
should be collected to support and evaluate the effectiveness of multilevel
testing activities. For example:

Time/effort spent in test planning (this can be distributed over the
hierarchy of test plans)

Time/effort spent in unit testing
Time/effort spent in integration testing
Time/effort spent in system testing
Time/effort spent in regression testing
Total time/effort spent in testing



376 | A Measurement Program to Support Product and Process Qual ity

For finer granularity the above can be decomposed into lower-level mea-
surements for each testing phase. For example:

Time spent in test design for unit (integration, system, etc.) testing
Time spent in test execution for unit (integration, system, etc.) testing

Other measurements that are useful for initiating, evaluating, and
improving test planning are:

Number of planned test cases
Number of unplanned test cases
Cost performance index(CPI)
Planned/actual degree of statement/branch coverage

The cost performance index is the ratio of planned testing time and actual
testing time [14]. This is a simple measure that provides information about
the quality of test plans. Ideally, the ratio should be close to one. If it is less
than 1.0, the organization is spending more time then planned on testing.
If it is much greater than 1.0, planning is too conservative. The first two
measurements of this group can also be partitioned by testing level, for
example, number of planned test cases for unit test, and so on.

The measure of time spent in fixing/repairing defects (by testing level)
should also be recorded so that an organization is able to understand and
evaluate the cost and impact of fixing defects. If the costs are recorded
by level found, an organization should discover the increased costs of
repairing defects as they propagate into later testing phases (and finally
into operational software). The organization can compare the defect re-
pair costs to the costs of quality activities that reduce defects. An appre-
ciation of the cost effectiveness of the latter should result. This measure-
ment will also help to distinguish testing from debugging activities, and
allow test and project planners to identify distinct testing and debugging
tasks, develop policy statements, and allocate appropriate resources.

To support achievement of the maturity goals at TMM level 2, the
continued collection of other defect-related measurements is also impor-
tant. The number of defects is counted as in TMM level 1 but is now
distributed over the testing levels. The frequency of occurrence for defects
of each type should also be recorded. Recommended measurements are:



37711.4 Measurements and TMM Levels |

Number of defects injected in each life cycle phase
Number defects found in each testing phase (levels)
Number of each type of defect found (a defect classification scheme

as described in Chapter 3 should be developed)

Additional defect attributes as shown in Figure 11.3 can be added to the
defect data set as an organization matures and builds a comprehensive
defect repository. At TMM level 4, building a comprehensive defect re-
pository is a recommend practice.

The measurements described here provide support for evaluating the
relative effectiveness of each level of testing, and they also help an orga-
nization to evaluate the impact of changes to the testing process. At higher
levels of the TMM data of the latter type will support defect prevention
activities, test effectiveness, and evaluation. By initiating the collection of
detailed defect-related data and associating defects with specific projects,
a foundation is being laid for:

• defect prevention activities;

• setting quality goals for future projects;

• risk management for subsequent releases.

1 1 . 4 . 3 M e a s u r e m e n t s f o r T M M L e v e l 3

The maturity goals at TMM level 3 include “Controlling and monitoring
the testing process,” “Integrating testing into the software life cycle,”
“Establishing a technical training program,” and “Establishing a test or-
ganization.” At TMM level 3 a test group is established, and this group
should be prepared through the training program to collect, store, ana-
lyze, and apply measurements for improvement of processes and prod-
ucts. The training program should also include modules that focus on
evaluation and use of testing and measurement tools. At TMM level 3
tool support should be available to support the collection of data. Defect
trackers and coverage analyzers are examples of useful tools in this area
(see Chapter 14). Since there is a training program and a dedicated testing
group, an organization at TMM level 3 may decide it is useful and cost
effective to develop an internal set of forms and tools for collecting and
analyzing test data.



378 | A Measurement Program to Support Product and Process Qual ity

Chapter 9 of this text is a good source for appropriate measures to
collect at TMM level 3 in the context of the “controlling and monitoring”
maturity goal. The set in Chapter 9 includes measurements for controlling
and monitoring testing status, tester productivity, testing costs, and er-
rors, faults, and failures. Measurements are also suggested for evaluating
test process effectiveness and to make stop-test decisions. For review,
some example measurements from Chapter 9 are:

Degree of statement, branch, data flow, coverage achieved to date
Number of features covered to date
Number of planned test cases executed and passed
Number of test cases produced/week (for each tester)
Planned earned value for testing tasks
Defect removal leverage (DRL)
Fault seeding ratios
Number of defects detected/unit time period/severity level (a defect

tracking tool can support collection and recording of this data)

At TMM level 3 an organization is also developing a technical train-
ing program. Some measurements useful for evaluating and improving
the program would be:

Size of the training staff
Costs of the training program (total and per training module)
Time to master a training module
Time allocated for training sessions per tester

To evaluate the cost effectiveness of tools, an organization may also want
to measure:

Costs of tool evaluation
Costs of tool training
Cost of tool acquisition
Cost of tool update and maintenance (especially if tools are developed

in-house)

The organization can apply some of these cost measurements to evaluate
the impact of training and tools using ratios such as:



37911.4 Measurements and TMM Levels |

Cost/efforts of performing testing tasks before and after training
Cost/efforts of performing testing tasks before and after tool support

The organization should also monitor the number of defects detected both
before and after the introduction of training and tools.

Another useful measure that can support the maturity goal of “es-
tablishing a test organization” by giving visibility to testers is:

Tester/developer ratio

This measure can also be used to assist in test planning. The ratio indicates
the number of dedicated testers relative to the number of developers for
each project. At lower levels of the TMM there is no dedicated testing
group; however, some development staff may be designated as testers. As
an organization matures and designates more resources to software test-
ing, a specific role is defined for the tester. Training and tool support
become available, and therefore it is meaningful to measure the ratio of
testers to developers for different types of projects. Ratios may range from
1/4 to 1/2 depending on the nature of the project. Ratios from past proj-
ects are useful in estimating testing resources and costs for testing plan-
ning when the characteristics of the new project are a good match with
those in the historical project data base (see section on testing cost esti-
mation in Chapter 7).

Since there is a test organization at TMM level 3, and members of
that organization interact with users/clients, a useful measure of user/
client involvement with testers is user/client hours spent providing inputs
for acceptance test plans and/or use cases. At higher TMM levels a mea-
surement of the time spent supporting the development of operational
profiles may also be useful for the organization.

At TMM level 3 organization should also be collecting data relating
to help or hot-line calls and the number of problem reports submitted
when the software is in operation. This data will shed light on the number
of defects that have escaped from the testing process, and allows for a
more complete assessment of software quality. The measures could also
be used to assess the impact of process changes on software quality. Ap-
propriate measures are:

Number of help or hot-line calls (for a particular software product)



380 | A Measurement Program to Support Product and Process Qual ity

Number of customer complaints
Number of problem reports when the software is in operation
Number of field faults

At TMM level 3 an organization practices regression testing in ad-
dition to multilevel testing. Reuse of test cases for this purpose is a nec-
essary part of this practice. Some useful measurements to monitor the
practice are:

• number of test cases reused;

• number of test cases added to a test database or tool repository (e.g.,
in a capture replay tool);

• number of test cases rerun when changes are made to the software.

Integration of testing activities into the software life cycle is another
maturity goal at TMM level 3 that needs to be supported by measure-
ments. To achieve this goal, an organization should ensure that test plan-
ning occurs early in the life cycle, test risks are identified, and that there
is preliminary development of test plans and test cases based on infor-
mation from the requirements, specifications, and design documents.
Some measures to evaluate progress in this area are:

Cyclomatic complexity of the units (pseudo code or code)
Halstead’s metrics
Number of hours spent in test planning during requirements phase
Number of hours spent in test planning during specification
Number of hours spent in test planning during design
Number of test cases/test scenarios developed from requirement-

related information
Number of test cases/test scenarios developed from specification-

related information
Number of test cases developed from design information
Number of hours spent in development of a requirements traceability

matrix



38111.4 Measurements and TMM Levels |

1 1 . 4 . 4 M e a s u r e m e n t s f o r T M M L e v e l 4

At TMM level 4 an organization puts into place a formal test measure-
ment program. It also establishes a process for software quality evaluation
and a review program, all of which are specified as maturity goals at this
level. By progressing up the levels of the TMM, an organization has an
infrastructure in place to support these goals. For example, the organi-
zation now has dedicated and trained testing personnel, testing and de-
bugging policies, testing standards, and a defined test planning, tracking,
and monitoring process. At TMM level 4 an organization collects mea-
surements for continuous support of previously achieved test process ma-
turity goals and for support of the current maturity goals at this level.
The scope of the measurements collected is broadened, and an organi-
zation is now better able to learn about the costs of quality and the cost
of lack of quality, the degree of customer involvement, in the development
process, and the degree of customer satisfaction. Emphasis at this level is
placed on product-related measurements to support the maturity goal of
software quality evaluation. Review measurements are also added so that
the effectiveness of the review process can be evaluated and improvements
made. Finally, a defect repository is formally established and a full com-
plement of defect attributes as shown in Figure 11.3 is included in each
defect record.

For measurements specific to the review process the reader is urged
to consult Chapter 10 where review topics are described in detail. The
role of measurements in evaluating and improving the review process is
discussed there and several measurements are suggested such as:

Size of the item reviewed
Time for the review meetings
Number of defects found per hour of review time
LOC or pages of a document reviewed per hour
Defect removal leverage
Phase yield (for each review phase)

Since a formal test measurement program is initiated at TMM level
4, an organization should also collect measurements relevant to this pro-
gram to assess its strengths and weaknesses. For example:



382 | A Measurement Program to Support Product and Process Qual ity

Costs of measurement training
Costs of measurement tools
Costs of maintaining the measurement databases (and defect

repository)

It should be noted that an organization may decide to include the costs
of the measurement program in the “cost of quality” as described in
Chapter 12. An organization may also want to have an indicator of the
growth and access to the measurement databases. It will want to deter-
mine if the software engineers are adding to the corporate knowledge
bases over time, and using the data to make decisions and plan actions.
Useful measures that can be used for monitoring are:

Size of the historical databases
Number of references to historical data (in the project databases)

As part of the discussion of appropriate measurements at TMM level
4, the important role of software quality evaluation in the hierarchy of
maturity goals must be emphasized. Recall that testing principle 1 states
that we test to detect defects and to evaluate software quality (Chapter
2). To evaluate software quality, a number of software quality attributes
can be evaluated by an organization reaching TMM level 4. Those ap-
propriate for each project are selected, suitable measurements defined,
and described in the quality plan for the project. Quality measurements
are extensively discussed in this book. Some examples of quality mea-
surements for software products are described below. In addition, Section
11.3 has examples of quality-related measurements and how testers
should collect them. Chapter 12 describes quality attributes such as reli-
ability and usability. Chapter 13 discusses defect-related measurements,
and Chapters 9 and 15 focus on process-related measurements. For sup-
plementary material readers can consult Pressman, Grady, and Caswell
who also provide discussions of quality measurements [1,7,15].

Sample software quality attributes and related measurements are:

Correctness. This is the degree to which the software performs its required
functions. A common measure is defect density (number of defects/
KLOC).

Efficiency. This is an attribute that is used to evaluate the ability of a
software system to perform its specified functions under stated or implied



38311.4 Measurements and TMM Levels |

conditions within appropriate time frames. One useful measure is re-
sponse time—the time it takes for the system to respond to a user request.

Testability. This attribute is related to the effort needed to test a software
system to ensure it performs its intended functions A quantification of
testability could be the number of test cases required to adequately test a
system, or the cyclomatic complexity of an individual module.

Maintainability. The effort required to make a change. Sometimes defined
in terms of the mean-time-to-repair (MTTR) which reflects the time it
takes to analyze a change request, design a modification, implement the
change, test it, and distribute it.

Portability. This relates to the effort (time) required to transfer a software
system from one hardware/software environment to another.

Reusability. This attribute refers to the potential for the newly developed
code to be reused in future products. One measurement that reflects re-
usability is the number of lines of new code that has been inserted into a
reuse library as a result of the current development effort [14].

In order to evaluate the quality of its software, an organization should
define these attributes and associated measurements and decide on how
the test team will determine the degree to which the software possesses
each attribute. Scales, units, and recording forms must be defined. Finally,
as part of the work in achieving test process maturity, an organization
must craft its testing process so that it is used to evaluate these quality
attributes. Adoption of TMM practices supports this goal. As previously
described, project, test, and/or quality plans for each product should con-
tain measurable quality goals relating to these attributes.

1 1 . 4 . 5 M e a s u r e m e n t s f o r T M M L e v e l 5

TMM level 5 is the highest level of test process maturity. There are three
maturity goals to achieve at this level: “Defect prevention,” “Quality con-
trol,” and “Test process optimization.” There is an emphasis on mea-
surements for:

• defect classification, detection, analysis, and prevention activities; the
latter through process change;



384 | A Measurement Program to Support Product and Process Qual ity

• quantitative product and process control;

• continuous process improvement and optimization.
Chapters 12, 13, and 15 cover topics related to these goals.

Measurements to support defect prevention are in the main defect-
related. An organization engaged in defect-prevention activities must have
a defect repository for support. Figure 11.3 shows an example of a defect
record in such a repository. Of particular importance is the defect type
and number of occurrences. Section 13.2 has suggestions for further in-
formation to add to the record including:

• close date (date when defect is repaired);

• author of fix;

• causal category;

• description of associated actions for prevention;

• requirement or business rule with which it is associated;

• status (e.g., open, under repair, repair completed, closed).

After actions are taken through action plans to prevent the defects from
reoccurring, then defect-related measures as described for TMM levels 2
and 3, product-related measurements as described for TMM level 4, and
general process-related measurements such as those described in the
CMM common features, are appropriate to monitor and evaluate the
change [2]. Test process changes that result from defect prevention actions
can be tracked using the monitoring and controlling measures described
for TMM level 3. Organizations may also want to collect measurements
related to defect casual analysis meetings to evaluate their costs and ef-
fectiveness; for example;

Time/effort spent in defect causal analysis
Number of actions suggested
Effort/costs for the action planning team (most of the team works

part-time on action planning)
Efforts/costs of the action plans (process changes)



38511.4 Measurements and TMM Levels |

An organization may consider some of these costs as part of the costs of
process improvement. These costs should be weighed against appraisal
costs such as testing and reviewing, and failure costs such as rework and
complaint resolution. Chapter 13 gives more details.

At TMM level 4 an organization is involved in software quality eval-
uation, and testing is used to detect defects and evaluate software quality.
At TMM level 5 a more quantitative approach to evaluating software
quality is used. A major practice at this level is the use of statistical testing
based on operational profiles to evaluate software reliability. A simple
measure for reliability is mean time between failures (MTBF). Chapter 12
discusses reliability measurement and statistical testing in detail.

To evaluate the costs versus benefits of statistical testing, an organi-
zation will want to measure the resources required to develop the oper-
ational profile, build reliability models, and perform the statistical testing.
Some useful measurements are:

Tester time/effort needed to develop and maintain an operational
profile

User/client effort to support development of an operational profile
Costs of tester training for profile development, reliability modeling,

and statistical testing
Costs of statistical testing

Measurements of reliability, number of field faults, number of problem
reports, and customer satisfaction should be collected both before, and
after operational profiles and statistical testing are applied to the testing
process to evaluate the impact of this change.

At TMM level 5, organizations put into place a mechanism for quan-
titative process control. In order to support the practice of testing process
control many of the process measurements already suggested for the lower
TMM levels are useful, for example, data relating to problem reports,
time, and effort to accomplish testing tasks and size of items under review.
Usually a software engineering process group (SEPG) is responsible for
the activities associated with this practice as described in Chapter 15. To
monitor this practice some additional measurements that are useful are:

Effort/costs of training the SEPG team in process control
Effort/costs of quantitative process analysis (this can be decomposed



386 | A Measurement Program to Support Product and Process Qual ity

into lower-level costs such as data collection, data analysis, re-
porting, etc., as described in Chapter 15)

Effort/costs of process adjustments (process changes)

An organization may decide to combine some of these efforts and costs
into one category such as:

Effort/costs of maintaining an SEPG
Costs of test process improvement and optimization

The costs of technology transfer can also be folded into the latter.
Usability testing is also carried out at TMM level 5 and many mea-

surements are associated with this type of testing. Chapter 12 describes
many of these which include:

Time to complete a task with the software
Time to access information in the user manual
Time to access information from on-line help
Number of errors made
Number and percentage of tasks completed correctly

Finally, at TMM level 5 test process reuse becomes a practice because
of the high quality and effectiveness of the testing process and its com-
ponent subprocesses. As described in Chapter 15 there is a process asset
library where process templates are stored for application and reuse
throughout the organization. Some simple measurements that can be used
to monitor this practice are:

Training costs for process reuse
Costs to maintain the process asset library
Size of the process asset library
Number of processes reused
Costs/efforts associated with reuse of a process (such as instantiating

a process from a template object)

1 1 . 5 A Test Measurement Program, Software Qual ity Evaluation,

and the Three Crit ical Views

The discussion of topics related to TMM level 4 maturity goals began in
Chapter 10 and is concluded in this chapter. The maturity goals of interest



38711.5 A Test Measurement Program, Software Qual ity Evaluation, and the Three Crit ical Views |

are “Software quality evaluation,” “Establish a test measurement pro-
gram,” and, “Establish an organization wide review program.” As in the
case of the previous maturity goals already discussed, the three critical
groups play an important role in goal satisfaction. The major responsi-
bilities of the three critical groups for TMM level 4 maturity goals are
summarized in Figure 11.6. This section also gives details on the activities,
tasks, and responsibilities assigned to the group members in support of a
test measurement program and software quality evaluation.

A test measurement program has impact on both product and pro-
cess. It provides useful information that management can use to evaluate

Managers

Testers

Users/Clients

Give support and training for
    measurement and review
    programs
Assign responsibility for
    measurement and review
    programs
Develop measurement and review
    policies
Support action planning based on
    measurements
Set quality goals for projects
Ensure measurements used to
    evaluate and improve product
    quality
Assign responsibilities to review
    leaders
Ensure time is allocated for
    reviews

Participate in measurement
    team
Include quality goals in test plan
Collect measurements during
    test and review
Maintain measurement and
    defect databases
Use measurement data to
    evaluate software
Attend training sessions for
    reviews and measurement
Serve as review leaders and
    participants
Develop checklists
Develop review summary reports

Provide input consensus on quality
    attributes and quality
    requirements for project
Provide approval of quality
    requirements at acceptance test
Attend appropriate review sessions

Achievement of
TMM level 4
maturity goals

Test process Evolution

Improved testing process 

Proceed to TMM level 5 goals

FIG. 11.6

Support by three critical groups for

TMM level 4 maturity goals.



388 | A Measurement Program to Support Product and Process Qual ity

the quality of the testing process to assess productivity of personnel who
are responsible for testing, and to monitor improvements. A test mea-
surement program also supports evaluation of test work products, con-
trolling and monitoring of testing activities, and predictions relating to
test performance and costs. With respect to product quality, the presence
of a measurement program allows an organization to implement a soft-
ware quality evaluation process by defining quality factors, quality at-
tributes, and quality metrics. These in turn support the identification and
quantification of quality requirements and goals and the collection and
analysis of quality-related data. Testing, supported by the measurement
program, is one of the key processes through which an organization de-
termines if the software it produces meets specified quality goals.

Test measurement and software quality evaluation programs must be
carefully planned and managed. To carry out the many complex tasks
involved, contributions in the form of ATRs from the three critical groups
are essential. These are described below.

To support a test measurement program managers will need to es-
tablish goals, polices, and plans for the program, and provide adequate
training, tools, resources, and funding. Responsibilities need to be as-
signed by managers for defining, collecting, storing, analyzing, and ap-
plying the measurement data. When and where the data are to be applied,
and by whom, must also be decided by management. When the program
is in place, test managers should use the measurement data to oversee the
testing process and provide appropriate actions when measurements (and
supporting assessments) indicate the testing process needs to be changed
and improved.

Test mangers and project managers should also use measurements
collected during test to evaluate and improve product quality. Managers
need to ensure that each project sets quality goals, and that test plans
include appropriate measurement and testing activities so that the testing
process can support achievement of quality goals for the product.

Testers are essential members of a measurement team. They assist in
measurement program planning, help select tools and methods, help de-
fine quality attributes, and undergo training to support these responsi-
bilities. Testers develop and maintain the test measurement database; they
also support development and maintenance of the defect repository. After
the decision has been made on what test-related data needed to be col-



38911.5 A Test Measurement Program, Software Qual ity Evaluation, and the Three Crit ical Views |

lected, responsibilities are assigned for collecting this data, participating
in analysis and application of results. Responsibility may be distributed
so that testers will be working with other groups such as developers and
software quality assurance staff to carry out measurement-related tasks.
Testers should ensure that the appropriate measures are used for test pro-
cess evaluation, and improvement, and for ensuring that quality goals for
each project are meet.

Testing activities need to directed so that each software product can
be evaluated with respect to quality requirements. Test plans should pro-
vide adequate time and resources for this. During test, testers should col-
lect data related to the quality attributes of the software. For example, if
appropriate for the product, during the system test, stress, performance,
configuration, recovery, and security tests should be performed by the
test group. Using the resulting data, testers and SQA staff should be able
to determine if specific quality goals in those areas have been met.

Users/clients should supply consensus on quality attributes and
should also provide input and approval for the quality requirements that
are important to them with respect to the software being developed. These
goals should appear in the requirements document for the project. Ob-
servations/evaluations and inputs from the user/client group during an
acceptance test will determine if the quality requirements have been met.

L I S T O F K E Y T E R M S

Measure

Measurement

Metric

Quality attribute

Quality factor

Quality requirement

E X E R C I S E S

1. What are some of the costs and benefits of adopting a test measurement

program?

2. Describe the steps in the Grady/Caswell model for establishing a measurement

program.



390 | A Measurement Program to Support Product and Process Qual ity

3. In view of the Grady/Caswell steps, why is it important to have a trained staff?

How does achieving TMM maturity goals support this need?

4. Suppose your organization selected you to establish a team to develop a test

measurement program. You can select members of your team from any organi-

zational group. Which groups do you think would provide qualified members for

your team? What are the qualifications you would use to select members of your

measurement team?

5. If you were a member of higher management, what type of a group would you

assemble to provide continuous support for a measurement program? Who would

you select as members of this group?

6. What types of databases would you select to store measurement data (rela-

tional, object-oriented, etc.)? Give reasons for your selection in terms of require-

ment for the collection, storage, retrieval of data, and report-generating capabili-

ties. Consider the different types of data you will collect, and the different uses.

Can you suggest commercial database systems that fulfill your requirements?

7. Suppose you are a test manager and your testing process is assessed at TMM

level 2. Your group has been collecting and applying measurements such as size

of the product, size of the test harness, number of problem reports, and time spent

in test. What additional measurements might you select to add to the set, and

why?

8. Using Gilb’s ‘‘Attribute Specification Format Template,’’ design a specification

for response time for a real-time theater reservation system. Use values you be-

lieve appropriate for this type of system.

9. Why is it important to begin a measurement program with measures of size,

defects, and costs? How does the knowledge gained from collecting/analyzing

these measurements support process evolution?

10. What measurements could be useful for evaluating widely used software qual-

ity attributes such as correctness, testability, maintainability, and reusability?

11. Describe a set of measurements that can be used to evaluate the measure-

ment program itself.



39111.5 A Test Measurement Program, Software Qual ity Evaluation, and the Three Crit ical Views |

12. What activities, tasks and responsibilities can be assigned to testers to sup-

port a test measurement program?

R E F E R E N C E S

[1] R. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice Hall,
Englewood Cliff, NJ, 1992.

[2] M. Paulk, C. Weber, B. Curtis, M. Chrissis, The
Capability Maturity Model, Addison-Wesley, Reading,
MA, 1995.

[3] IEEE Standard for a Software Quality Metrics
Methodology (IEEE Std 1061-1992), copyright 1993
by IEEE, all rights reserved.

[4] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990), copyright 1990
by IEEE, all rights reserved.

[5] N. Fenton, Software Metrics: A Rigorous Ap-
proach, Chapman & Hall, London, 1991.

[6] N. Fenton, “Software measurement: a necessary
scientific Basis,” IEEE Transactions on Software En-
gineering, Vol. SE-20, No. 3, pp. 199–206, 1994.

[7] R. Grady, D. Caswell, Software Metrics: Establish-
ing a Companywide Program, Prentice Hall, Engle-
wood Cliff, NJ, 1987.

[8] W. Perry, Effective Methods for Software Testing,
John Wiley and Sons, New York, 1995.

[9] IEEE Standard for Software Productivity Metrics
(IEEE Std 1045-1992), copyright 1993 by IEEE, all
rights reserved.

[10] T. Gilb, Principles of Software Engineering Man-
agement, Addison-Wesley, Reading, MA, 1988.

[11] J. McCall, P. Richards, G. Walters, Factors in
Software Quality, Technical Report 77CIS 02, General
Electric, Command and Information Systems, Sunny-
vale, CA, 1977.

[12] B. Boehm, J. Brown, M. Lipow, “Quantitative
evaluation of software quality,” IEEE 2nd Interna-
tional Conf. on Software Engineering, San Francisco,
CA, pp. 592–605, Oct., 1976.

[13] International Organization for Standards, Infor-
mation technology: Software Product Evaluation:
Quality Characteristics and Guidelines for Their Use,
ISO/IEC IS 9126, ISO, Geneva, 1991.

[14] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.

[15] R. Pressman, Software Engineering: A Practi-
tioner’s Approach, fifth edition, McGraw-Hill, New
York, 2001.



This page intentionally left blank 



E V A L U A T I N G S O F T W A R E

Q U A L I T Y : A Q U A N T I T A T I V E

A P P R O A C H

1 2 . 0 Review of Qual ity Concepts

Our role as software testers involves participation in activities where we
evaluate the quality of an evolving software product. To engage in these
activities in an effective way we need to understand what quality means,
and how to quantify and measure it. We need to be able to detect the
weaknesses and defects in our products that impact on quality, and do
this in an efficient and effective way. Finally, we need to understand the
nature of the development and testing processes and how these processes
impact on software quality. Practices in our processes that have a negative
effect on quality should be eliminated, and those that have a positive effect
should be promoted. The TMM assessment process is designed to support
the latter goals.

To promote understanding of quality concepts this text has addressed
quality issues in several of the preceding chapters. For example, in Chap-
ter 2 definitions for software quality from the IEEE Standard Glossary



394 | Evaluating Software Qual ity: A Quantitat ive Approach

of Software Engineering Terminology were given and are repeated for
readers to review [1].

1. Quality relates to the degree to which a system, system component, or process

meets specified requirements.

2. Quality relates to the degree to which a system, system component, or process,

meets customer, or user, needs or expectations.

Chapter 2 also gave a description of the role of a quality assurance group
that is repeated here for review.

The software quality assurance (SQA) group is a team of people with the necessary

training and skills to ensure that all necessary actions are taken during the de-

velopment process so that the resulting software conforms to established technical

requirements.

For completeness, a managerial view of SQA should also be added
to the above description. Pressman gives such a view in his discussion of
quality issues. He states that a major function of the SQA team is to
provide management with information relevant to product quality [2]. To
support this role, Pressman and others advise that a SQA team prepare
an SQA plan for each project that describes the audits and reviews to be
performed, the standards that are relevant to the project, the procedures
for error reporting and tracking, and documents they will produce. The
team should also describe the nature of the communication links between
themselves, the development group, and the testing group.

If the SQA team identifies problems that impact on product quality
and then reports these to management, then management must address
the problems and provide resources to resolve them so that quality is
improved. A detailed discussion of SQA activities is beyond the scope of
this text. Readers can consult the IEEE Standard for Software Quality
Assurance Plans and the Standard for Software Reviews and Audits,
which are good sources for detailed discussions of SQA activities [3,4].

Coverage of quality issues is a major goal for this text. For example,
Chapter 9 describes a set of measurements that support test process con-
trolling and monitoring. Use of these measures enables us to track testing
progress and address quality issues. Chapter 10 discusses software re-
views, which are essential to support quality evaluation and achievement
of quality goals. Additional discussion of quality issues appears in Chap-



39512.1 Qual ity Costs |

ter 11 where the focus is on measurements, measurement programs, and
software quality attributes. The relationship between quality factors, sub-
factors, and metrics is described there, as well as a software quality met-
rics methodology. An active role in software quality evaluation for testers
is also discussed. In the current chapter we expand our view of quality.
We bind testers, software quality assurance staff, developers, and man-
agers into an organizationwide team that works together to address qual-
ity issues with respect to software products. The structure of the TMM
promotes this binding through achievement of its maturity goals, sup-
ported by the three critical views. An organizational infrastructure is built
that supports cooperation of all relevant groups so they can address qual-
ity issues and implement quality evaluation and control.

This chapter will introduce the concepts and practices related to qual-
ity control as applied to software. Quality control is a maturity goal at
TMM level 5 and is achievable within the framework of an effective soft-
ware testing process. This chapter also introduces two additional quality
factors—usability and reliability. We will learn how to test for usability
and reliability, and discover how reliability relates to statistical testing
and quality control. Additional coverage of quality issues is also given in
Chapter 13, which discusses defect prevention, and in Chapter 15, which
describes process quality control.

1 2 . 1 Qual ity Costs

Readers should be aware that quality evaluation and control have eco-
nomic as well as technical aspects. Implementation of these quality-related
procedures and practices is expensive; however, most organizations re-
alize that the benefits greatly outweigh the costs. Unfortunately, many
organizations do not realize what quality, and particularly the lack of
quality, really costs. A TMM level 5 organization has a handle on both
of these costs.

According to Pressman [2] and Humphrey [5], the costs of quality
can be decomposed into three major areas: (i) prevention, (ii) appraisal,
and (iii) failure. The costs to find and fix a defect increase rapidly as we
proceed through prevention, detection, and failure phases. Prevention
costs are associated with activities that identify the causes of defects and



396 | Evaluating Software Qual ity: A Quantitat ive Approach

those actions that are taken to prevent them. Pressman includes as part
of prevention costs:

• quality planning;

• test and laboratory equipment;

• training;

• formal technical reviews.

The author would also include in this group activities related to defect
casual analysis/prevention as described in Chapter 13.

Appraisal costs involve the costs of evaluating the software product
to determine its level of quality. According to Pressman these include:

• testing;

• equipment calibration and maintenance;

• in-process and interprocess inspections.

The author would place reviews in this category.
Failure costs are those costs that would not exist if the software had

no defects; that is, if it met all of the user’s requirements. Pressman par-
titions failure costs into internal and external categories. Internal failure
costs occur when a defect is detected in the software prior to shipment.
These costs include:

• diagnosis, or failure mode analysis;

• repair and regression testing;

• rework.

External failure costs occur when defects are found in the software after
it has been shipped to the client. These include:

• complaint resolution;

• return of the software and replacement;



39712.2 What Is Qual ity Control? |

• help line support;

• warranty work.

“Lack of quality” costs include these failure costs. This author would
also add to “lack of quality” costs the cost of liability, which may occur
if the software causes damage, or loss of life or property. Other costs
associated with lack of quality are customer dissatisfaction and loss of
market share. The TMM maturity goal structure supports implementa-
tion of prevention and appraisal activities so that we can reduce these
“lack of quality” costs.

1 2 . 2 What Is Qual ity Control?

Quality control can be described in several ways. It has origins in modern
manufacturing processes where random sampling techniques, testing,
measurements, inspections, defect casual analysis, and acceptance sam-
pling were among the techniques used to ensure the manufacture of qual-
ity products [6]. One description of quality control follows:

Quality control consists of the procedures and practices employed to ensure that

a work product or deliverable conforms to standards or requirements.

The IEEE Standard Glossary of Software Engineering Terminology gives
what it calls a nonstandard description of the term [1]:

Quality control is the set of activities designed to evaluate the quality of developed

or manufactured products.

The glossary entry also calls quality control a synonym for quality assur-
ance; however, a definition for quality assurance also includes activities
that are used to evaluate processes as well as products. The discussion in
this text is based a broad view of quality control, and includes control of
products and processes as well. This view is supported by Pressman who
states that quality control encompasses a feedback loop to the process
that created the product [2]. An organization can use this feedback, as
well as process assessments and associated process measurements, to eval-
uate their processes. The organization can fine-tune and improve the pro-
cesses when products cannot meet their specifications.



398 | Evaluating Software Qual ity: A Quantitat ive Approach

What procedures, practices, and resources are needed to promote the
implementation of quality control in its broadest sense? Given the above
descriptions for quality control, such a list would include:

• policies and standards;

• review and audit procedures;

• a training program;

• dedicated, trained, and motivated staff (for testing and quality
assurance);

• a measurement program;

• a planning process (for test and quality assurance);

• effective testing techniques, statistical techniques, and tools;

• process monitoring and controlling systems;

• a test process assessment system (TMM-AM);

• a configuration management system.

As we move up the levels of the TMM [1–4], and achieve the maturity
goals associated with each level we build an infrastructure that encom-
passes the above items and supports the implementation of software prod-
uct, and test process quality control. At TMM level 5 two maturity goals
give additional support for quality control. Achieving the “defect preven-
tion” maturity goal puts into place practices such as defect casual analysis
and action planning to prevent defects from reoccurring. The process
changes often lead to better process control. The “quality control” ma-
turity goal at level 5 builds on the product quality evaluation maturity
goal at TMM level 4. However, it is broader in scope: it focuses on control
of both process and product. In particular, in the product area it calls for
development of operational profiles for software products, and use of
statistical testing based on these profiles to promote evaluation of soft-
ware reliability and the achievement of reliability goals. In addition, at
TMM level 5 an organization is also able to evaluate software usability
and achieve usability goals. Finally, it is able to make estimations of con-
fidence levels and software trustworthiness.



39912.3 The Role of Operat ional Prof i les and Usage Models in Qual ity Control |

With respect to the process side of quality control, the infrastructure
and all the associated capabilities at TMM level 5 can be focused on
quality control of the testing process. These capabilities, coupled with
application of the TMM Assessment Model, action planning, and process
control procedures, promote testing process quality evaluation and con-
tinuous test process improvement. In this chapter we focus on quality
control of software. Test process quality control and continuous test pro-
cess improvement will be discussed in detail in Chapter 15.

1 2 . 3 The Role of Operat ional Prof i les and Usage Models in

Qual ity Control

As previously described, quality control in manufacturing involves accep-
tance sampling and the application of statistical methods to evaluate the
manufactured product. In the software domain we can apply conceptually
similar techniques to quality control. For example, we can use operational
profiles and perform statistical testing. The operational profiles allow us
to sample the input space according to usage patterns. Given the opera-
tional profile we can then perform statistical testing. An operational pro-
file can be described as follows:

1. An operational profile is a quantitative characterization of how a software sys-

tem will be used in its intended environment [7].

2. An operational profile is a specification of classes of inputs and the probability

of their occurrence.

The usefulness of an operational profile is that it is the population
from which a statistically correct sample of test cases can be developed.
An operational profile is essential for evaluation of software reliably, an
quality factor of great importance especially for mission- and safety-
critical systems. Usage models capture information similar to what is
found in operation profiles [8–10]. Both operational profiles and usage
models may have different representations, for example, graphs, tables,
or matrices. In subsequent discussions the term “operational profile” will
be used, but either term would be appropriate.

Controlling the quality of a software product and predicting and mea-



400 | Evaluating Software Qual ity: A Quantitat ive Approach

suring its reliability requires a model of expected operational use of the
software, a test environment that simulates the operational environment,
and a way of analyzing the test data and making statistically valid infer-
ences about reliability [8]. The use of an operational profile helps a test
manager to allocate testing resources properly. A manager can concen-
trate testing resources on the most-used operations, and have some con-
fidence that these operations have been the target of a large fraction of
the testing efforts. The reliability level of the software will then be the
highest that is practical to achieve given the time and resources available
for testing [7].

An operational profile is based on a functional specification for a
software system and requires user/client participation for its development.
This group need to express very clearly the operations it believes will be
most heavily used. Other partners in operational profile development in-
clude analysts, testers, designers, software quality assurance staff, and, in
many cases, representatives from marketing. An operational profile can
be prepared early in the software life cycle. Planning for statistical testing
based on the profile can also be done in parallel with other development
activities. An operational profile has many uses besides estimation of re-
liability. These include validation of requirements, resource and sched-
uling estimations for testing, and test management. Developing an oper-
ational profile requires the investment of organizational resources, but it
is cost effective and has many benefits in terms of its impact on software
quality. It may be possible to reuse an operational profile over several
releases with updates as required to minimize costs.

A goal for testers is to ensure that the software they are evaluating is
reliable, especially with respect to the most frequently requested opera-
tions users will want to carry out. The operational profile reflects this
frequency of use and can be developed in some cases by using historical
data from past releases of the software to uncover the different classes of
inputs used and the probability of their occurrence. In some problem
domains such as telecommunication switching systems, there is industry-
generated knowledge about typical usage patterns. However, in this do-
main and in most others, user/client participation is required, especially
for the development of an operational profile for a new system or a new
release. In many cases developing an accurate profile is difficult because
of the lack of detailed information. The resulting profile may be inaccu-



40112.3 The Role of Operat ional Prof i les and Usage Models in Qual ity Control |

rate since users may not be firm on how they will use a system, and/or
the profile may require change as the system is used. Developing an op-
erational profile often requires a great deal of organizational commit-
ment, but the benefits usually outweigh the costs.

Musa describes a 5-step methodology for creating an operational pro-
file [7]. The steps are shown in Figure 12.1 and are briefly described
below. You begin the process at a high level of abstraction—the customer
level—and add more details to the operational model by focusing on
users, system modes, functions, and then on operations, runs, and inputs.
The reader should note that not all the steps are needed to develop a
profile for every application.

1 . Deve lop the Cus tomer Pro f i l e .

Musa describes a customer, as the person, group, or institution that is
acquiring the software being developed. A customer group is the set of
customers that will be using the software in the same way. The customer
profile is the complete set of customer groups and their associated occur-
rence probabilities. The best measure of customer group probability is the
proportion of use it represents. If such information is not available you

Develop the
customer profile

Establish the
user profile

Define the
system mode profile

Develop the
functional profile

Develop the
operational profile

Select
tests

FIG. 12.1

Steps to develop an operational profile [7].



402 | Evaluating Software Qual ity: A Quantitat ive Approach

may have to make some assumptions based on the proportions of each
group you expect in your customer base. For example, consider an au-
tomated tax preparation system. It is reasonable to assume there are three
major customer groups, professional accounting firms, individual profes-
sional accountants, and ordinary taxpayers who will be using your soft-
ware. Assume that 40% of customers will be accounting firms, 35% will
be individual accountants, and 25% ordinary taxpayers, then the cus-
tomer profile is 0.45 for professional accounting firms, 0.35 for individual
accountants, and 0.25 for non-professional ordinary taxpayers.

2 . Es tab l i sh the Use r P ro f i l e .

Users and customers are not necessarily the same groups. For example a
physicians group might provide funding to acquire an automated medical
office management system, but the predominant users will be nurses, tech-
nicians, and medical office clerks. A user then is an individual, group or
institution that actually uses a given software system. A user group is a
set of users who will engage the system in the same way. The user profile
is the set of user groups and their occurrence probability. For example, if
the medical office has a staff of 10, with 5 nurses, 3 technicians, and 2
office clerks, then the nurses user group has a probability of 0.5, techni-
cians, 0.3, and office clerks 0.2, as shown in Table 12.1.

You can derive a user profile from a customer profile by studying
each customer group and identifying the user groups within it. Musa
suggests that the best way to establish the occurrence probability of a user
group within a customer group is to use the proportion of the customer
group’s usage it represents. If there are multiple customer groups, a profile
developer can calculate the overall probability for each user group by
multiplying each user group’s probability by its customer group’s prob-
ability, If user groups are combined across customer groups, their overall
user group probabilities should be added to yield the total user group
probability.

3 . Deve lop the Sys tem Mode Pro f i l e .

Musa describes a system mode as a set of functions or operations that
you group for convenience in order to analyze execution behavior. Hence



40312.3 The Role of Operat ional Prof i les and Usage Models in Qual ity Control |

Medical office system

User mode Occurrence probability

Nurses 0.50

Technicians 0.30

Clerks 0.20

TABLE 12 .1

Sample user profile.

a given system mode may map to several functions or operations. A sys-
tem mode profile is the set of system modes and their associated occur-
rence probabilities. Some example modes for the automated medical of-
fice management system are system administrator mode, nurse/technician
mode, and clerk mode. For each system mode, you need to develop an
operational and perhaps a functional profile.

4 . Deve lop the Func t i ona l P ro f i l e .

Functional profiles are usually developed in the requirements phase. In
case of requirements changes they should be updated. To develop a func-
tional profile you need to break down each system mode into the func-
tions needed to support it. You create a function list and determine each
function’s occurrence probability. The functional profile provides a quan-
titative view of the relative use of each of the different system functions.

An initial function list is developed that focuses on features. These
are functional aspects of the system that are of interest and significance
to users. These should be clearly visible from the requirements document.
User input is essential for developing this list. As a part of this step Musa
also prescribes that a set of what he calls environmental input variables
be identified. These variables describe the conditions that affect the way
the system runs, that is, the control paths it takes and the data it uses.
They might cause the software to respond in different ways; however,
they do not relate directly to features. In a telecommunication system an
input variable in this context would be the type of telephone used by a
customer—digital, or analog.



404 | Evaluating Software Qual ity: A Quantitat ive Approach

The final function list is the product of the number of functions in
the initial function list and the number of environmental variables, each
with its own set of values. You eliminate those combinations of initial
functions and environmental variable values that do not occur. The last
task in this phase is to determine occurrence probabilities. The best source
of data for this task is usage measurements taken from:

• the latest release of this software;

• a similar system;

• studies of the manual function that you are automating.

Most systems under development will be a mixture of previously released
functions for which you will have data, and new functions for which you
will have to estimate use.

5 . Deve lop the Opera t i ona l P ro f i l e .

An operation, according to Musa, represents a task being accomplished
by a software system as viewed by the staff who will run the system. It is
not the same as a function; there may not be a straightforward mapping
between the two. A function may be composed of one or more operations,
or a set of functions may be rearranged into a different set of operations.
Operations are less abstract than functions; they represent a specific task,
with specific input variable values or ranges of values. In general, there
may be more operations than functions associated with a system. As a
simple example, a function to modify a record could evolve into two
operations: (i) delete old record and (ii) add new record. Testers focus on
testing operations.

Musa describes a series of steps for developing the final operational
profile using information from the profiles already developed. These
include

(i) dividing the execution into runs;
(ii) identifying the input space;
(iii) partitioning the input space into operations;
(iv) determining the occurrence probabilities for operations.



40512.3 The Role of Operat ional Prof i les and Usage Models in Qual ity Control |

Operations are associated with runs. A run, according to Musa, ‘‘is
a logical entity that can be described as a segment of a program’s exe-
cution time.’’ The segment is usually based on accomplishing a user-
oriented task in a particular environment. Operations may comprise
many run types. Each run type has an associated input state or set of
input variable values that are external to the run, and are used by or affect
it. The general relationships between functions, operations, and runs ac-
cording to Musa is shown in Figure 12.2 [7].

An airline reservation system is a good illustration of these types of
entities. In such a system different run types would exist for single-leg
flights. The input variables would be different; for example, there would
be differences in customer names, flights numbers, originating and ter-
minating cities. A reservation transaction for a single-leg versus a two-leg
flight represents two different operations since each has a different set of
input variables. Common variables for both would be customer name,
flight number, and originating and terminating city. However the two-
leg flight reservation has additional variables such as a second flight num-
ber and a connecting city, so it should be considered as a distinct opera-
tion according to Musa.

An important aspect of this final step is to understand the nature of
the program’s input space. A program’s input space is the set of input
states that can occur during its operations. This can be large for a real-
world application. The most important issue here, according to Musa, is
to develop a comprehensive list of input variables. You proceed to par-

Input space

Function

Operation
Run type

Run category

FIG. 12.2

General relationship between

functions, operations, and runs [7].



406 | Evaluating Software Qual ity: A Quantitat ive Approach

tition the input space to reduce the number of profile elements you may
have to handle. Portions of the input space will correspond to an opera-
tion; these are called domains. The run types you group together should
have the same input variables, so you can develop a set of common and
efficient test procedures for the domain. After these partitions or opera-
tions have been identified, you determine their occurrence probabilities.
Refinement of functional profiles can help with this task; you can refine
and map functions to operations and to runs. Musa represents the final
operational profile as a table similar in format to Table 12.1, where there
are listings of operations and their occurrence probability.

Along with the tasks of preparing the different profiles, testers also
need to develop, or acquire, tools that will instrument and monitor the
software under test. The tool needs to extract ample data relating to input
variables so that the operations being executed can be identified to ensure
coverage.

The operational profile is then used by testers to select operations and
test inputs (through run types and categories) according to their occur-
rence probabilities. As stated by Musa, the nature of an operational pro-
file dictates that tests selected using the profile identify failures on average,
in the order of how often they occur. Testing in this way and repairing
the faults causing the observed failures increases reliability because the
failures that occur more frequently are caused by the faulty operations
used most frequently. Testers may use more than one operational profile
to represent the variations in system use that can occur.

There are other approaches to developing models of typical usage
patterns. Walton et al. describe such as approach that results in what they
call a usage model [8]. Expected groups of users, uses, and environments
are identified. A representation of the usage model is constructed as a
graph (nodes are usage states and arcs are stimuli that cause transitions
between usage states), a formal grammar, or using a Markov usage chain.
The next step is to assign probabilities to each transition in the usage
representation structure. The set of transition probabilities defines a prob-
ability distribution which is the usage distribution over the input domain.
A simple example of such a graph is shown in Figure 12.3. There are four
states represented in the graph. The values in parentheses over each arc
or arrow represent stimulus probability pairs. For example, the item
(Stim2, 0.2) indicates a stimulus “Stim2” and a 0.2 probability. The prob-



40712.4 Support for Qual ity Control : Stat ist ical Test ing |

Initial Final

State 1

(restart, 1.0)

State 2

(Stim6, 0.2)

(Stim3, 0.8)

(stimulus, probablility)

(Stim1, 1.0) (Stim2, 0.2)

(Stim5, 0.5)

(Stim4, 0.3)

FIG. 12.3

A simple example of a usage model

representation.

ability represents the likelihood that a given arc will be selected for a
transition from that state. When the model is developed it is verified using
available information about intended usage of the software. The model
can then be used to generate test cases. To perform this task, a tester
traverses the model from the initial to the final state, and randomly selects
stimuli based on the transaction probabilities. Sequences of stimuli se-
lected in this way are the basis for test cases. As previously mentioned,
models of this type and those developed with Musa’s approach can both
be used to drive statistical testing and reliability evaluation as described
in subsequent sections of this chapter.

1 2 . 4 Support for Qual ity Control : Stat ist ical Test ing

A statistical approach to software testing was developed by Mills et al.
[11] at IBM in the context of Cleanroom Software Engineering and by
Musa [7] at AT&T. Both of these research groups based their efforts on
approaches to testing and quality control in other engineering disciplines.
A similar approach for quality control in manufacturing processes is de-
scribed by Cho [6]. Cho describes the traditional approach to quality
control and certification which consists of:



408 | Evaluating Software Qual ity: A Quantitat ive Approach

• selecting random samples of the product;

• developing and executing tests that are characteristic of the opera-
tional use of the product;

• analyzing or making statistical inferences from test results;

• certifying for use products meeting a standard.

In the application of statistical testing to software, we do not select
random samples of the product to test, but we do select samples of its
usage. We actually select for test a subset of all possible usages of the
software as represented by the usage model or operational profile, and
test results are the basis for conclusions about its general operational
performance. In other words, the sample, as represented in the opera-
tional profile or usage model, is used to develop conclusions about the
so-called “population” of all uses. What is being expressed through this
approach is that it is not possible to exhaustively test any reasonably sized
piece of software with all usage scenarios. Application of an operational
profile and statistical testing allows us to be “smart testers” and select a
representative sample of uses and inputs.

After a usage model, or operational profile, is developed for a soft-
ware system, testers generate test cases (inputs) using samples of the uses
or operations. In the case of usage models that are in graphical form, test
cases can be generated as described in the previous section by traversing
the usage states of the model, guided by the transition probabilities. Tra-
versals result in an accumulation of successive stimuli that represent a test
case [9]. When test cases are generated from a usage model, they are
generated to reflect probabilities in the usage model. During the actual
test period testers must ensure that the test experience is representative of
actual usage. The randomly generated test cases cause an accumulation
of usage events in proportion to usage probabilities. As testing progresses,
testers use can use tools and measurements such as a discriminant to
determine if testing is a representation of actual use.

A discriminant is a measure of the degree to which the actual testing experience

has become a good representation of expected usage [9].

A discriminant tends the change in value as the testing effort proceeds
according to the usage model. When tests are run with the test cases,



40912.4 Support for Qual ity Control : Stat ist ical Test ing |

testers observe the value of the discriminant as it changes and the actual
behavior of the software. The latter is compared to specified behavior.
Results are recorded, including any failures. The test results are analyzed
with respect to a reliability model (as discussed in the next section of this
chapter) to provide a basis for statistical inference of reliability during
operational use. In addition, when testers are satisfied that the tests are
sufficient to simulate expected performance in the field (i.e., the discrim-
inant has converged on a certain value that indicates that the testing sce-
nario is sufficiently similar to expected usage), they can use this infor-
mation along with other data, to help make stop test decisions. It should
be noted that conclusions drawn from statistical testing apply only to the
particular release or software version under test, under the specified con-
ditions. New versions or new releases usually result in different usage
patterns, and the usage models applied to test them need to reflect the
new patterns of use.

Statistical testing very often results in large volumes of test data to
examine, and analysis of results may require large amounts of testers’
time and expertise. Therefore, use of statistical testing techniques requires
testers that are trained and motivated; they need to have a good under-
standing of software specifications and statistical techniques. Organiza-
tions assessed at TMM 5 have the staff with the necessary skills to carry
our these types of tests.

Statistical testing has several major benefits which include:

(i) concentrating testing resources on the parts of the system mostly
likely to be used; this should result in a more reliable system from the
users viewpoint;

(ii) supporting estimations or predications of reliability which should be
accurate from the user’s viewpoint;

(iii) providing quantitative criteria for decisions on the completeness of
testing and system release.

Statistical testing is a large part of the certification process for soft-
ware in Cleanroom Software Engineering [9–11]. Certification goals are
developed for the software which includes expectations for reliability,
confidence, and reliability growth rates. The application of usage models,
statistical testing, as well as traditional testing techniques, allows Clean-



410 | Evaluating Software Qual ity: A Quantitat ive Approach

room certifiers to determine if the software is fit for use with respect to
the certification goals.

1 2 . 5 Software Rel iabi l i ty

In previous chapters this text has described several software quality at-
tributes and their role in defining and evaluating software quality. The
text has also introduced concepts related to quality control of software.
As software plays a more critical role in society, demands for its proper
functioning with an absence of failures over long periods of time increase.
Users/clients require software products that produce consistent and ex-
pected results over long periods of use. Deviations from expected behavior
that result in software failures are costly, and may have impact on medi-
cal, commercial, military, and social aspects of our society. Hence the
drive in our profession to understand, model, evaluate, and control a
critically important software quality attribute we call reliability. As part
of our quality control activities at higher levels of the TMM we measure
and strive to improve software reliability.

A definition for software reliability is as follows:

Software reliability is the ability of a system or component to perform its required

functions under stated conditions for a specified period of time [1].

Another definition that expresses reliability in terms of probability is:

Software reliability is the probability that a software system will operate without

failure under given conditions for a given time interval.

Note that reliability focuses on behavior of the software over a period of
time. We usually express reliability using a scale from 0 to 1. Software
that has a reliability measure close to 1 is highly reliable. We also expect
crucial software to be available to us when it is needed to support us with
our tasks. Availability is a concept related to reliability but has a different
meaning.

Availability is the degree to which a system or component is operational and ac-

cessible when required for use [1].

An alternative definition of availability in terms of probability is:



41112.5 Software Rel iabi l i ty |

Availability is the probability that a software system will be available for use [12].

Availability is also measured on a scale from 0 to 1. A system that is
up and running has availability of 1. One that is unusable has an avail-
ability of 0. We measure availability in clock time, not execution time as
in the case of reliability. As an example of the differences between reli-
ability and availability, let us examine the case of a household appliance
such as an oven that has only been seen by the repairman twice in 15
years (two failures). It is highly reliable. But if it is not working on the
day it is needed to prepare dinner for a family party, then it is not avail-
able. In this section we focus on reliability issues.

Another related term that should be mentioned here is trust-
worthiness.

Trustworthiness is the probability that there are no errors in the software that will

cause the system to fail catastrophically [12].

Appropriate and quantitative quality goals should be set with respect to
these attributes for all projects. This is essential, especially for critical
software systems, and is supported in the IEEE Standard for Recom-
mended Practices for Software Requirements Specification, which in-
cludes a description of reliability requirements that should appear in a
requirements document [13].

Testers play an important role in evaluating and ensuring the reli-
ability, availability, and trustworthiness of a software system. This is part
of their responsibility in support of software quality control. However,
testers should not bear the sole responsibility for releasing highly reliable
and trustworthy software. The quality (maturity) of the development/
testing processes, the types of design approaches used, the level of edu-
cation and expertise of developers, software engineers, systems analysts,
and software quality assurance staff are among the factors that have a
high impact on the reliability and trustworthiness of a software system.

An initial approach to addressing reliability issues in software systems
might be to adapt techniques that have been applied successfully in the
hardware domain. However, a study of the issues reveals that there are
fundamental differences between achieving hardware and software reli-
ability goals. Thus, the approach taken to addressing the software and
hardware reliability problem will be different. If we begin with a surface



412 | Evaluating Software Qual ity: A Quantitat ive Approach

view of hardware and software systems, it is obvious that the two reli-
ability problems are not the same, since software does not consist of physi-
cal components that wear out or exhibit manufacturing faults. Given its
physical nature, a hardware system, unlike a software system, could fail
if a component wears out (gets corroded or oxidized) or its manufacture
was faulty. In these cases, the faulty component can be repaired or re-
placed, and the system restored to its running state. Its reliability is main-
tained when the repair is complete. Software is a set of instructions for
the computer to carry out. It cannot wear out, but it can be wrong, that
is, defective.

Defects/faults introduced in the software can be latent and manifest
themselves only when a particular set of conditions occurs. It is under
these circumstances that a failure is observed. The defect/fault must be
isolated and the software repaired. Software engineers have the expecta-
tion that the repair will increase the reliability of the software; unfortu-
nately, this is not always true. During the process of repair new defects
may be introduced.

In addition to physical differences, the abstraction level of the com-
ponents that hardware and software engineers are concerned with also
differ. Hardware engineers are concerned mainly with discrete compo-
nents such as resistors and capacitors and integrated chips. Software en-
gineers are also concerned with so-called “primitives,” such as instruc-
tions, procedures, and modules. However, they are also concerned with
higher-level components such as packages, subprograms, libraries, and
finally large programs [14].

Given the differences between the hardware and software reliability
problem, the question becomes, how should we, as software engineers,
approach reliability issues in our own domain? First, we need to decide
how we will measure reliability, and then we need to develop the models
and techniques needed to evaluate and improve reliability. Hamlet sug-
gests that two kinds of models are useful in the software engineering
domain—reliability growth models and reliability models [15]. Reliability
growth models are applied mainly during a system test, where cycles of
run tests, observe failures, repair, and continue testing are repeated. Test
managers observe changes in the failure rate over time and use these to
make a decision about when to stop testing. Reliability growth models
rely on observational data and use of accurate usage models. Reliability
models are predictive models that are applied after the software has been



41312.5 Software Rel iabi l i ty |

tested. Testers can use them to predict the mean time to failure—the prob-
ability of failure-free operation of the software. They are based on use of
statistics and probability.

1 2 . 5 . 1 M e a s u r e m e n t s f o r S o f t w a r e R e l i a b i l i t y

Several time-related measurements are associated with reliability and
availability in the software domain. Using these we can express reliability,
and its associated attribute availability, as values between 0 and 1 as
previously described. A value of zero for these items indicates that a sys-
tem is unreliable or unavailable, and a value of 1 indicates that it is com-
pletely reliable and always available. In order to discuss these measure-
ments we need to describe the role of the tester and the necessity for
collecting failure data. As we test the software and move through the
levels of testing we observe failures and try to remove defects. Our at-
tempts to remove defects are sometimes successful, and sometimes when
making changes we introduce new defects or create conditions that allow
other defects to cause failures. As this process progresses we collect the
failure data especially during a system test. It is essential that during sys-
tem test we use test data that reflects actual usage patterns. As testing
continues we monitor the system as it executes. Ideally, we hope to ob-
serve that the incidence of failures is decreasing, that is, we have longer
and longer time periods where the software is executing and no failures
are observed. Sometimes this is true and sometime it is not, at least over
the short term. In any case let us assume that we have observed i�1
failures. We can record the interfailure times or the times elapsed between
each of the i�1 failures, t1, t2, t3, . . . , ti�1. The average of those observed
values is what we call the mean time to failure, MTTF. The computation
of the MTTF is dependent on accurately recording the elapsed time be-
tween the observed failures. Time units need to be precise. CPU execution
time is in most cases more appropriate than wall clock time [16].

After a failure has been observed, software engineers must repair the
code. We can calculate the average time it takes to repair a defect in the
code and calculate this time as the mean time to repair, MTTR.

We use both of these measures to calculate a value called the mean
time between failure, MTBF.

MTBF � MTTF � MTTR



414 | Evaluating Software Qual ity: A Quantitat ive Approach

Some researchers use the measure of mean time between failures as a
estimate of a system’s reliability. Other suggested measures for reliability
(R) have been suggested by Shooman [17]:

MTBF
R �

1 � MTBF

Shooman also proposes a definition for availability (A) as:

MTBF
A �

MTBF � MTTR

A measure for maintainability, another quality attribute of interest to us is
also derived from Shooman’s work. One definition for maintainability is:

The ease with which a software system or component can be modified to correct

faults, improve performance or other attributes, or adapt to a changing environ-

ment [1].

From Shooman’s work maintainability (M) is calculated solely as a func-
tion of the mean time to repair:

1
M �

1 � MTTR

There are other approaches that try to capture the essence of reli-
ability, availability, and maintainability in a practical way. For example,
some organizations use the values of fault density (i.e., number of faults/
KLOC) as a measure of software reliability. Using fault density as a mea-
sure of reliability is not as useful as mean time to failure from a client/
user point of view since each error in the software may not have the same
failure rate. Organizations using fault density as a measure of reliability
are likely to be organizations operating on lower levels of the TMM where
fault and failure data are not routinely recorded and available, and the
development of accurate usage profiles and use of statistical testing is not
a common practice.

1 2 . 6 Rel iabi l i ty , Qual ity Control , and Stop-Test Decisions

Addressing software reliability issues requires a great deal of expertise,
for example, expertise in defect prevention, process evaluation, predictive



41512.6 Rel iabi l i ty , Qual ity Control , and Stop-Test Decisions |

modeling, usage modeling, statistics, testing, and measurement. Special-
ists called reliability engineers have the education and training needed to
become leaders in this area of reliability management [12]. Reliability
engineering practitioners and researchers in this area have developed re-
liability models of many types, for example, Markov, Bayesian, and uni-
fied, error seeding, curve fitting, and the nonhomogeneous Poisson pro-
cess [12]. Reliability growth models that will help to determine when to
stop testing include types such as logistic growth curve, Duane growth,
Weibull growth, and Gompertz growth curves [12]. A detailed discussion
of these models is beyond the scope of this book; however, readers can
get a good start by studying books and papers by leaders in the field, for
example, Musa [7,18], Pham [12], Shooman [17], and Musa and Ack-
erman [19]. Another good source of information is the July 1992 issue of
IEEE Software which is dedicated to reliability measurement articles.

For testers and test managers a key issue is the determination of
when the software is reliable enough to release, that is, when can testing
be stopped? Figure 12.4 shows some of the consequences of making this
decision too early or too late in the testing process. Timely stop-test
decisions are critical since testing too much may be wasteful of re-
sources, delay time-to-market, and increase costs. However, stopping
testing too soon, before the software is reliable, could allow high-sever-
ity defects to remain in the shipped software, resulting in loss of life and
property as a worst-case scenario. Customer dissatisfaction, high costs
of repair to operational software, and increased hot line calls are also
consequences of a premature stop-test decision. Stop-test decisions can
be supported by use of operation profiles, statistical testing, and reli-
ability growth models which will be described later in this section. In
addition, reliability goals must be defined for the software under test.
Life cycle activities associated with use of reliability measurement to
support a stop-test decision include:

(i) setting reliability goals in the requirements document (a reliability
specification is the result);

(ii) providing adequate time and resources in the test plan to allow for
developing/modifying the usage profile, running the tests, and col-
lecting, cataloging, and analyzing the reliability data;

(iii) developing a usage or operational profile that accurately models us-
age patterns;



416 | Evaluating Software Qual ity: A Quantitat ive Approach

Defects remain and cause
    loss of or damage to life
    and property

Customer dissatisfaction

High costs to repair

Costs of hot line calls

Wasteful of resources

Delay time to market

Increased costs

Delayed schedules

Balance for optimal
stop-test decision

Stop testing too late Stop testing too early

FIG. 12.4

Consequences of untimely stop-test

decisions.

(iv) establishing levels of severity for failures;
(v) selecting a reliability growth model suitable for the project;
(vi) carrying out statistical testing based on the operational profile.

Of these six items, items (i)–(iv) could be placed under the umbrella
of what might be called reliability knowledge development [20]. This
knowledge is gathered throughout the software life cycle. The usage or
operational profile mentioned in items (ii) and (iii) and described in Sec-
tion 12.3, is very important for reliability measurement. It allows a rep-
resentative sample of actual inputs to be supplied during testing. Statis-
tical testing mentioned in item (vi) and described in Section 12.4 is a type
of testing where the emphasis is on measuring the reliability of the soft-
ware rather than on detecting specific defects. It is used in conjunction
with reliability growth models to make stop-test decisions. To monitor
reliability growth testers select test data representing typical patterns of
usage. The software is executed, and the amount of execution time be-
tween each failure is recorded. CPU time is one of the time units that can
be used. Other time units include the number of transactions, or calendar



41712.6 Rel iabi l i ty , Qual ity Control , and Stop-Test Decisions |

time if the system is in continuous operation. After a statistically signifi-
cant number of failures have been observed by the testers, the number of
failures detected and the time between those failures, is used to compute
a reliability measure.

With respect to item (iv), it is important for the reliability testing team
to identify different classes or levels of failure and consider how they
should be treated in the reliability specification. Since highly reliable soft-
ware is very expensive, if the software is very large the team may decide
to set separate reliability goals for each of its subsystems.

To develop the reliability specification the reliability testing team
should:

(i) identify the types of system failures and their impact on the system.
Impact is the basis for developing a severity level hierarchy as was
described in Section 9.1.4 and shown in Figure 9.3.

(ii) Establish a reliability requirement for each failure level—for a failure
of severity level “X” the reliability metric for MTBF is “Y,” where
“X” is one of the numbered severity levels and “Y” is an appropriate
time duration that depends on the severity level.

The emphasis in testing should be on handling the most severe fail-
ures; these are of the greatest interest. We want to be sure that our testing
process has eliminated them to the best of our ability. Reliability goals
may be stated with respect to failures of particular severity levels that
have a high impact on system usage and customer satisfaction.

1 2 . 6 . 1 A p p l y i n g R e l i a b i l i t y M o d e l s

Testers can use reliability models to help them predict how software re-
liability should grow or improve over time as the software is executed,
faults are located, and repairs are made. The models can predict when,
or if, a particular level of reliability is likely to be obtained within the
constraints associated with the project and the testing effort. Testers can
also use these models to assess how quickly software quality is improving
over time. The test scenario is as follows. The software is run using the
operational profile and a statistical testing approach as described previ-
ously. Its reliability is measured over time. When a number of reliability



418 | Evaluating Software Qual ity: A Quantitat ive Approach

measurements have been made they are compared with a selected growth
model and reliability predictions are made. Musa and Ackerman have a
good discussion of this process [19]. They describe three useful reliability
growth model types—static, basic, and logarithmic Poisson. The static
model is best applied to unchanging software with an unchanging oper-
ational profile, for example, a terminal program that is usually perma-
nently installed in a terminal as firmware. The basic model is useful for
modeling failure occurrence for software being tested and continuously
debugged. In this case, the software is run with test cases, failures are
observed and recorded, and faults are constantly being repaired. Ideally,
the failure intensity (failures/CPU hour) should decrease as testing pro-
ceeds and the code is repaired. This model works best if the faults in the
software are equally likely to cause failures so that the average failure
intensity improves by the same amount whenever a correction is made.
This model also works well for the case where the operational profile
remains unchanged, but where an action to correct a fault is taken when-
ever a failure is observed. Corrections need not be perfect.

If you assume that some faults are more likely to cause failures, and
that on the average the improvement in failure intensity with each cor-
rection decreases exponentially as the corrections are made, then Musa
and Ackerman recommend use of the logarithmic Poisson execution-time
model [19]. Like the basic model, this model also works for cases where
the operational profile remains unchanged, and where corrections (perfect
or imperfect) are made when a failure is observed.

Data from these reliability studies can be collected and tabularized
as shown on Table 12.2. Plots can be made of the observed cumulative
number of failures versus execution time. Figure 12.5 gives the reader a
rough idea of what such a plot for the basic model might look like. Musa
and Ackerman [19], Sheldon et al. [20], Fenton [21], and Lyu and Nikora
[22] show some actual plots. Reliability measurement tools can be used
to help testers analyze the data collected. Several types of reliability mod-
els can be handled by the tools. The tools will perform statistical analysis
and provide summary reports of data collected. Most importantly, they
can give an estimate of the CPU time needed to reach reliability objectives.
CPU time can be converted to calendar days and completion time for
system test. The test manager can use this information to adjust schedules



41912.6 Rel iabi l i ty , Qual ity Control , and Stop-Test Decisions |

Failure

number

CPU sections

since last failure

1 2

2 28

3 85

4 116

5 65

6 155

. . . . . .

. . . . . .

89 2004

90 2123

. . . . . .

TABLE 12 .2

A sample table for collecting

failure data.

and resources. The outputs of the tools may also indicate to the manager
that some renegotiation with the user/client group is necessary to reach
the reliability goals [19].

There are uncertainties in using many of the reliability growth mod-
els. Testers and developers can never be certain that in repairing a defect
that another defect is not injected, or that the repair initiates some con-
dition that activates other failures. They also cannot be sure what con-
tribution removal of a particular defect will make to increased reliability.
This is the reason that testers may not observe interfailure times always
increasing when a defect is repaired. In addition, testers cannot be sure
exactly how the software will actually be used in operation. The exact set
of inputs, or the order in which they will be submitted to the system, is
not known since in many cases accurate and stable operational profiles
are not available to testers. In a practical sense, test managers and clients
also need to be aware of the costs of reaching a certain level of reliability.
Given the higher costs of reaching higher levels of reliability, customers
will need to make appropriate choices under existing cost constraints.



420 | Evaluating Software Qual ity: A Quantitat ive Approach

Execution time in CPU hours

C
um

ul
at

iv
e 

nu
m

be
r 

of
 f

ai
lu

re
s

Observed

Fitted

0

0

FIG. 12.5

A rough sample plot of cumulative

number of failures versus execution

time in CPU hours, both observed

and fitted.

Other approaches to reaching a stop-test decision using reliability-
type models have been reported in the literature. One of these is discussed
in a paper by Ehrlich and co-authors [23]. The authors describe an inter-
esting approach that uses software reliability engineering, and an eco-
nomic model to support a decision on an optimal release time. They ap-
plied their model to a network management system that receives data
from a telemetry network. The steps in their process were as follows.

1. Identification of a model to quantify the economic consequences of
terminating test at a reliability achievable with a given number of
units of test program execution.

2. Collection of data on failures and program execution time during
system test.

3. Analysis of reliability data by selecting a reliability growth model and
fitting the model to this data at several points during system test.

4. Combining reliability and economic knowledge by applying the re-



42112.6 Rel iabi l i ty , Qual ity Control , and Stop-Test Decisions |

liability model’s estimated values to the economic model to determine
the optimal time for system release.

The economic model that the authors used was adapted from the
work of Dalal and Mallows [24]. The model quantifies the economic
consequences involved in a stop-test decision at a reliability level achiev-
able with given units of execution time. There were several parameters
associated with the economic model. These include (i) the cost of testing
activities, (ii) the cost of resolving failures, (iii) the total expected number
of faults, (iv) the software failure intensity rate, (v) the expected program
execution time of the software release per field site, (vi) the number of
field sites, and (vii) the cost to customer operations of a failure in the field.
An operation profile for the system was available for this work, and fail-
ure data was collected from system test and beta-test sites.

The authors collected and analyzed reliability data, and chose to try
three reliability growth models to apply to their data. An exponential
model was selected based on its ability to gave the best fit to the data.
The economic model was applied to determine the benefit-to-cost ratio
associated with identifying the optimal time to release the software. For
these experiments, costs included those associated with testing and reli-
ability engineering, such as developing the operational profile and col-
lecting and analyzing reliability measurements. The cost savings, or bene-
fits, indicate the gain from having knowledge of the optimal time to
release the software, and this is calculated from the author’s model by
using the available reliability and economic knowledge. The benefit-to-
cost ratio associated with determining the optimal time to release is then
calculated easily from this information. This approach gives testers in-
formation about the savings gained for the project as a result of stopping
testing at the optimal time.

Another reliability-related approach to support stop-test decision
making was reported by Brettschnieder at Motorola [25]. The author uses
a simple model called the “zero-failure testing” model. It assumes that
the problem rate p(t) can be expressed as follows.

p(t) � a* e(exp(�b(t))

where a and b are constants and t is time. The model can be used to
determine how many hours the system must be tested in order to meet a



422 | Evaluating Software Qual ity: A Quantitat ive Approach

reliability goal. Three inputs are required: (i) the target projected number
of customer failures, (ii) the number of test failures observed so far, and
(iii). the total number of test execution hours up to the last failure. The
equation to use for calculating zero-failure test hours is:

ln (customer problems)/(0.5 � customer problems)
ln (0.5 � customer problems)/(test � customer problems)

� Test hours to last problem

The author gives the following example of use of this equation. Sup-
pose you are testing a 33,000-line program, and to date 15 repairable
failures have been detected over an execution time of 500 hours. No
failures have been observed in the last 50 hours of testing. Management
want to know how much more testing is needed to ensure that the cus-
tomers observe no more than a projected average of 0.03 failures per
KLOC. In this case for the 33,000 lines that would indicate one customer
failure should be observed. Using the equation shown above you
calculate:

ln (1/1.5)
� 450 � 77 zero failure test hours

ln(1.5/16)

The value of 16 problems is the sum of the 15 problems observed so far,
and the one problem (failures) allowed. The 450 is the result of 500 test
hours minus the 50 failure-free hours already accomplished. The value of
1.5 is derived from the sum of 0.5 and the 1 allowed customer failure.
Since you have already tested for 50 hours you need only test for (77 �

50) � 27 hours more. However, if there is a failure during the 27 addi-
tional hours, you will need to continue to test, recalculate, and restart
your testing clock.

1 2 . 7 Confidence Levels and Qual ity Control

As a part of their quality control activities, testers at TMM level 5 can
make estimations relating to the confidence level of the software. Confi-
dence, usually expressed as a percent, gives testers information as to the



42312.7 Confidence Levels and Qual ity Control |

likelihood that software is fault free. If a statement is made that a system
is fault free with a 95% level of confidence, this means that the probability
that the software has no faults is 0.95. Confidence levels are derived using
fault seeding, a technique that was discussed in Chapter 9. To demon-
strate how this technique is applicable let us suppose that the following
situation exists: We have planted S faults in a program, and we believe
the program has N actual faults. We then test the program until we find
the S seeded faults. If n is the number of unseeded faults found during
testing then the confidence level can be calculated as

if n � N�1,
C � if n � N�S/(S � N � 1),

As an example of how testers can use this equation, let us suppose that
we have a program and we claim it has no faults, that is, N � 0. If we
seed this program with 15 faults, and we test and find all 15 without
encountering any other faults, we can calculate the confidence level with
S � 10 and N � 0 of

15 (15 � 0 � 1) � 15/16 or 94%

If our customer requires a 98% confidence level, then we would need to
seed with

S/S � (0 � 1) � 0.98

or 49 seeded faults. To achieve this confidence level, we must continue
testing until we find all of these seeded faults and no other unseeded faults.
Note that this approach depends on finding all of the seeded faults to
make an estimate of the confidence levels. A change to the above equation
can be made to enable testers to estimate confidence levels using the num-
ber of detected seeded faults. This estimate of confidence can be calculated
using the equation shown below where s is the number of detected seeded
faults. This approach assumes that all faults have an equal probability of
being detected which may not be true [26].

�1, if n � N
C S S � N � 1�� , if n � N� ��� �S � 1 N � s



424 | Evaluating Software Qual ity: A Quantitat ive Approach

1 2 . 8 Usabi l i ty Test ing, and Qual ity Control

The descriptions and definitions for quality control focus on evaluation
of the quality of a software system in terms of user requirements. For this
reason quality control activities should certainly include a usability eval-
uation, usability being a software quality factor directly related to a user’s
view of a software system. Usability can be described in the following
way.

Usability is a quality factor that is related to the effort needed to learn, operate,

prepare input, and interpret the output of a computer program.

Usability is a complex quality factor and can be decomposed accord-
ing to IEEE standards into the subfactors [27]:

Understandability: The amount of effort required to understand the
software.

Ease of learning: The degree to which user effort required to understand
the software is minimized.

Operability: The degree to which the operation of the software matches
the purpose, environment, and physiological characteristics of users; this
includes ergonomic factors such as color, shape, sound, font size, etc.

Communicativeness: The degree to which the software is designed in ac-
cordance with the psychological characteristics of the users.

In the past it was believed that simple measurements such as the num-
ber of help screens and menu options could be used to measure usability.
However, human factors groups in many large software organizations
began to work with developers, designers, and analysts to:

(i) conduct experiments and empirical studies to identify improved
usability-related attributes;

(ii) earn how to address usability issues in design;
(iii) learn how to engineer the development process so that usability con-

cerns were addressed; and
(iv) learn how to test to ensure that usability goals were met.



42512.9 An Approach to Usabi l i ty Test ing |

Much was learned through this process, and over the past several
years a new branch of testing has evolved called usability testing. A new
profession of usability engineer has also emerged. A usability engineer
should have education and training in the areas of human factors, soft-
ware design, software quality, and usability testing. Usability engineers
learn how to plan, design, set up, conduct, analyze, and report the results
of usability tests. They need to ensure that results of usability test are used
to improve the quality of the evolving software. Usability engineers need
resources such as laboratory space to conduct the tests, training programs
for new hires, and tools to collect and analyze data. In many organizations
positions for usability engineers do not yet exist. In such cases usability
testing, particularity in the latter portion of the software life cycle, could
be carried out through a collaboration between human factors staff,
software developers/testers, and software quality assurance staff. These
groups will need to work with representatives of the target population
who will be using the software to ensure that the software product meets
the usability goals that were specified in the requirements. Rubin has
written a book that is an excellent guide to this branch of testing [28].
Other papers and texts of interest in this field include references 29–33.
Rubin has a detailed bibliography of such references. In the remainder of
this section, usability, and a brief overview of usability testing using
Rubin’s approach will be presented to introduce the reader to this area
of testing.

1 2 . 9 An Approach to Usabi l i ty Test ing

Rubin’s approach to usability testing employs techniques to collect em-
pirical data while observing a representative group of end users using the
software product to perform a set of tasks that are representative of the
proposed usage. Rubin emphasizes that participants in the usability tests
must be selected carefully and be representative of the target group of
users. He describes four types of tests: (i) exploratory, (ii) assessment,
(iii) validation, and (iv) comparison. These are shown in Figure 12.6 and
described in the following sections. The four test types comprise the whole
of usability testing and occur throughout the software life cycle [28].



426 | Evaluating Software Qual ity: A Quantitat ive Approach

It is important to describe the basic elements of usability testing to
show how they are related to designer, developer, and tester interests. The
elements are (i) the development of a test objective (designers, testers),
(ii) use of a representative sample of end users (testers), (iii) an environ-
ment for the test that represents the actual work environment (designers,
testers), (iv) observations of the users who either review or use a repre-
sentation of the product (the latter could be a prototype) (developers,
testers), (v) the collection, analysis, and summarization of qualitative and
quantitative performance and preference measurement data (designers,
developers, and testers), and (vi) recommendations for improvement of
the software product (designers, developers)

1 2 . 9 . 1 E x p l o r a t o r y U s a b i l i t y T e s t i n g

As previously mentioned, usability testing spans the entire life cycle of the
software product. Exploratory tests are carried out early in the life cycle
between requirements and detailed design. A user profile and usage model
should be developed in parallel with this activity. The objective of ex-
ploratory usability testing is to examine a high-level representation of the
user interface to see if it characterizes the user’s mental model of the
software. The results of these types of tests are of particular importance

Between requirements
and detailed design

After high-level design

After code/test,
close to release

Almost any phase (in
conjunction with other
types of usability tests)

Exploratory

Assessment

Validation

Comparison

Types of usability tests Life cycle phase applied

FIG. 12.6

Types of usability tests [28].



42712.9 An Approach to Usabi l i ty Test ing |

to designers who get early feedback on the appropriateness of the prelim-
inary user interface design. More than one design approach can be pre-
sented via paper screens, early versions of the user manual, and/or pro-
totypes with limited functionality.

Users may be asked to attempt to perform some simple tasks, or if it
is too early in the prototying or development process, then the users can
“walkthrough” or review the product and answer questions about it in
the presence of a tester. The users and testers interact. They may explore
the product together; the user may be asked to “think aloud” about the
product. Users are usually asked for their input on how weak, unclear,
and confusing areas can be improved. The data collected in this phase is
more qualitative then quantitative.

1 2 . 9 . 2 A s s e s s m e n t U s a b i l i t y T e s t i n g

Assessment tests are usually conducted after a high-level design for the
software has been developed. Findings from the exploratory tests are ex-
panded upon; details are filled in. For these types of tests a functioning
prototype should be available, and testers should be able to evaluate how
well a user is able to actually perform realistic tasks. More quantitative
data is collected in this phase of testing then in the previous phase. Ex-
amples of useful quantitative data that can be collected are:

(i) number of tasks corrected completed/unit time;
(ii) number of help references/unit time;
(iii) number of errors (and error type);
(iv) error recovery time.

Using this type of data, as well as questionnaire responses from the
users, testers and designers gain insights into how well the usability goals
as specified in the requirements have been addressed. The data can be
used to identify weak areas in the design, and help designers to correct
problems before major portions of the system are implemented.

1 2 . 9 . 3 V a l i d a t i o n U s a b i l i t y T e s t i n g

This type of usability testing usually occurs later in the software life cycle,
close to release time, and is intended to certify the software’s usability



428 | Evaluating Software Qual ity: A Quantitat ive Approach

[28]. A principal objective of validation usability testing is to evaluate
how the product compares to some predetermined usability standard or
benchmark. Testers want to determine whether the software meets the
standards prior to release; if it does not, the reasons for this need to be
established.

Having a standard is a precondition for usability validation testing.
The usability standards may come from internal sources. These are usu-
ally based on usability experiences with previous products. External stan-
dards may come from competitors’ products. Usability requirements
should be set for each project, and these may be based on precious prod-
ucts, marketing surveys, and/or interviews with potential users. Usability
requirements are usually expressed in quantitative terms as performance
criteria. The performance criteria usually relate to how well, and how
fast, a user can perform tasks using the software. Measurements taken
during usability testing as described in the next section relate to usability
subfactors similar to those described in Section 12.8.

Other objectives of validation usability testing include:

1. Initiating usability standards. The test results themselves can be used
to set standards for future releases. For example, if in the first release
we find during usability testing that a user can set up the system
satisfactorily in 10 minutes with only one error occurring, that can
be the standard for future releases.

2. Evaluating how well user-oriented components of a software system
work together. This may be the first opportunity to test the interac-
tion between online help, user manuals, documentation, software,
and hardware from the user’s point of view. In many cases these are
developed by independent teams and are not tested together as an
integral system until this time.

3. Ensuring that any show-stoppers or fatal defects are not present. If
the software is new and such a defect is revealed by the tests, the
development organization may decide to delay the release of the soft-
ware. If the organization decides to market the software in spite of
the defect, at least its nature is known and the organization can pre-
pare for releasing a fix, training a support team, and/or public rela-
tions responses.



42912.9 An Approach to Usabi l i ty Test ing |

1 2 . 9 . 4 C o m p a r i s o n T e s t

Comparison tests may be conducted in any phase of the software life cycle
in conjunction with other types of usability tests. This type of test uses a
side-by-side approach, and can be used to compare two or more alter-
native interface designs, interface styles, and user manual designs. Early
in the software life cycle comparison test is very useful for comparing
various user interface design approaches to determine which will work
best for the user population. Later it can be used at a more fine-grained
level, for example, to determine which color combinations work best for
interface components. Finally, comparison test can be used to evaluate
how the organization’s software product compares to that of a competing
system on the market.

1 2 . 9 . 5 U s a b i l i t y T e s t i n g : R e s o u r c e R e q u i r e m e n t s

To carry out usability testing requires organizational commitment in the
form of:

1. A usability testing laboratory. This does not have to be an elaborate
set-up, but should minimally consist of a private area that includes a
user workstation, a sitting area for a tester (and other observers), and
a video camera. More elaborate set-ups include multiple video cam-
eras and separate observation rooms for multiple observers.

2. Trained personnel. Full-scale usability testing should involve staff
trained as usability testers, In many organizations much of the work
in usability testing may be carried out by human factors staff. SQA
staff and software test specialists may also participate. Developers
who are familiar with the technical aspects of the software play an
auxiliary role during these tests. They need to be present to ensure
that the software is functioning during the tests, and to restore or
restart the system in case of crashes or other technical problems. The
tasks and responsibilities for the usability testing staff include:

• selecting the user participants;

• designing, administering, and monitoring of the tests;



430 | Evaluating Software Qual ity: A Quantitat ive Approach

• developing forms needed to collect relevant data from user
participants;

• analyzing, organizing, and distributing data and results to rele-
vant parties;

• making recommendations to development staff and manage-
ment.

3. Usability test planning. Like all other tests, usability tests need to be
planned. Test objectives, staff, and resources needed, user profiles,
task lists, test methodologies, evaluation measures (data to be col-
lected), and types of test reports are among the items that should be
included in the usability test plan. In his text, Rubin shows an ex-
ample of a usability test plan [28].

Initializing a usability test program is best done with pilot pro-
jects. Successes with the pilot projects provide a foundation for in-
cluding additional projects that can be added incrementally to the
program. Usability testers, with support from management, and suc-
cesses from pilot projects, should inform and educate others within
the organization to the benefits of a usability testing program. Poten-
tial benefits that should be mentioned include higher customer sat-
isfaction, larger market share, fewer hot-line calls, and fewer repairs
to operational software,

1 2 . 9 . 6 U s a b i l i t y T e s t s a n d M e a s u r e m e n t s

Tests designed to measure usability are in some ways more complex than
those required for traditional software testing. With regard to usability
tests, there are no simple inputs/output combinations that are of concern
to the traditional tester. The approach to test design calls for the tester to
present the user with a set of tasks to be performed. Therefore, knowledge
of typical usage patterns (use cases can be helpful) for the software is
necessary to plan the tests. Tasks that constitute a series of usability tests
should be prioritized by frequency, criticality, and vulnerability (those
tasks suspected before testing to be difficult, or poorly designed) [28]. For
example a usability test for a word processing program might consist of
tasks such as:



43112.9 An Approach to Usabi l i ty Test ing |

(i) open an existing document;
(ii) add text to the document;
(iii) modify the old text;
(iv) change the margins in selected sections;
(v) change the font size in selected sections;
(vi) print the document;
(vii) save the document.

As the user performs these tasks she will be observed by the testers and
video cameras. Time periods for task completion and the performance of
the system will be observed and recorded. Any errors made by the user
will be noted. Time to recover from errors will be noted. Users’ comments
as they work may be solicited and recorded. In addition, the video cam-
eras can be used to record facial expressions and spoken comments, which
may be very useful for evaluating the system. These observations, com-
ments, and recordings are the outputs/results of the usability tests.

Many of the usability test results will recorded as subjective evalua-
tions of the software. Users will be asked to complete questionnaires that
state preferences and ranking with respect to features such as:

(i) usefulness of the software;
(ii) how well it met expectations;
(iii) ease of use;
(iv) ease of learning;
(v) usefulness and availability of help facilities.

In comparison testing, participants may also be asked to rank:

(i) one prototype over another;
(ii) the current software system versus a competitor’s;
(iii) a new version of the software over the previous versions.

Usability testers also collect quantitative measures. For example:

(i) time to complete each task;
(ii) time to access information in the user manual;
(iii) time to access information from on-line help;



432 | Evaluating Software Qual ity: A Quantitat ive Approach

(iv) number and percentage of tasks completed correctly;
(v) number or percentage of tasks completed incorrectly;
(vi) time spent in communicating with help desk.

Testers can also count the number of:

(i) errors made;
(ii) incorrect menu choices;
(iii) user manual accesses;
(iv) help accesses;
(v) time units spent in using help;
(vi) incorrect selections;
(vii) negative comments or gestures (captured by video).

These measures in conjunction with subjective data from user question-
naires, can be used to evaluate the software with respect to the four us-
ability subfactors: understandability, ease of learning, operability, and
communicativeness, as described in Section 12.8. For example, time to
complete a each task, number of user manual accesses, and time to access
information in the user manual can be used to evaluate the subfactors,
understandability, and ease of learning. The number of incorrect selec-
tions, and the number of negative comments or gestures can be used to
evaluate the operability and communicativeness of the software.

The raw data should be summarized and then analyzed [28]. For
performance data, such as task timings, common descriptive statistics
should be calculated, for example, average, median, and standard devi-
ation values. Usability testers should identify and focus on those tasks
that did not meet usability goals and those that presented difficulties to
users. Problem areas should be prioritized so that the development team
can first work on those deemed the most critical.

As a result of the usability tests, all the analyzed data should be used
to make recommendations for actions. In this phase of usability testing
designers with a knowledge of user-centered design, and human factors
staff with knowledge of human–computer interaction can work as part
of the recommendation team. A final report should be developed and
distributed to management and the technical staff who are involved in
the project. In some cases the usability testing team may also make a



43312.10 Software Qual ity Control and the Three Crit ical Views |

presentation. When the project is complete, and the usability requirements
are satisfied, the usability data should be stored and used as benchmark
data for subsequent releases and similar projects.

Usability testing is an important aspect of quality control. It is one of
the procedures we can use as testers to evaluate our product to ensure
that it meets user requirements on a fundamental level. Setting up a us-
ability program to implement all the types of the types of usability tests
as described by Rubin is costly. To support usability testing an organi-
zation must also be committed to include usability requirements in the
requirements specification which is not always the case. There are other
approaches to usability evaluation that are less expensive, such as pre-
paring simple prototypes and questionnaires early in the life cycle for
volunteer users, and instrumenting source code to collect usage infor-
mation. Finally, each software product can be annotated with a “com-
plaint” facility that allows users to give feedback to developers about
problems that occur. None of these approaches work as well as full us-
ability testing; in many cases the data is collected after the software has
been in operation and it is not possible to make changes or improve qual-
ity. Hopefully subsequent releases of the software will benefit from the
feedback.

1 2 . 1 0 Software Qual ity Control and the Three Crit ical Views

By satisfying maturity goals at TMM levels 2 and 3, an organization
builds an improved, and more effective testing process. Thus, it is
equipped to carry out quality evaluation activities at TMM level 4 where
testing focuses on measuring quality-related attributes such as correct-
ness, security, portability, interoperability, and maintainability. At level
5 the testing infrastructure is solid enough to address quality control is-
sues. Development of operational profiles, their application to statistical
testing, and reliability evaluation is feasible given the level of staffing
knowledge and training, and the commitment of organizational resources.
At TMM level 5 testers have the expertise, training, and resources avail-
able to measure confidence levels, and evaluate trustworthiness, usability,
and reliability as part of the testing process. The testing group and the



434 | Evaluating Software Qual ity: A Quantitat ive Approach

software quality assurance group are quality leaders at TMM level 5.
They work closely with managers, software designers, and implementors
to incorporate techniques and tools to reduce defects and to control soft-
ware quality. Client/user input is also needed to support these goals. The
following paragraphs give examples of the activities, tasks, and respon-
sibilities assigned to the three critical groups at TMM level 5 in support
of quality control practices as applied to an evolving software system.

Managers Role

Managers have a strong supporting role for quality control. They should
ensure that testing and SQA policies and plans include references to qual-
ity control issues. Managers should also make sure that resources and
training are dedicated to quality control activities, and that adequate time
is allocated in the project and test plans for quality control practices.
Managers should monitor all testing activities (this includes activities such
as reviews and execution-based test) to ensure that quality goals are being
achieved. Feedback from quality evaluation activities such as reviews, and
reliability/usability testing should be applied to improve the quality of the
software.

In the case of testing for reliability and usability goals, managers
again should be sure that these goals have been adequately described in
the requirements document, and that proper hardware, software, and
staffing resources are being allocated to support the appropriate teams.
Managers should also ensure that operational profiles and typical usage
scenarios for the software are defined and applied to reliability and us-
ability testing. To promote the important role of quality control, and
related reliability/usability engineering activities, managers should make
sure that the involved staff are trained, rewarded, and have career paths
available to them.

Testers Role

Testers continue their role as quality evaluators that began at lower levels
of the TMM. Testers, along with managers, should ensure that quality
goals are clearly expressed in requirements documents. Testers should
attend necessary training/education courses to gain to knowledge neces-
sary to:



43512.10 Software Qual ity Control and the Three Crit ical Views |

• develop and maintain operational profiles;

• develop a hierarchy of severity levels;

• carry out statistical testing and analyze results;

• understand and apply reliability models;

• collect and store quality-related measurements, for example, from
reliability and usability tests;

• design and execute tests to measure attributes such as correctness,
portability, reliability, usability, confidence, availability, and trust-
worthiness;

• develop usability test plans;

• identity user groups for usability testing;

• design usability tests;

• support set up of usability testing laboratories;

• monitor, analyze, and report the results of usability tests.

Users/Cl ients Role

Users and clients have a responsibility to establish quality requirements
for the projects they are involved in. They should give strong support to
testers and reliability engineers engaged in the process of developing an
operational profile. Users and clients should also help to set reliability
goals for their projects. Users should help develop typical usage scenarios,
and participate in usability testing by using the evolving software to carry
out typical tasks and giving feedback to the testing team. It is important
for users to state their opinions regarding the strengths and weaknesses
of the developing software system.



436 | Evaluating Software Qual ity: A Quantitat ive Approach

K E Y T E R M S

Availability

Confidence

Discriminant

Maintainability

Operational profile

Quality

Quality control

Software quality assurance

Software reliability

Trustworthiness

Usability

E X E R C I S E S

1. Categorize in your own terms the costs related to software quality activities.

2. Some organizations use the measure of defect density (number of defects/

KLOC), as an indication of the reliability of their software. Comment on the use-

fulness of this measurement from the user’s point of view of reliability.

3. What is an operational profile, and what is the user/client role in its

development?

4. Describe the steps in the Musa methodology for developing an operational

profile.

5. How does the Walton model represent usage states and transition probabilities?

6. Suppose you were a test manager and you were organizing a team to develop

an operational profile/usage model for an automated airline reservation system

that was being developed by your company. From which organizational, and non-

organizational groups would you select members for the team? Give your reasons

in terms of the qualifications needed. What approach could you use to verify the

profile/model?

7. How does development of an operational/usage profile support statistical

testing?

8. What is the difference between software reliability and availability from the

viewpoint of a software user?

9. Suppose you were testing a 45,000-line program and to date 17 repairable fail-

ures have been detected over an execution time of 550 hours. No failures have



43712.10 Software Qual ity Control and the Three Crit ical Views |

been observed in the last 68 hours of test. Your manager wants to know how much

more testing is needed to ensure that the customers observe no more than a

projected average of 0.04 failures per KLOC. Use Brettschnieder’s equations to

calculate the remaining hours of test you will need to meet the customer’s

requirement.

10. How can reliability growth models be applied to make stop-test decisions?

Compare the costs of using these models to make stop-test decisions as opposed

to the stop-test criteria discussed in Section 9.3 of this text. If you were testing

a safety-critical application, which approach would you take, provided you had

adequate funding for any of the choices?

11. Discuss the types of usability tests suggested by Rubin.

12. What are the resources requirements for usability testing, and how do the

TMM maturity goals support the acquisition of these resources?

13. Describe the stages of usability testing you would recommend for an auto-

mated hotel reservation system. What critical measurements would you collect

and analyze to help determine the level of usability?

14. What roles and responsibilities do the user/client groups have in software

quality control?

R E F E R E N C E S

[1] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990), copyright 1990
by IEEE, all rights reserved.

[2] R. Pressman, Software Engineering: A Practi-
tioner’s Approach, fifth edition, McGraw-Hill, New
York 2000.

[3] IEEE Standard for Software Reviews and Audits
(IEEE Std 1028-1988), copyright 1989 by IEEE, all
rights reserved.

[4] IEEE Standard for Software Quality Assurance
Plans (IEEE Std 730-1989), copyright 1989 by IEEE,
all rights reserved.

[5] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.

[6] C. Cho, “Statistical methods applied to software
quality control,” in Handbook of Software Quality As-
surance, second edition, G. Schulmeyer, J McManus,
eds., Van Nostrand, Reinhold, New York, 1992.

[7] J. Musa, “Operational profiles in software reliabil-
ity engineering,” IEEE Software, Vol. 10, No. 3,
pp. 14–32, 1993.

[8] G. Walton, J. Poore, C. Trammell, “Statistical test-
ing of software based on a usage model,” Software:
Practice and Experience, Vol. 25, No. 1, pp. 97–108,
1995.



438 | Evaluating Software Qual ity: A Quantitat ive Approach

[9] S. Prowell, C. Trammell, R. Linger, J. Poore, Clean-
room Software Engineering, Addison-Wesley, Read-
ing, MA, 1999.

[10] R. Cobb, H. Mills, “Engineering software under
statistical quality control,” IEEE Software, Vol. 7,
No. 5. pp. 44–54, 1990.

[11] H. Mills, M. Dyer, R. Linger, “Cleanroom soft-
ware engineering,” IEEE Software, Vol. 4, No. 5,
pp. 19–24, 1987.

[12] H. Pham, Software Reliability and Testing, IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[13] IEEE Recommended Practice for Software Re-
quirements Specifications (IEEE Std 830-1993), copy-
right 1994 by IEEE, all rights reserved.

[14] D. Zeitler, “Realistic assumptions for software re-
liably models,” Proc. International Symp. Software
Reliability Eng., IEEE Press, Los Alamitos, Ca, pp. 67–
74, 1991.

[15] D. Hamlet, “Are we testing for true reliability?”
IEEE Software, Vol. 9, No. 4, pp. 21–27, 1992.

[16] IEEE Guide for the Use of IEEE Standard Dic-
tionary of Measures to Produce Reliable Software
(IEEE Std 982.2-1988), copyright 1989 by IEEE, all
rights reserved.

[17] M. Shooman, Software Engineering: Design, Re-
liability, and Management, McGraw-Hill, New York,
1983.

[18] J. Musa, A Iannino, K. Olomoto, Software Reli-
ability: Measurement, Prediction, and Application,
McGraw-Hill, New York, 1987.

[19] J. Musa, A. Ackerman, “Quantifying software
validation: when to stop testing,” IEEE Software,
Vol. 6, No. 3, May 1989.

[20] F. Sheldon, K. Kavi, R. Tausworthe, J. Yu, R.
Brettschneider, W. Everett, “Reliability measurement:
from theory to practice,” IEEE Software, Vol. 9,
No. 4, pp. 13–20, July 1992.

[21] N. Fenton, Software Metrics: A Rigorous Ap-
proach, Chapman & Hall, London, 1991.

[22] M. Lyu, A. Nikora, “Applying reliability models
more effectively,” IEEE Software, Vol. 9, No. 4,
pp. 43–52, 1992.

[23] W. Ehrlich, B. Prasanna, J. Stampfel, J. Wu, “De-
termining the cost of a stop-test decision,” IEEE Soft-
ware, Vol. 10, No. 2, pp. 33–42, 1993.

[24] S. Dalal, C. Mallows, “When should one stop test-
ing software?” J. American Statistical Assoc., Vol. 81,
No. 403, pp. 872–879, 1988.

[25] R. Brettschneider, “Is your software ready for re-
lease?” IEEE Software, Vol. 6, No. 4, pp. 100–108,
1989.

[26] F. Richards, Computer Software: Testing, Reli-
ability Models, and Quality Assurance, Technical Re-
port, NPS-55RH74071A, Naval Postgraduate School,
Monterey, CA, 1974.

[27] IEEE Standard for a Software Quality Metrics
Methodology (IEEE Std 1061-1992), copyright 1993
by IEEE, all rights reserved.

[28] J. Rubin, Handbook of Usability Testing, John
Wiley & Sons, New York, 1994.

[29] P. Booth, An Introduction to Human–Computer
Interaction, Lawrence Erlbaum Associates, London,
1989.

[30] M. Dieli, “A problem-solving approach to usabil-
ity test planning,” Proc. International Professional
Communication Conf., Seattle, pp. 265–267, 1988.

[31] C. Mills, “Usability testing in the real world,”
SIGCHI Bulletin, Vol. 19, No. 1, pp. 43–46, 1987.

[32] P. Sullivan, “Beyond a narrow conception of us-
ability testing,” IEEE Transactions on Professional
Communications, Vol. 32, No. 4, pp. 256–264, 1989.

[33] D. Schell, “Overview of a typical usability test,”
Proc. International Professional Communications
Conf., Winnipeg, pp. 117–125, 1987.



D E F E C T A N A L Y S I S

A N D P R E V E N T I O N

1 3 . 0 Processes and Defects

Various classes of software defects have been described in previous chap-
ters. This knowledge is important to us as testers. We use our understand-
ing of defect classes to develop defect hypotheses. We also use our un-
derstanding of both static and dynamic testing techniques to develop test
cases based on these hypotheses for defect detection. In addition to our
work in defect detection, we as testers have an additional set of defect-
related goals. These goals are to:

• analyze defects to find their root causes;

• take actions and make changes

—in our overall development processes;

—in our testing process;

• prevent defects from reoccurring.



440 | Defect Analysis and Prevention

The TMM maturity goals support us with these objectives. When we
do the work to achieve the maturity goals at TMM levels 2–5 we acquire
the necessary policies, tools, plans, training, and techniques that allow us
to prevent defects from reoccurring in our software deliverables, both
internal and external. Internal deliverables include, for example, design
documents and test-related items such as test plans, test cases, and test
procedures. External deliverables include the code, system, and user man-
uals that are delivered to the client.

Defect analysis and defect prevention are activities that are of increas-
ing importance as the software we develop becomes more complex and
has greater and greater impact on our safely, health, and financial well-
being. We as testers need to be involved in defect prevention activities
since we have expertise and motivation to carry out the necessary tasks.
We want to apply these activities to our testing process as defects can be
injected during this phase of development. We also want to apply them
to the overall development process to prevent defects from reoccurring in
other life cycle phases. As a result of our efforts in both of these directions,
we will be able to improve the quality of our final software product. The
TMM provides a framework for defining tester responsibility in support
of these efforts.

The goal of defect prevention is not entirely new, nor is it strictly
limited to the software industry as the reader will note in the next section.
An interesting point that should be made here is that carrying out the
goal of defect prevention to its limit, in theory, could lead to defect-free
software. Some argue that the latter is a feasible goal for software engi-
neers [1]. However, given the case that software is designed, developed,
and tested by humans who under the best of circumstances may introduce
defects, a more practical objective would be to improve our processes so
that we can develop software with a very low defect content. The em-
phasis should be on process because the nature of the development/test
process, the tools and techniques used, the quality of the staff—all have
a great impact on the defect content. Given these circumstances, we
should carefully note that testers alone are not able to produce, nor are
they solely responsible for producing, very low defect software.

What we can do as testers is to concentrate on defect classification,
detection, removal, and prevention activities. We can have a high impact
in these areas. We can, and should, offer our input and expertise to im-



44113.1 History of Defect Analysis and Prevention |

prove development/test process areas so that high-quality software is the
result. As far as our own testing process is concerned, we should aim for
identification of weaknesses that allow:

• defects to be injected into our test work products;

• defects to escape from our defect-filtering activities and propagate
into the software product.

We need to use our process knowledge and also our knowledge of defect
types, defect occurrences, defect analysis techniques, dynamic, and static
testing techniques to prevent defects from occurring, and to ensure that
those that do occur are detected by our testing activities.

It is very expensive to remove defects. Defect removal in many cases
accounts for a high fraction of the costs of software development (see
Section 12.1) [2]. The longer the defect exists in our software product the
more expensive it is to remove. If a defect exists in the software we develop
that causes harm or damage to life and/or property, the costs and social
consequences due to that defect may be disastrous. If we prevent defects
from being injected and/or propagated into subsequent software devel-
opment phases, we benefit in the economic, legal, and social arenas.

As we move up the levels of the TMM we build a more proficient
testing process. It becomes defined, measured, staffed, managed, and
more predictable. It supports production of high-quality, low-defect soft-
ware. We understand its strengths and weaknesses through repeated cy-
cles of TMM assessments. We build an infrastructure that enables us
make further progress in optimizing our testing process. In this chapter
we will examine defect analysis and prevention techniques associated with
TMM level 5 maturity goals. We examine these techniques in a general
way and apply them to improve our development process and our testing
process as well. By applying these techniques we are more able to learn
from our past mistakes, and take actions to prevent them from reoccur-
ring. In the framework of the TMM we are able to strengthen our testing
process, and make it more effective, and predictive.

1 3 . 1 History of Defect Analysis and Prevention

In this chapter we will study two highly interrelated processes. These are
(i) defect analysis, and (ii) defect prevention. Why are these two process



442 | Defect Analysis and Prevention

so important to us as testers and software engineers? Humphrey and
Mays give the following arguments [2,3]. These are summarized in Figure
13.1.

1. Defect analysis/prevention processes help to reduce the costs of de-
veloping and maintaining software by reducing the number of defects
that require our attention in both review and execution-based testing
activities. Defect localization and repair are in the main unplanned
activities. When they occur they make our process less predictable.
Fewer defects means that we are better able to meet our budget re-
quirements, and our overall process is likelier to be more on time and
within budget.

2. Defect analysis/prevention processes help to improve software qual-
ity. If we identity the cause of a class of defects and change our process
so that it does not reoccur, our software should be less defective with
respect to that class of defects and more able to meet the customer’s
requirements.

3. If our software contains fewer defects, this reduces the total number
of problems we must look for; the sheer volume of problems we need
to address may be significantly smaller. If we can eliminate noncritical
(trivial) defects, then we as testers are in a better position to apply
our time and expertise to detecting the fewer, but perhaps more se-
rious, defects. This, in turn, could increase the effectiveness of our
testing process.

4. Defect analysis/prevention processes provide a framework for overall
process improvement activities. They can serve as drivers for process
improvement. When we know the cause of a defect, we identify a
specific area of our process that needs work. Improvements made in
this area usually produce readily visible benefits. Defect analysis/
prevention activities not only help to fine-tune an organizations’ cur-
rent process and practices, but also support the identification and
implementation of new methods and tools so that current process
continues to evolve and comes closer to being optimized. In the case
of an organization using the TMM for process assessment and im-
provement, there is a strong relationship and mutually supporting
roles for defect prevention and overall test process improvement.

5. Defect analysis/prevention activities encourage interaction between a



44313.1 History of Defect Analysis and Prevention |

Encourages
diverse groups

to interact

Supports process
improvement

Allows focus
on serious defects

Improves software quality

Process is more predictable

Reduces development and maintenance costs

Defect Analysis and Prevention

FIG. 13.1

Benefits of defect analyses and

prevention processes.

diverse number of staff members, for example, project managers, de-
velopers, testers, and SQA staff, The close interrelationships between
specialized group activities and the quality of internal and external
deliverables becomes more apparent. The success of a defect preven-
tion program depends on cooperation between, and the participation
of, members of these groups.

Time and resources are required to implement the defect analyses/
prevention processes, and it is essential that management be committed
to providing the necessary support. There must also be an infrastructure
in place that includes trained and motivated staff, measurement and re-
view programs, and a monitoring and controlling system. In addition, the
existence of a defect repository as described in Chapter 3 is a necessary
precondition for the implementation of both defect analysis and defect
prevention activities.

The term defect analysis is applied to the process of identifying the
root causes of defects. We have already laid the groundwork for discus-
sion of this process with the material that is presented in Chapter 3 where
we examined the root causes (origins) of defects in the general sense.



444 | Defect Analysis and Prevention

Recall in that discussion that defect origins were attributed to lack of
communication, oversight, lack of education, poor transcription, and a
poor or immature process. For a particular type of defect, defect causal
analysis carefully focuses in on an exact cause which must be described
in detail. For example, if we find that a lack of initialization of variables
is a reoccurring defect, we need to be specific about its cause. If we de-
termine in the general sense that it originates from lack of education, we
must identify the educational area that should be addressed. For example,
it may occur because of (i) poor programming language education,
(ii) lack of training in use of static analysis tools, or (iii) a poor design
education. We want to pinpoint the exact cause so that we can take action
to make improvements.

Defect prevention describes the process that allows an organization
to devise actions to prevent defects from reoccurring knowing their root
cause. Actions must be tracked and monitored. Feedback must be pro-
vided from the actions implemented. As a result of successful actions,
processes will undergo changes to eliminate the causes, and these changes
must be measured and monitored to determine if all the goals have been
meet. This is a continuous process. Defect prevention activities include
action planning. action tracking, feedback, and process change.

Defect analysis and prevention are important aspects of quality con-
trol and have roots in the fields of quality management and quality con-
trol. Pioneers in these fields were, for example, Crosby [4], Deming [5],
and Juran [6–7]. Related work in this area was described in Chapter 12
of this text. Recall that quality control activities as described by Cho were
said to include random sampling, testing, measurements, inspections, de-
fect causal analysis, and defect prevention [8]. We have covered several
of these topics in previous chapters. In this chapter the focus is on defect
analysis and prevention which are coupled together in what we will call
in this text a defect prevention program. Such a program is embedded in
the TMM level 5 maturity goal, “defect prevention.”

1 3 . 2 Necessary Support for a Defect Prevention Program

When an organization decides to implement a defect prevention program
it needs to have attained a certain level of process maturity in the sense



44513.2 Necessary Support for a Defect Prevention Program |

that there should be an infrastructure in place consisting of polices, goals,
staff, methods, tools, measurements, and organizational structures to sup-
port the program. Note that like the TMM, the CMM has a Key Process
Area called “defect prevention,” which is at its highest maturity level [9].
Placing this goal at the highest maturity levels of the models ensures that
the infrastructure described above is in place, and that gives the program
the necessary support to become a success.

In addition to a process infrastructure, an organization also must
have managerial commitment to successfully implement a defect preven-
tion program. Management must provide leadership, resources, and sup-
port cultural changes. An additional precondition is the existence of a
defect repository and a defect (problem) reporting system. You cannot
prevent defects if you do not consistently classify, count, and record them
as they occur. In this way you know they exist, where, and when they
occur, and their frequency of occurrence. Chapter 3 of this text discusses
the importance of a defect repository and Figure 3.6 shows how the re-
pository can support several of the TMM maturity goals including defect
prevention. The defect repository can be organized in a manner to suit
the organization. Some useful items that can be associated with each de-
fect to support defect prevention activities were described in Chapter 11.
A sample defect record was shown in Figure 11.3. Fields in the record
included:

• defect identifier;

• product identifier;

• defect type;

• where found (module ID, give a line number for code);

• phase injected;

• phase detected;

• date of detection;

• tester/inspector names.

At TMM level 5 we can add additional fields to a defect record, for
example, a status field (open, under repair, closed). Given the activities



446 | Defect Analysis and Prevention

associated with defect prevention, when the defect has been closed, and
subject to causal analysis then we can add:

• close date;

• author of fix;

• causal category (education, transcription, process, etc.);

• comments and discussion of cause;

• description of associated actions for prevention.

Finally, we can add a severity rating for each defect, and a priority level
based on impact.

There are several other essential elements necessary to implement a
defect prevention program. These are:

1. A training program to prepare staff members for defect analysis and
defect prevention activities (supported by TMM level 3 maturity
goal). This includes training in defect causal analysis techniques and
use of statistical analysis tools.

2. A defect causal analysis process where defects from all projects are
analyzed using the techniques described in the next section. Process
goals are to identify the mechanisms by which each particular defect
is injected into a software deliverable. When the cause is identified,
preventive actions (process changes) can be suggested.

3. Action teams to implement and oversee the suggested process changes
as applied to pilot projects.

4. A tracking system to monitor the process changes, and provide feed-
back on the usefulness of the changes, and their impact on software
quality.

5. A technology transfer, or process improvement group, that will en-
sure that defect prevention becomes a standard set of practices and
that process changes to support defect prevention are implemented
throughout the organization (supported by the TMM level 5 maturity
goal, “Test process optimization”).



44713.3 Techniques for Defect Analysis |

1 3 . 3 Techniques for Defect Analysis

One of the most useful techniques we can apply to analyzing defects is
based on the Pareto principle as described by Juran, and discussed by
McCabe and Schulmeyer [1,6,7,10,11]. Juran stated the principle very
simply as “concentrate on the vital few and not the trivial many” [6,7].
An alternative expression of the principle is to state that 80% of the
problems can be fixed with 20% of the effort. With respect to software
defects, the principle can be applied to guide us in the allocation of our
efforts and resources. We concentrate them on exploring those defects
that occur most frequently and have the most negative impact on the
quality of our software. The collection and classification of defect data,
along with the application of Pareto analysis techniques, can give us a
good indication of which defects we need to examine and address. These
are the ones we must try to prevent, and we must make changes in our
process to prevent them. The results of Pareto analysis give our quality
improvement effects a definite direction.

As an example, suppose we have data on classes of code defects and
frequencies of occurrence for a hypothetical software system as shown in
Table 13.1. The technique we apply is to plot this data on a Pareto dia-
gram as shown in Figure 13.2. The figure shows a true Pareto diagram
which is a bar graph showing the frequency of occurrence of focus items
with the most frequent ones appearing first [11]. Note that the Pareto
diagram in Figure 13.2 guides us in identifying the defects, and sequences
the defects in order of their frequency of occurrence. From the diagram
we can immediately identify the vital few—those defects that have oc-
curred in the greatest number during the development of our hypothetical
software system. Defects of the data flow and initialization types domi-
nate in their occurrences. Our greatest attention should be focused on
determining their causes and developing action plans to prevent their
reoccurrence. The Pareto diagram helps us to decide where to invest re-
sources for quality improvement efforts.

Readers should note that use of Pareto diagrams is not restricted to
identifying and analyzing code defects. Defects found in reviews and other
software evaluation activities can also be analyzed in this way to drive
defect prevention programs. Pareto diagrams can also be used to analyze
defect occurrences by code modules (plot defect frequency for each mod-



448 | Defect Analysis and Prevention

Defect type

Number

occurrences

Percent

of total

1. Control and logic 21 10.5

2. Algorithmic 9 4.5

3. Typographical 19 9.5

4. Initialization 55 27.5

5. Data flow 73 36.5

6. Module interface 15 7.5

7. External hardware–software interface 8 4.0

TOTAL 200

TABLE 13 .1

Sample defect data.

ule) or by development phase (plot defect frequency for each phase) This
information can help identity the most error-prone modules or develop-
ment phases and provides useful information for future releases and for
process improvement efforts [9]. An additional use for Pareto diagrams
is to analyze defect causes. Once the basic causes of defects have been
established these can be plotted as a function of frequency of occurrence
(causal frequency instead of defect frequency) so that action plans for
process changes can be developed to address the most frequent causes of
defects [10].

There are many discussions that show Pareto analysis is a useful tool
for addressing quality issues and making decisions on process changes.
Some general guidelines for applying Pareto analysis are to:

(i) collect data relevant to problem area;
(ii) develop appropriate Pareto diagrams;
(iii) use the diagrams to identity the vital few as issues that should be dealt

with on an individual basis;
(iv) use the diagrams to identity the trivial many as issues that should be

dealt with as classes.

Using the Pareto technique we can identify our problem areas, quantify
their impact, and plan for changes. We can also prioritize the changes
that need to be made to improve quality. Pareto analysis is simple; it



44913.3 Techniques for Defect Analysis |

0

20

40

60

80

D
ef

ec
t 

fr
eq

ue
nc

y

Defect type

5 4 1 3 6 2 8

FIG. 13.2

Pareto diagram for defect distribution

shown in Table 13.1.

does not require any expensive tools or extensive training, but it is very
powerful.

Another technique that is very useful for defect causal analysis makes
use of what is called an Ishikawa or “fishbone” diagram. Use of the Ish-
ikawa diagram began with the introduction of Quality Circles (QC).
These were small groups that met voluntarily to perform quality control
in a workshop. The QC was originally used for manufacturing processes,
but can be applied to software production as well. The diagrams were
used to identify what were called influential factors that impact on a
problem area. In our domain we can use these diagrams to identify prob-
able causes for a particular effect. A generic version of a fishbone diagram
is shown in Figure 13.3. The major horizontal arrow points to an effect.
The diagonal arrowed lines are probable causes. Originally each major
cause was related to what was called a major control point. Major control
points were categorized as the “4M”—manpower, machines, methods
and materials. The smaller horizontal lines intersecting the diagonal ar-
rows are individual causes within a major 4M category. The group in the
QC would prepare the fishbone diagram and circle the most likely causes,
which would then receive appropriate attention [11]. When applied to



450 | Defect Analysis and Prevention

Effect

Causes

Manpower Machines

Materials Methods

FIG. 13.3

A generic fishbone diagram.

identifying causes for software defects the 4Ms are not entirely appro-
priate and other categories can be defined by an organization.

1 3 . 4 Defect Causal Analysis

Defect causal analysis is a component of what we call a defect prevention
program. Action planning, action implementation, tracking, and feed-
back, as well as process evolution, are the other components of this pro-
gram. A team or task force should be established to initiate and oversee
a defect prevention program. The team members should be trained and
motivated. Testers, developers, project managers, SQA staff, and process
improvement group members are good candidates to carry out the tasks
and responsibilities essential for initiation of the program. The team is
responsible for developing policies and goals that relate to defect analysis
and prevention. These policies/goals should be documented and made
available to appropriate parties. Defect causal categories should be estab-
lished as part of the policy statement. Sources for such categories are, for
example, Chapter 3 in this book, or those reported by Endres [12] and
Grady and Caswell [13].

Practically speaking there are two separate groups that are actually
involved in implementing a defect prevention program. These are (i) the
causal analysis group, and (ii) the action planning/tracking team as shown



45113.4 Defect Causal Analysis |

in Figure 13.4. In this section the work of the defect causal group will be
described. The next section will describe the work of the action planning,
implementation, and tracking group.

The mechanism for implementing defect causal analysis is usually a
meeting. Attendees, need to bring all necessary items such as problem
reports, test logs, defect fix reports, defect repository reports, and spe-
cially requested designer/developer reports. The make-up of the causal
analysis group will vary. For example, if defects from requirements and
design stages are being analyzed, attendees should of course include an-
alysts and designers. If test defects are the focus of attention, then the test
group should make up a large portion of the attendees. If coding defects
are being analyzed then developers should comprise a large number of
the attendees. It is also useful to have members of SQA and process im-
provement groups present at these meetings.

The agenda for the meetings should allow for discussions that focus
on (i) finding a defect cause or origin for each type of defect, (ii) exploring
and developing process change suggestions, or actions, for preventing the
reoccurrence of each defect type in future projects, and (iii) establishing
priorities for the actions that are proposed.

Appropriate times to hold defect causal analysis meeting vary. Some
organizations call for such meetings after a significant number of defects
have been detected. Others call for meetings after each life cycle phase.
Humphrey suggests that causal analysis meetings should be held at vari-
ous times both before and after the release of the software. He suggests
the following time periods as shown in Figure 13.5 [2]:

(i) shortly after the detailed design stage is complete for all system mod-
ules (analyze problems/defects found by reviews);

(ii) shortly after each module has completed a test phase or level of testing
(analyze defects found at that level of test);

(iii) after release of the software, and there are a reasonable number of
problems or defects reported in operation;

(iv) on an annual basis after the software has been released even if the
number of problems/defect reported is relatively low.

Humphrey also suggests keeping the number of meeting participants be-
tween 5 and 8, and that a leader and recorder should be appointed



452 | Defect Analysis and Prevention

Process v 1.0

Defect
database

Action
database

Defect causal
analysis team

Evolving
software
processes

Process v 1.1Action team for
defect prevention

Pilot projects

Successes in
defect prevention

Tools
Education
Checklists
Process changes
Process evolution

Action plans

Monitoring
and feedback

Actions

List of actions

FIG. 13.4

The defect prevention process.

for the meeting. They have roles similar to those played in an inspection
meeting.

The tone of a causal analysis meeting should be constructive and
positive. The purpose is not to lay blame for the defects, but to find root
causes and to take action to prevent them. The format of the meeting may
vary, but usually there is a review of information available for each defect.
Participants may suggest causes for defects that will be discussed by all.
Fishbone diagrams can be prepared and/or discussed for each defect. The
team as a whole then can propose actions/process changes to prevent the
defect from reoccurring. Other process-related issues may also be dis-
cussed, for example, use of new tools, techniques, and management issues.

In a typical meeting about 10–15 defects detected through reviews or
by testing undergo analysis [3]. Usually these will result in 15–25 sug-
gested actions. The suggested actions relate to the causes and may focus
on, for example, improving education, communication, review and/or
management practices. The recommended actions need to be described in
detail so that the action team is able to implement them on pilot projects.



45313.4 Defect Causal Analysis |

The actions can also be classified into related groups and should be pri-
oritized based on the impact of the defects on software quality, the costs
of process changes, and overall organizational quality goals, Deliverables
from the causal analysis meetings may include Pareto and Ishikawa dia-
grams, a record of each defect, its cause and recommended actions for
prevention. An example of two defect records from a causal analysis meet-
ing after the coding phase is shown in Table 13.2. Cause categories were
selected from those described in Chapter 3.

As testers we can participate in defect causal analysis meetings on
two levels:

1. Defect analysis on the general process level. We can participate as
members of a causal analysis team with an interest in identifying defect
causes for all types of defects found in all phases the development process.
We are ideally suited to assist in this process since we are actively engaged
in detecting, logging, and classifying defects during execution-based test-
ing and as members of review teams.

2. Defect analysis for defects confined to the testing process. We are
particularly interested in identifying, finding causes for, and preventing
defects that occur during testing. We can initiate causal analysis meetings
for the purpose of analyzing defects that occur during testing, that is, they
are particular to testing. In this case we apply defect analysis techniques
to finding the causes of defects that originate in testing, for example, in
test documents, practices and procedures. An example deliverable from

Following detailed design

Following unit test

Following integration test

Following system test

Following acceptance test

Following release of software

On annual basis

Prerelease meeting times
for defect causal analysis

Postrelease meeting times
for defect causal analysis

FIG. 13.5

Suggested meeting times for defect

causal analysis [2].



454 | Defect Analysis and Prevention

Defect

description

Cause

category

Cause

description

Phase

injected

Suggested

action

Dangling

pointers

Oversight Developer fails to

deallocate pointer

when memory

location is no

longer in use; was

aware that this

should be done.

Code 1. Add to checklist

for design/code

review.

2. Add to coding

standard.

Parameter

mismatches

Communcation Documentation

from design is

inadequate; no

detailed parameter

descriptions.

1. Modify design

standards.

2. Coders attend

design reviews.

3. Add to design

checklist.

4. Institute commu-

nication meetings

between designers

and coders.

TABLE 13 .2

Example causal analysis report for design/code defects.

such a meeting is a fishbone diagram such as the one shown in Figure
13.6, which was developed to identify causes of branch test case design
defects.

1 3 . 5 The Action Team: Making Process Changes

When the defect causal analysis team has completed its work, the action
team now initiates the preventative actions. The actions can include



45513.5 The Action Team: Making Process Changes |

Branch test case
design defects

Process

Education

Test plan attachments
incomplete

No test plan
reviews

Lack of training in
white-box-based test design

Tester does not understand
white box test design

Poor-quality white-box
test-case specifications

FIG. 13.6

An example of a fishbone diagram for

test defects.

changes in practices, adding tools and training, application of new meth-
ods, and improvements in communications. The action team should be
organized so there is a manager or leader. This person is often a member
of a process improvement team, and plays a leadership role on that team.
If the causal analysis team has been focusing on test defects, then an
experienced test manager should play a leading role on the action team
since it is likely there will be changes in the testing process. Keep in mind
that the action team leader must have the expertise and authority to make
changes in organizational processes. He will have to negotiate time for
others in the organization to work on actions, suggest project/test man-
agement improvements and request resources for making the changes. As
mentioned previously other team members could be selected from devel-
opment, test, and SQA staff. It is important to include developers and
testers on an action planning team since the process changes are likely to
have high impact on tasks that they perform. In this way they are included
in the decision-making process, and there will be less resistance to the
changes on their part.

In many organizations there is a hierarchy of action teams. Some of
the teams are engaged in short-term process changes/improvements, oth-



456 | Defect Analysis and Prevention

ers in long-term efforts. In the case of an organization using the TMM
assessment process, there will be action teams put into place to achieve
TMM maturity goals. That team is likely have a longer duration and a
higher place in the action team hierarchy than perhaps an team working
to eliminate defects that require simple process changes. In fact, the teams
in the hierarchy need to cooperate in many efforts since their goals may
overlap.

The action team members need specialized skills. Using these skills,
team members fulfill roles such as:

• Tool expert: Team member who can develop tools, or is familiar
with procedures to evaluate and acquire tools from outside the
organization.

• Education coordinator: Member of the training group who can ed-
ucate/train staff with respect to aspects of the new process.

• Technical writer/communicator: Person who can prepare the neces-
sary documentation for the newly changed process, prepare reports
for managers, develop articles for the organizational newsletter on
action-related topics, and make presentations to ensure (a) visibility
for the implemented actions in the organization and (b) that all key
staff contributing staff are recognized.

• Planner: Team member who can develop plans for the actions to be
implemented.

• Measurement expert: Team member who can select appropriate mea-
surements for monitoring the changed process, and who can apply
measurement results to evaluate the changes.

The members of the defect prevention/action team usually work part-
time in this area, spending roughly 10–15% of their time on implement-
ing, tracking, and reporting on actions [3]. Team membership will usually
rotate, especially with respect to developers/testers as defect analysis fo-
cuses on different types of projects and processes.

The action team has many responsibilities that include prioritization
of action items, planning and assigning responsibilities for implementa-
tion of the highest priority actions, tracking action implementations, co-



45713.6 Monitor ing Actions and Process Changes |

ordinating their activities with other action planning teams, and reporting
results to management and to the organization in general.

The action team should meet weekly or biweekly. During the meeting
period the team should discuss progress-to-date on actions that are being
currently implemented, discuss results of current causal analysis meetings,
plan new actions, and analyze and report results of current actions to
management.

1 3 . 6 Monitor ing Actions and Process Changes

Ideally all actions should be entered in an action database that is updated
continuously as data is collected for actions that are implemented. Its role
in the defect prevention process is shown in Figure 13.4. A suggested list
of items for an entry in an action database is shown in Table 13.3. Other
items in the entry that can be filled in when the action plan is complete
are, for example:

• actual costs;

• actual completion date;

• comments.

The establishment of an action database allows the action team to enter
new actions, assign priority and status (open, closed) to actions, as well
as target dates, costs, and effectiveness.

The action team needs to identify measurements that are essential for
tracking each implemented action. These should be identified in the action
plan. The most important item the action team needs to monitor is the
number of reoccurrences of a target defect type after the process has been
changed. For example, if a lack of education is the cause of a particular
type of defects, and a training program is put into place to address this,
the number of these defects that occur in some designated time period (6
or 12 months [3]) after the education program has been in place should
be measured to determine if this change has been effective in preventing
these defects from reoccurring. If the number of reoccurrences is still high,
further actions may need to be taken. Other measurements of importance



458 | Defect Analysis and Prevention

Item Description

Action name, identifier

Action developer

Date created

Unique identifier for this action

person(s) creating the action

mon/day/yr

Products Products/projects to which actions are

applied

Impact area Tools, education, communication,

process, etc.

Action descriptor Textual-based description of the action

Priority of the action A value on action team priority scale

Status Open/closed/under investigation

Cost Estimated cost to implement

Completion date Planned date for completion

Associated defects Which defect is this action designated

to prevent?

TABLE 13 .3

Suggested entry in action database.

include the costs of defect prevention activities, time needed to complete
tasks, and number of action items and their status (proposed, open,
completed).

Action plans are usually applied to pilot projects. The action team
should select projects that have motivated and committed project/test
managers and staff. At the start of a project the action team members
should attend the staff meetings, describe and explain the changes to the
process and the need for cooperation and commitment. Sufficient re-
sources should be committed to the pilot project especially if project mem-
bers will be required to perform additional tasks. The action team can
use available controlling and monitoring mechanisms to track progress
of the pilot projects. Reports on the status of actions should be issued
periodically to upper management. A report could contain information



45913.7 Benefits of a Defect Prevention Program |

such as (i) how much as been invested in the program, (ii) time spent in
causal analysis, action planning, education, and training, and (iii) number
of open and closed actions during a specific time period. The action da-
tabase should support the preparation of such status reports. There
should also be feedback on the progress of the action plans. Results
should be distributed to developers, testers, and other involved in product
development.

If the pilot projects show success, and the changes in the process are
not extensive, then the process changes should be considered for organi-
zationwide implementation. If this is approved then process-related doc-
uments and standards should be updated to reflect the changes. If process
changes are substantial then it may be wise to continue to use the new
process in additional pilots before widespread changes are made.

Finally, knowledge of common defects, their causes, actions to pre-
vent them, and results of related process changes should be distributed
throughout the organization to make all staff aware, and to keep them
informed in this important area of process work. A useful time to make
this knowledge available to project teams is at the “kick-off” meetings
that begin each project phase [2,3].

1 3 . 7 Benefits of a Defect Prevention Program

A defect prevention program provides a nucleus for process changes. It
can be represented as a series of reoccurring cycles as shown in Figure
13.4 that support continuous process improvement. Defect prevention
involves many diverse staff members who have the opportunity to provide
input for the process changes. It can be applied to any process in any
organization, hence its prominent role in the TMM at level 5. In the
context of the TMM, defect prevention is one responsibility of a tester,
and, as previously mentioned, testers can be involved in the application
of the program to improve the general development process and also to
reduce defects injected into the test process itself. As an example of the
latter, we could have a case where errors occur frequently in specific types
of test cases or test procedures. The test organization could then initiate
a causal analysis group to analyze these defects, and develop action plans
that call for changes in the testing process to address the problem. At



460 | Defect Analysis and Prevention

higher levels of the TMM this certainly is a viable approach since there
is support in the form of a test organization, education and training, and
process feedback and optimization capabilities.

Defect prevention programs do have associated costs. These include
costs of defect analysis and costs of the action plans as applied to projects.
However, finding and repairing defects usually has larger costs. Recall
that in the discussion of the costs of quality in Chapter 12 we listed the
cost categories, prevention, appraisal, and failure. Appraisal costs—which
include testing, reviewing, and inspecting—and failure costs—which in-
clude rework, complaint resolution, and warranty work—usually cost
much more than defect prevention activities. Defect prevention activities
should lower appraisal and failure costs. Beside the benefits of possible
cost reductions in the appraisal and failure areas of quality there are also
other benefits for a defection prevention program which include:

• a more aware and motivated staff;

• a more satisfied customer;

• a more reliable, manageable and predictable process;

• cultural changes that bring quality issues in focus;

• a nucleus for continuous process improvement.

1 3 . 8 Defect Prevention and the Three Crit ical Views

In this section we will examine the roles of the three critical groups in
defect prevention as applied in the most general sense, that is, preventing
defects in all software deliverables, for example: code, design, and test
deliverables. Process improvement is applied to the overall development
process and the test process as well.

Managers Role

To ensure the success of a defect prevention program managers must
provide strong support. This support is in the form of planning, supplying
resources, training, and tools. Management must also establish support-



46113.8 Defect Prevention and the Three Crit ical Views |

ing policies and encourage necessary cultural changes. Managers should
ensure that a defect prevention team is well staffed, and has appropriate
resources and organizational support. When pilot projects indicate posi-
tive results, managers should promote visibility for the successes and sup-
port appropriate process changes throughout the organization. Managers
participate and serve as leaders in defect prevention activities such as
action planning and monitoring. They are the leaders in project kick-off
meetings. Managers should promote discussion and distribute lists of
common defects and process change information to project team mem-
bers. They should also promote the inclusion of defect prevention activ-
ities as part of the project/test plans, and follow-up to ensure that all
approved process changes are reflected in process documents and stan-
dards.

Testers Role

The tester’s role includes the collection of defect data and entry of the
data into the defect database. Testers serve along with developers and
SQA staff as members of causal analysis teams that address software de-
fects. Defect data records must be updated as a result of the meeting and
action plans. Testers also form causal analysis teams that specially address
test-related defects. Where appropriate, testers go to training classes to
learn causal analysis and defect prevention techniques such as the prep-
aration of Pareto and fishbone diagrams. They are especially responsible
for planning and implementing actions that make changes in the test pro-
cess. They monitor the changes to the test process as applied to pilot
projects, and report results. They serve as ambassadors for cultural
changes.

Users/Cl ients Role

Users/clients have a limited role in a defect prevention program. Their
role is confined to reporting defects and problems in operating software
so these can be entered into the defect database for causal analysis.



462 | Defect Analysis and Prevention

E X E R C I S E S

1. Summarize the benefits of putting a defect-prevention program in place.

2. What are some of the elements necessary to implement a defect-prevention

program?

3. The implementation of a defect-prevention program is a maturity goal at TMM

level 5. However, an organization on a lower level of the TMM, for example, on

level 2, may decide to try to implement such a program. Do you think that this is

a wise decision? What types of problems is the organization likely to encounter

as it tries to implement the program? Given the limited capabilities of an organi-

zation at TMM level 2, what are some of the first steps they could take to set up

a foundation for such a program?

4. Suppose you are a test manager and you observe that many defects appear in

the test procedures developed by your testing team. You decide to apply defect

causal analysis techniques to try to prevent these defects from reoccurring. Your

test team consists of many new hires. They have attended a few training sessions;

most do not have advanced degrees. Some of the team members have had exten-

sive development experience; others have not. Develop a fishbone diagram to trace

the causes of these defects based on the above scenario. You may need to make

some assumptions about the testing environment to supplement the information

given. It also helps to review the origins of defects in Chapter 3 to develop the

diagram.

5. A test engineer has just started to record defect data for her process. She

spends the bulk of her time developing test harness code. The following defect

data was collected from 10 recent projects she has worked on. The defect types

are: 10, documentation; 20, syntax; 30, build; 40, assignment; 50, interface; 60,

checking; 70, data; 80, function; 90, system; 100, environment.

Defect type Number of occurrences

10 5

20 40

30 5

40 22

50 14

60 9



46313.8 Defect Prevention and the Three Crit ical Views |

Defect type Number of occurrences

70 11

80 38

90 2

100 1

Draw a Pareto distribution for this data set. From this diagram discuss the areas

where you think this engineer should focus her defect-detection and defect-

prevention activities. What actions do you suggest?

6. Describe the role of action teams in the defect-prevention process.

7. Design a format for entries in an action database to be used for defect

prevention.

8. How does the availability of a defect database support defect-prevention

activities?

9. Suggest meeting times for defect causal analysis groups before and after re-

lease of the software. What would be the items to focus on during the course of

these meetings?

10. What is management’s role in support of a defect-prevention program?

R E F E R E N C E S

[1] G. Schulmeyer, “The move to zero defect soft-
ware,” in Handbook of Software Quality Assurance,
second edition, G. Schulmeyer, J. McManus, eds., Van
Nostrand Reinhold, New York, 1992.

[2] W. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1990.

[3] R. Mays, “Defect prevention and total quality man-
agement,” in Total Quality Management for Software,
G. Schulmeyer, J. McManus, eds., Van Nostrand Rein-
hold, New York, 1992.

[4] P. Crosby. Quality Is Free: The Art of Making
Quality Certain, Mentor/New American Library, New
York, 1979.

[5] W. Deming, Out of the Crisis, MIT Center for Ad-
vanced Engineering Study, Cambridge, MA, 1986.

[6] J. Juran, Managerial Breakthrough, McGraw-Hill,
New York, 1964.

[7] J. Juran, M. Gryna, M. Frank Jr., R. Bingham Jr.,
eds., Quality Control Handbook, third edition,
McGraw-Hill, New York, 1979.

[8] C. Cho, “Statistical methods applied to software
quality control,” in Handbook of Software Quality As-
surance, second edition, G. Schulmeyer, J. McManus,
eds., Van Nostrand Reinhold, New York, 1992.

[9] M. Paulk, C. Weber, B. Curtis, M. Chrissis, The
Capability Maturity Model: Guidelines for Improving
the Software Process, Addison-Wesley, Reading, MA,
1995.

[10] T. McCabe, G. Schulmeyer, “The Pareto principle
applied to software quality assurance,” in Handbook



of Software Quality Assurance, second edition, G.
Schulmeyer, J. McManus, eds., Van Nostrand Rein-
hold, New York, 1992.

[11] G. Schulmeyer, “Software quality lessons from the
quality experts,” in Handbook of Software Quality As-
surance, second edition, G. Schulmeyer, J. McManus,
eds., Van Nostrand Reinhold, New York, 1992.

[12] A. Endres, “An analysis of errors and causes in
system programs,” IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, 1975.

[13] R. Grady, D. Caswell, Software Metrics: Estab-
lishing a Companywide Program, Prentice-Hall, En-
glewood Cliff, NJ, 1987.

464 | Defect Analysis and Prevention



T H E T E S T E R S ’

W O R K B E N C H

1 4 . 0 Goals for the Testers’ Workbench

Throughout this book testing has been described as an intellectually chal-
lenging activity. It requires many skills, including the ability to plan the
testing efforts, generate hypotheses about defects, design test cases and
test procedures, collect and analyze measurements, set up the test envi-
ronments, run the tests, and log and analyze test results. Software testers,
like testers in other fields need tools to help them with their tasks. For
example, digital test engineers regularly use tools such as simulators and
test pattern generators to support their testing efforts. There are tools
available to software testers, but there is a need to learn how to integrate
them in a more effective manner into the testing process.

Tool usage requires organizational investments in time and dollars.
Testers and their organizations need to understand that benefits from
investing in testing tools will only be realized when:



466 | The Testers’ Workbench

• testers have the proper education and training to use them;

• the organizational culture supports tool evaluation, tool use, and
technology transfer;

• the tools are introduced into the process incrementally;

• the tools are appropriate for the testing process maturity level and
the skill level of the testers;

• the tools support incremental testing process growth and
improvement.

The use of automated tools for software testing has the potential to
increase productivity, shorten cycle time, reduce risks, and improve both
product and process quality. Unfortunately, organizations do not have
adequate guidelines as to which tools will be useful given their current
goals, the abilities of their testing staff, and the current state of their
testing process. The TMM provides a valuable framework for selecting
appropriate tools and integrating these tools into the testing process. This
chapter will describe a set of testing tools called the Testers’ Workbench.
The choice of tools for the workbench is guided by TMM maturity goals.
In the set of testing tools suggested for the workbench the author includes
those that support a wide variety of quality and test-related activities such
as test planning, configuration management, test design, and reviews, in
addition to traditional tools that support test case execution. The pro-
posed Testers’ Workbench should fulfill the following requirements.

1. The Testers’ Workbench contains a generic set of tools that support
automation of testing tasks. Only broad categories of tools are de-
scribed. They are classified principally by tool function. TMM users
will need to collect information on specific commercially available
tools they wish to acquire. Some tools could be built in-house.

2. The Testers’ Workbench is built in steps, beginning at level 1 of the
TMM. Tools are added as the organization moves up the TMM lev-
els. At the highest level of the TMM testing activities should be fully
supported by tools.



46714.1 Evaluating Testing Tools for the Workbench |

3. Each tool supports the achievement of one or more maturity goals at
the level of the TMM where it is introduced, and may support ad-
ditional maturity goals at other TMM levels.

4. The Testers’ Workbench is updatable as new tools are introduced
commercially or in-house.

Members of the three critical groups use the tools to accomplish the
activities, tasks, and responsibilities assigned to them. Criteria for tool
association with a TMM level is as follows:

• the tool supports achievement of the maturity goals at a given level
(and possibly a lower level);

• the tools helps some (all) members of the three critical groups to carry
out their activities, tasks, and responsibilities;

• the organization has the infrastructure in place in terms of staff ex-
pertise, managerial commitment, and technical training, so that the
tool can be fully utilized.

1 4 . 1 Evaluating Testing Tools for the Workbench

Testing tools should be introduced at a maturity level appropriate for
their use. Each tool purchase should be evaluated individually. Firth and
co-authors have proposed a set of six criteria useful for the acquisition of
any type of software engineering tool [1]. These criteria, plus two addi-
tional criteria suggested by this author, are shown in Figure 14.1 and are
summarized below. The summary includes appropriate questions to ask
when evaluating a tool according to each criterion.

1. Ease of Use. Is the tool easy to learn? Is its behavior predictable? Is
there meaningful feedback for the user? Does it have adequate error-
handling capabilities? Is the interface compatible with other tools
already existing in the organization?

2. Power. Does it have many useful features? Do the commands allow
the user to achieve their goals? Does it “understand” the objects it



468 | The Testers’ Workbench

Tool Evaluation Checklist

Ease of use

Power

Robustness

Functionality

Ease of insertion

Quality of support

Cost

Organizational fit

1.

2.

3.

4.

5.

6.

7.

8.

____

____

____

____

____

____

____

____

�

�

�

�

FIG. 14.1

Tool evaluation criteria.

manipulates? Does the tool operate at different levels of abstraction?
Does it perform validation checks on objects or structures?

3. Robustness. Is the tool reliable? Does it recover from failures without
major loss of information? Can the tool evolve and retain compati-
bility between old and new versions?

4. Functionality. What functional category does the tool fit (e.g., test
planning, test execution, test management)? Does it perform the task
it is designed to perform? Does it support the methodologies used by
the organization? Can new methodologies be integrated? Does it pro-
duce correct outputs?

5. Ease of Insertion. How easy will it be to incorporate the tool into the
organizational environment? Will users have the proper background
to use it? Is the time required to learn to use the tool acceptable? Are
results available to the user without a long set-up process? Does the
tool run on the operating system used by the organization? Can data
be exchanged between this tool and others already in use? Can the
tool be supported in a cost effective manner?

6. Quality of Support. What is the tool’s track record (it is very useful
to contact other organizations already using the tool)? What is the
vendor history? What type of contract, licensing, or rental agreement
is involved? Who does maintenance, installation, and training? What
is the nature of the documentation? Will the vendor supply lists of
previous purchasers? Will they provide a demonstration model?



46914.1 Evaluating Testing Tools for the Workbench |

The author of this text would add two additional criteria to this list
of considerations.

7. Cost of the Tool. Organizations have budgets that must be adhered
to. Considerations for tool purchases should include a cost factor. A
cost/benefit analysis is very useful. If a tool looks very promising,
and budgets are tight, purchase in the next fiscal period should be
considered.

8. Fit with Organizational Policies and Goals. The need for testing and
debugging policies and goals has already been discussed. Tool pur-
chases should be aligned with these policies and goals as stated. For
example, if the testing policy/goal statement does not provide for
coverage goals then purchasing a coverage tool at this time may not
a sensible choice. If an organization is engaged in test process im-
provement, and is working on addressing TMM goals, the tools se-
lected should support these goals as well.

Poston has written several papers on the acquisition of testing tools
[2–4]. Many of the evaluation criteria he suggests overlap with those of
Firth. He also has developed forms that are useful for test tool evaluation
based on the criteria listed above. Other authors who have written about
test tool use and evaluation are Kemerer [5], Mosely [6], Kit [7], and
Daich and Price [8].

It is important for an organization to decide on a standard set of
evaluation criteria for test tool acquisition. Forms can be developed from
the criteria selected. Each criterion can be assigned a weight according to
how important it is in the decision process. For example, if “ease of use”
is more important to the organization than “ease of insertion,” then “ease
of use” should carry a higher weight or greater influence in the decision
process. Each tool should be evaluated and the form completed. Com-
parisons can be made on the overall ratings for each tool. Test managers
and members of the testing group should carefully evaluate each tool
before purchase. The loan of a demonstration model or a trial usage pe-
riod for the actual product is useful for evaluating the tool in your envi-
ronment. If none of these can be arranged by the tool vendor, you prob-
ably should look elsewhere for a comparable tool. Vendors should also
be able to supply a list of organizations/users who have already purchased
their tool. Their feedback should be solicited. Surveys and case studies



470 | The Testers’ Workbench

regarding specific tools may be found on the web, in trade magazines, or
from the vendors.

When the selected tool is purchased it should have trial use in pilot
projects and then reevaluated to determine if the tool performed as was
expected. If results are satisfactory it can be integrated into the organi-
zational environment. When the tool is in use, measurements should be
used to determine the impact of the tool on software and process quality.
At TMM level 5 a technology transfer process is in place to support these
activities (see Section 15.5).

1 4 . 2 Tool Categories

Testing tools are sometimes referred to CAST tools—Computer-Aided
Software Testing Tools. There are several ways to classify testing tools.
One is by their functionality, that is, what they do. For example, a test
coverage tool monitors test execution and measures the degree of code
coverage for the tests; a capture/reply tool captures test inputs and outputs
and replays the test upon request; a defect tracking tool logs and keeps
track of defects and their status. Another broader classification scheme
uses the testing phase or testing activity in which the tool is employed to
classify it, for example, tools to support development of test requirements,
test design, test execution, test preparation, and test resource management
tools [8]. Some tools have multiple functionality and also can be used in
more than one development phase, so they can be classified in more than
one way.

In this text we describe tools in two ways: (i) by their functionality,
and (ii) by the testing maturity level they support. For example, tools are
placed in the “phase definition” category if they support maturity goals
at TMM level 2 that help to establish testing as a distinct develop-
ment/maintenance phase that is supported by policies, plans, and basic
techniques. There are many possible tools that can be introduced at each
TMM maturity level. An organization can select tools of each type; how-
ever, it is not necessary to obtain every type of tool recommended for the
Testers’ Workbench. Organizations must make decisions based on a va-
riety of criteria, for example: organization size, TMM level, budgetary
allowance, scope of process improvement efforts, staff education, level
and training available, and types of products being developed.



47114.2 Tool Categories |

Tools are introduced at a TMM level where it is believed that an
organization will most benefit from its use. TMM level is an important
consideration for tool acquisition. Many organizations make major in-
vestments in testing tool purchases with the goals of improving produc-
tivity and software quality. In many cases the investments have no bene-
fits—the organizations fail to achieve their goals because they lack the
infrastructure and maturity level necessary to support tool usage.

For some tools a simpler version or a more restricted usage is rec-
ommended at lower TMM levels since the organization may not be ready
to make full use of all capabilities. An upgraded version of the tool with
more features/functions may be suggested for a higher TMM level. Many
of the tools are components of packages that integrate them within a
common interface. At a lower level of the TMM only some of the features
may be used, and others made use of as an organization’s testing process
becomes more mature. In the context of the TMM, specific brand names
of tools are not recommended. The reader should consult Refs. 1–3, 8,
and 9 for evaluation criteria of commercially available specific testing
tools. For lists of commercially available tools, some sources are Daitch
and Price [8] and Dustin and Cashka [10], proceedings from test- and
quality-related conferences such as International Quality Week, and web
sites such as:

www.stlabs.com/marik/faqs/tools/html
www.soft.com/Partners/Aonix
www.methods-tools.com/tools/testing.html

(from Software Research—TestWorks)
www.revlabs.com
www.sqe.com
www.ovum.com

The goal for developing the Testers’ Workbench was to include the
most widely used functional types of tools. Some of the tools may not be
considered strictly as testing tools, but they do support the testing effort
in a direct or indirect manner, and they do support maturity goals for a
particular TMM level.

The discussion in the subsequent sections of this chapter is organized
in the following way. Each TMM level is listed and its maturity goals are
discussed briefly. The suggested tools to support achievement of the ma-



472 | The Testers’ Workbench

turity goals are then listed. The rational for the selection of the tools is
presented, and usage and application for each is described.

1 4 . 2 . 1 M a t u r i t y G o a l s a n d T o o l s

f o r T M M L e v e l 1 : I n i t i a l

At TMM level 1, testing is a chaotic process. It is ill-defined and not
distinguished from debugging. Tests are developed in an ad hoc way after
coding is done. Testing and debugging are interleaved to get the bugs out
of the software. The objective of testing is to show the software works.
Software products are often released without quality assurance. There is
a lack of resources, tools, and properly trained staff. There are no ma-
turity goals at TMM level 1 [11–13].

1 4 . 2 . 2 T o o l s f o r T M M L e v e l 1

Although there are no maturity goals at this level, an organization can
begin to assemble components for the Testers’ Workbench. The goal is
to provide a minimum set of basic tools for each developer. These tools
do not require advanced training and should be available to all develop-
ers. Access to the tools is through a personal computer or workstation at
each person’s desk. The PC or workstation for each developer should be
equipped with (i) a word processing program, (ii) a spreadsheet program,
(iii) a file comparison utility that indicates if two files are the same or
different, (iv) an emailer to ensure adequate communication, and (v) a
screen capture program that allows the contents of a screen to be sent to
a file or to a printer. A laptop computer is also useful for simple mea-
surement collection (see Chapter 11). Supported by a PC, laptop, or work-
station platform, the Testers’ Workbench can be initiated with a minimal
set of tools that will introduce developers to benefits of tool usage, and
support simple measurement collection. The following tools as shown in
Figure 14.2 are suggested.

1. Interactive Debuggers. These tools assist developers in code compre-
hension and locating defects. They should have trace back and break-
point capabilities to enable developers to understand the dynamics of
program execution and to identify suspect areas of the code. Debug-
ging tools set the stage for the separation of the testing and debugging



47314.2 Tool Categories |

The Basics

TMM level 1 tools for
the Testers’ WorkbenchNo TMM maturity goals

PC, laptop, or workstation,
    word processor, spreadsheet,
    file comparator, emailer

Debuggers

Configuration builders

LOC counters

(introduction to simple
Testers’ Workbench tools)

Basic support tools
for all TMM levels

Support for
achievement

FIG. 14.2

Basic Testers’ Workbench tools for

TMM level 1.

processes by illustrating the different skills, models, and psychologies
required for both of these processes.

2. Configuration Building tools. These tools (e.g., the UNIX “MAKE”
utility) allow construction of software system configurations in a con-
trolled environment. They support an orderly, manageable, and re-
peatable system construction process for developers and testers.
These will be supplemented by configuration management tools when
the organization is ready at TMM level 3.

3. Line of Code (LOC) counters. Software size measurement has many
useful applications. A tool that automatically measures size will result
in consistently repeatable size measures that are useful for many pur-
poses including cost estimations essential for project and test man-
agers, calculations of defect volume (number of defects/KLOC),
and measures of productivity (LOC produced/unit time). The LOC
counter may require the development or adaptation of a line-counting
standard and coding standards that will need to be followed [14].

The reader should note that spreadsheets were listed above as a basic
necessity for all software engineering staff. The role of the spreadsheet at



474 | The Testers’ Workbench

TMM level 1 should be explained in more detail. Spreadsheets are very
useful to record simple measurements such as actual time spent in testing
activities, LOC measures for each project, and the number of defects of
each type found for each project. The data collected in this way will help
an organization to develop a measurable baseline for its testing process
and later will supply data to support the defect repository. Spreadsheets
can also support the development of a validation cross-reference matrix
for testing. Eventually the spreadsheet is replaced by more advanced tools
at higher levels of the TMM where the testing staff is well educated and
trained.

1 4 . 2 . 3 T M M L e v e l 2 : M a t u r i t y G o a l s

f o r P h a s e D e f i n i t i o n

At level 2 of the TMM testing is separated from debugging and is defined
as a phase that follows coding. It is a planned activity; however, test
planning at level 2 may occur after coding for reasons related to the im-
maturity of the testing process. Basic testing techniques and methods are
in place; for example, use of black box and white box testing strategies,
and a validation cross-reference matrix. Many quality problems at this
TMM level occur because test planning occurs late in the life cycle. In
addition, defects are propagated from the requirements and design phases
into the code. There are no review programs as yet to address this im-
portant issue. Postcode, execution-based testing is still considered the pri-
mary testing activity. The maturity goals at this level are [11–13]:

Develop Testing and Debugging Goals

An organization must clearly distinguish between the processes of testing
and debugging. The goals, tasks, activities, and tools for each must be
identified. Responsibilities for each must be assigned. Plans and policies
must be made by management to accommodate and institutionalize both
of these processes. The separation of these two processes is essential for
testing maturity growth since they are different in goals, methods, and
psychology. Testing at this level is now a well-planned activity and there-
fore it can be managed. Management of debugging is much more difficult
due to the unpredictability of defect occurrences, and the time and re-
sources required to locate and repair them.



47514.2 Tool Categories |

Initiate a Test Planning Process

Planning is essential for a process that is to be repeatable, defined, and
managed. Test planning involves stating objectives, analyzing risks, out-
lining strategies, and developing test design specifications and test cases.
In addition, the test plan must address the allocation of resources and the
responsibilities for testing on the unit, integration, system, and acceptance
levels.

Institutionalize Basic Testing Techniques and Methods

To improve test process capability, basic testing techniques, methods, and
practices must be applied across the organization. How and when these
techniques and methods are to be applied, and any basic tool support for
them, should be clearly specified. Examples of basic techniques, methods,
and practices are black-box and white-box-based testing methods, use of
a requirements validation matrix, and the division of execution-based
testing into subphases such as unit, integration, system, and acceptance
testing.

1 4 . 2 . 4 T o o l s f o r P h a s e D e f i n i t i o n

AT TMM level 2 an organization establishes a distinct testing phase as
part of its development life cycle. The testing phase is supported by pol-
icies, plans, techniques, and practices. Policymaking requires people-
oriented resources. Tools for supporting this goal consist mainly of word
processors to record the policies. An intraorganizational set of web pages
containing the policy help to promote its availability and distribution
throughout the organization.

Planning tools at TMM level 2 are especially needed to support the
test planning maturity goal since planning is essential for a defined and
managed testing process. Tools are also needed to support basic testing
techniques, and to denote the different tasks and activities associated with
testing and debugging. The tools introduced at TMM level 2 should be
simple and easily mastered by developers since there is no dedicated soft-
ware testing group and no formal technical training program as yet. Tools
should support improved planning, increased productivity, and software
quality. Positive results from tool usage should be made clearly visible so



476 | The Testers’ Workbench

as to provide a strong incentive for peer adaptation and for management
support.

The tools selected here and shown in Figure 14.3 mainly support the
front end of testing (planning) and the back end (execution). The latter
automate tasks that are familiar to developers and so there is little cultural
bias to their introduction and a clear incentive to use them. Since a formal
test planning process is new for the organization, planning support tools
can ease the integration and adaptation of this activity into the testing
process with strong management support. Introduction of the planning
tools not only supports the building of a defined, managed and optimiz-
able test process, but also has the added feature of helping to distinguish
testing from debugging. That planning can become well-defined and use-
ful for effective testing will become apparent as the organization adopts
and implements a test planning process. In contrast, organizations will
learn that planning for debugging is difficult even at the highest levels of
process maturity. The other tools introduced at TMM levels 1 and 2 also
serve to separate the two activities. For example, several of the tools in-
troduced at TMM level 2 focus on testing as an activity whose purpose
is to reveal defects. The debugging tool introduced at TMM level 1 fo-
cuses attention on locating the defects.

In addition to introducing test planning tools, error checkers, and a
cross-reference tool at TMM level 2, some simple tools for test data gen-
eration are introduced to support the maturity goal that calls for the
application of basic testing techniques and methods. The tools support
the white and black box testing strategies that are part of the basic level
2 technical practices. A white-box-based coverage tool is also introduced
to help the organization to set test goals, develop improved test plans,
and produce higher-quality software.

1. Project Planners and Test Planners. These tools are necessary to au-
tomate and standardize the process of test planning in the organiza-
tion. The tools will support the specification and recording of items
necessary for a high-quality test plan. Example items include testing
goals, test resources required, costs, schedules, techniques to be used,
test designs, and the assignment of staff responsible for testing tasks.
Since very few planning tools specific for the testing process are com-
mercially available, an organization may decide to develop its own



47714.2 Tool Categories |

test plan templates and support tools and make them available to all
internal groups. Guidelines for components that should be included
in test plans can be found in Chapter 7, and are also described in
IEEE standards documents [15]. Project planning tools could aug-
ment the in-house test templates and be used to develop and record
schedules, costs, task lists, and so on. At TMM level 2 organizations
should be testing at the unit, integration, and system levels. Tools
that support test planning can aid in the differentiation of these test-
ing subphases, and individual plans can be developed for each sub-
phase.

2. Run-Time Error Checkers. These tools are also known as bounds
checkers, memory testers, and leak detectors. They detect memory
problems, array boundary under- or overflows, memory allocated
and not freed, and the use of unitialized memory locations. This
group of tools will aid in revealing defects and usually supply detailed
error messages that help users to track defects.

3. Test Preparation Support Tools (Beginning Level). Since there is no
dedicated testing group at TMM level 2, and developers are just be-
ginning to use basic testing techniques and strategies, it is best to
introduce simple test preparation support tools that aid in the devel-
opment of black-box- and white box-based test cases.

One of the tools recommended is one that generates black box
test data using algorithmic methods. For example, tools that require
a cause-and-effect graph, or an input of equivalence classes and
boundary values. Use of these tools will give developers additional
incentives to master the testing concepts and strengthen their use or-
ganizationally. Tools that support white box testing at TMM level 2
are control flow analyzers that generate control flow graphs, and data
flow analyzers that produce data flow information. These tools can
be introduced to help developers identify branches, basis paths, and
variable usages. Using this information developers can design test
cases that satisfy coverage goals (see the discussion of coverage ana-
lyzers below). More advanced test data generation tools will be rec-
ommended at higher TMM levels.

4. Coverage Analyzers. Adaptation of coverage analyzers assists with
white box testing. The tools support the development of measurable
test completion goals for test plans and ensure that the goals are met.



478 | The Testers’ Workbench

TMM level 2 tools for
the Testers’ Workbench

Maturity goals for
phase definition

Test/project planners

Run-time error
    checkers

Test preparation tools

Coverage analyzers

Cross-reference tools

Support for goal
achievement

Develop testing and
    debugging goals

Initiate a test planning
    process

Insitutionalize basic testing
    techniques and methods

FIG. 14.3

Testers’ Workbench tools for TMM

level 2.

Executing the target code under the control of a coverage tool gives
the developer a measure of the degree of statement and/or branch
coverage and indicates which program structures(paths) have been,
or have not been, exercised by a given set of test cases. If coverage
goals are not met with the current set of test cases, the developer can
design additional test cases and rerun the code under the control of
the tool to determine if the coverage goals have now been met.

5. Cross-Reference Tools. These are simple tools that allow users to
trace occurrences of items as they appear in different software arti-
facts. Cross-reference tools are helpful for building mental models of
software for the purpose of making changes, developing tests, and
rerunning tests. For example, a developer or tester may want to de-
termine where a specific variable appears in all source code listings
so that tests centered on the variable will be complete. Other items
that can be traced or referenced are labels, literals, parameters, and
subroutine calls.

1 4 . 2 . 5 T M M L e v e l 3 : M a t u r i t y G o a l s

f o r I n t e g r a t i o n

This is a critical maturity level. Its maturity goals center on addressing
testing and quality issues early in the software life cycle. The testing phase
is no longer just a phase that follows coding. Instead it is expanded into



47914.2 Tool Categories |

a set of well-defined activities that are integrated into the software life
cycle. All of the life cycle phases have testing activities associated with
them. Support for integration is provided by institutionalization of some
variation of the V-model which associates testing activities with life cycle
phases such as requirements and design. At this level management sup-
ports the formation and training of a software test group. These are spe-
cialists who are responsible for testing. This group serves as a liaison with
the users/clients to insure their participation in the testing process. At
TMM level 3 basic testing tools support institutionalized test techniques
and methods. Both technical and managerial staff are beginning to realize
the value of review activities as a tool for defect detection and quality
assurance [11–13]. Maturity goals for TMM level 3 are as follows:

Establish a Software Test Organization

The purpose of establishing a software test organization is to identify a
group of people that is responsible for testing. Since testing in its fullest
sense has a great influence on product quality and consists of complex
activities that are usually done under tight schedules and high pressure,
management realizes that it is necessary to have a well-trained and ded-
icated group of specialists in charge of this process. Among the respon-
sibilities of the test group are test planning, test execution and recording,
test-related standards, test metrics, the test database, the defect repository,
and, test tracking and evaluation.

Establish a Technical Training Program

A technical training program will insure that a skilled staff is available to
the testing group. Testers must be properly trained so they can do their
jobs both efficiently and effectively. At level 3 of the TMM, the testing
staff is trained in test planning, testing methods, standards, and tools. At
the higher levels of the TMM the training program will prepare testers
for identifying, collecting, analyzing and applying test-related metrics.
The training program also will prepare the staff for the review process,
and provide instruction for review leaders. It will provide training for
process control and defect prevention activities. Training includes in-



480 | The Testers’ Workbench

house courses, self-study, mentoring programs, and support for atten-
dance at academic institutions.

Integrate Testing into the Software Life Cycle

Management and technical staff now realize that carrying out testing ac-
tivities in parallel with all life cycle phases is critical for test process ma-
turity and software product quality. Test planning is now initiated early
in the life cycle. A variation of the V-model or any other model that
supports this integration is used by the testers and developers. User input
to the testing process is solicited through established channels for several
of the testing phases.

Control and Monitor the Testing Process

According to Thayer, management consists of five principal activities:
(i) planning, (ii) directing, (iii) staffing, (iv) controlling, and (v) organizing
[16]. Level 2 of the TMM introduces planning capability to the testing
process. In addition to staffing, directing, and organizing capabilities,
level 3 introduces controlling and monitoring activities. The purpose of
controlling and monitoring in the testing process is to provide visibility
to its associated activities and to ensure that the testing process proceeds
according to plan. When actual activities deviate from the test plans, man-
agement can take effective action to correct the deviations in order to
accomplish the goals in the test plan on time and within budget. Test
progress is determined by comparing the actual test work products, test
effort, costs, and schedule to the test plan. Support for controlling and
monitoring comes from developing the following: standards for test prod-
ucts, test milestones, test logs, test-related contingency plans, and test
metrics that can be used to evaluate test progress and test effectiveness.

1 4 . 2 . 6 T o o l s f o r I n t e g r a t i o n

At TMM level 3 an organization will have a group dedicated to testing
as well as a technical training program. Testing tools can be introduced,
and it can be expected that the test specialists will have the resources and
skills to evaluate, purchase, use, integrate, and institutionalize the tools.
Unlike less mature organizations, those at TMM level 3 should exhibit a



48114.2 Tool Categories |

high rate of tool usage when all the maturity goals through this level are
achieved.

The tools recommended for TMM level 3 as shown in Figure 14.4,
are diverse in nature and were selected to support level 3 maturity goals
and to:

• improve software quality;

• control and monitor testing;

• improve tester/developer productivity;

• integrate testing throughout the life cycle;

• give visibility to the testing organization;

• illustrate the benefits of having both a dedicated test organization
and technical training program.

The tools provide continuing support for test planning, test design,
and automated execution. Support for controlling, monitoring, and track-
ing the testing process is also provided. Note there is a very strong em-
phasis on tools related to requirements gathering and tracing to test.
These serve to support integration of testing activities with other life cycle
activities, a maturity goal at TMM level 3. Use of these tools allows in-
tegration to begin early in the software life cycle. They also allow for role
definition in the testing process for users/clients.

1. Configuration Management Tools. These are complex tools that
are essential to ensure change-making that is monitored and controlled
for all project-related artifacts. Artifacts, called configuration items, under
control of these tools include code versions, change requests, as well as
test related items such as test plans, test procedures, and test cases (see
Chapter 11). For successful operation of these tools organizational struc-
tures such as a change control board are essential. Test specialists should
be among the members of this board.

A configuration management tool will support two of the maturity
goals at TMM level 3, “integration of testing activities into the software
life cycle” and, “controlling and monitoring of testing.” Support for these



482 | The Testers’ Workbench

TMM level 3 tools for
the Testers’ Workbench

Maturity goals for
integration Configuration

Management tool

Requirements recorder

Requirements verifier

Requirements tracer

Capture-replay tool

Comparator

Defect tracker

Complexity measurer

Load generators

Support for goal
achievementEstablish a software test

    organization

Establish a technical training
    program

Integrate testing into
    software life cycle

Control and monitor testing

FIG. 14.4

Testers’ Workbench tools for TMM

level 3.

goals is in the form of managing, coordinating, and maintaining the de-
pendencies and relationships between all software artifacts. For example,
the relationships between requirements and test cases, and design ele-
ments and test cases, can be established and made available using a con-
figuration management tool. The tools also have controlling and coor-
dinating functions for overseeing all changes made to configuration items.
They also support assess privileges to configuration items for all devel-
opers/testers. The tool also provides visibility to the testing process in the
organization, and helps to establish the need for a group of test specialists
to develop the test-related work products.

2. Requirements Recorders (Use Case Recorders). At TMM level 3 a
primary goal is the early introduction of testing activities into the software
life cycle. Good testing practices call for an organization to begin to de-
velop a high-level test plan in the requirements phase. Testers need to be
sure that requirements represent a testable product. Many organizations
record requirements in a natural language format using a text processor.
Others use requirements modeling tools, and record information in a
graphical format such as data flow diagrams. These requirements repre-
sentations may not provide adequate support for testers. There are re-
quirements modeling tools now available that will give stronger support



48314.2 Tool Categories |

to testers. Of special interest are the use case recorders that assist with
the development of use cases as described in Section 6.17 of this text.
Some of these tools will also generate test cases based on the use cases.

3. Requirements Verifiers. Requirements verifiers have the ability to
check requirements for ambiguity, consistency, and statement complete-
ness. However, they are not a substitute for a requirements review, which,
among other things, will check for the completeness and correctness of
the requirements specification.

4. Requirements-to-Test Tracers. These will provide automated as-
sistance for use of a requirements traceablity matrix as introduced at
TMM level 2. At TMM level 2 it was suggested that use of the matrix
could be supported in a simple way using a spreadsheet. Requirements-
to-test tracers tools add more functionality and capability. They provide
links between requirements, design, source code, and test cases. What
formally was a tedious time-consuming task is now automated with these
tools [8]. The tools also play a role in monitoring the testing process as
they indicate which requirements have/have not been covered by a test
case.

5. Capture-Replay Tools. These tools are essential for automating the
execution and reexecution of tests. They have a positive impact on tester
productivity. The tools usually are combined with a comparator. A tester
executes the target program under the control of the capture-replay tool.
The tool records all input and output information and in replay mode it
will play back whatever has been recorded. The tools will capture mouse
movements, keyboard strokes, and screen images. After a software
change, recorded tests can easily be rerun (regression testing). The tool
can play back the recorded tests and validate the results for the changed
software by comparing them to the previously saved baseline from the
previous version. Many different types of reports can be issued by the
tools, for example:

(i) a time report that list the execution time for each test;
(ii) a failed report that lists the tests that have been failed;
(iii) a regression report that lists only those tests whose outcomes have

changed since the previous test activation;
(iv) a cumulative report that lists current and past test results for every

test executed.



484 | The Testers’ Workbench

Most of these tools assist testers in developing test scripts in a script-
ing language that will describe all the steps necessary to run/repeat/rerun
a particular test. The test scripts have a set of commands each of which
will carry out a user request. Some example commands are:

mouse() will send a mouse event to an application

log() will write text to the script log file

real_time will set a real time mode on/off

screen_shot will capture a screen image and place it in the playback image file

delay() will delay the playback of the next line in the script by a specified length of time

The scripting languages also have programming-language-like constructs
such as for/next loops that will repeat a single or block of script statements
a given number of times, and a call statement that will call a test subscript.

Capture-replay tools can be categorized as native where the tool and
the software being tested reside on the same system. Nonnative tools re-
quire an additional hardware system for the tool. The latter are very useful
when testing embedded systems.

Capture-replay tools will automate the execution of tests so that test-
ers will not have to repeatedly rerun them manually. The tests can run
unattended for long periods of time. The many capabilities of capture-
replay tools make them a very useful addition to the Testers’ Workbench.
But they should be introduced when the organization has the infrastruc-
ture in place to support their use. Investment in the tools is often costly.
To obtain benefits, testers need management support to ensure they have
the proper education, training, software, and hardware to take advantage
of the many capabilities the tools have to offer. This is most likely to
occur at TMM level 3 where the achievement of the associated maturity
goals builds an infrastructure that supports their adaptation.

6. Comparators. These tools compare actual test outputs to expected
outputs and flag the differences. They have more complex capabilities
than the simple file comparators recommended as a basic tool at TMM
level 1. The software under test will pass if the actual and expected out-
puts are the same within allowed tolerances. A simple comparator like
the “diff” facility in UNIX system compares text files for equality. More



48514.2 Tool Categories |

sophisticated tools may exhibit better performance and have the ability
to compare other types of output for equality; for example, screens and
graphical data. In many cases a comparator may be a component in a
tool package such as a capture/replay tool as described above.

7. Defect Trackers. These tools are also called problem managers. To
support controlling and monitoring of the testing process this type of tool
is essential. The tools if properly used have the added benefits of improv-
ing customer satisfaction, improving productivity, increasing software
quality, and improving morale [17]. At TMM level 3 a staff of trained
testing specialists is available to take advantage of the capabilities of such
a tool. Previously at levels 2 and 3 of the TMM spreadsheets have been
suggested as a way to record defect data, but they do not have the func-
tionalities needed for the more advanced applications that mature orga-
nizations need. Defect trackers allow testers and developers to record,
track, and manage defects throughout the life cycle. In order for the tool
to be effective, a defect tracking process must be in place and that requires
the support of a test organization and training for the testing and devel-
opment staff. After a defect has been detected, it must be logged into the
defect database supported by the tool. A defect tracking tool allows users
to build a more sophisticated defect repository than possible with a simple
spreadsheet program. Testers should be able to record extensive defect
information as described in Sections 11.2 and 13.2 using the tracking tool.

Resolution of the problem follows the recording of available infor-
mation about the defect. The order of resolution may depend on the im-
pact of the defect and an assigned priority. As defect repair continues, the
status of each defect is updated to reflect its current state of resolution.
Code with a repaired defect is subject to retest by the testing team. Once
approved, a defect fix report should be issued and the status of the defect
updated in the defect tracker record. These defect processing steps are
shown in Figure 14.5.

Having a defect resolution process supported by the capabilities of a
defect tracker allows continuous monitoring of defects, and helps to en-
sure they are all resolved. More sophisticated defect trackers support com-
munication between developers and testers to promote defect resolution,
and integration of testing activities throughout the life cycle. Defect track-
ers can also issue (i) defect reports that track resolution efforts, and
(ii) summary reports that include types of defects, their frequency of occur-



486 | The Testers’ Workbench

Defect found problem report

Record in defect tracker
    repository

Status: OPEN

Defect repair according to
    priority

Status: UNDER REPAIR

Defect repaired

Status: CLOSED

Defect fix report issued

FIG. 14.5

Steps in defect resolution.

rence, and age. Plots can be developed as described in Chapter 9 to help
control and monitor the testing and defect resolution processes. Defect
trackers also support maturity goals at higher TMM levels such as the
development of qualitative testing goals and defect prevention activities.

Defect tracking systems introduce many changes into an organiza-
tion. There must be support particularly from a test group that has the
proper education, training, and attitude to make proper use of the tools.
From the testers’ viewpoint, the adaptation of defect tracker tools serves
to increase their visibility in the organization and highlights their role in
improving software quality. Beginning at TMM level 1 with a simple
spreadsheet to record defects, building up to TMM level 2 with its em-
phasis on testing/debugging policies and defect classifications, then on to
TMM level 3 with a focus on the test group, training, and controlling and
monitoring mechanisms, an organization can prepare itself for the intro-
duction and integration of these important tools. The defect tracking and
handling process should be enhanced at TMM level 4 to include defects
detected from reviews as well as execution-based test. Finally, at TMM
level 5 the capabilities of defect tracking tools should be applied to the
defect prevention process, and to the process of continuous test process
improvement.



48714.2 Tool Categories |

8. Complexity Measurers. These tools are sometimes called metrics
reporters. They will measure cyclomatic complexity and will often be
integrated with other tools such as a size measurer (line-of-code counter),
a data flow analyzer, and/or a control flow analyzer. Some of these tools
will measure complexity at the detailed design stage if a module is written
in a structured and standardized pseudo code language. Others will also
generate Software Science Metrics (Halstead’s metrics) which are related
to complexity. Examples of such metrics are number of unique operators,
number of unique operands, and total number of operands. At TMM
level 3 the complexity of a module can play an important role in testing.
The level of complexity of a module gives an indication of how risk prone
the module is in terms of the likelihood of defects [18], and the number
of test cases needed to adequately test it. Organizations should set limits
on the level of complexity allowed, and modules displaying values over
the limit should be considered for redesign.

9. Load Generators. Now that a trained and dedicated testing group
is in place, and testing is carried out at all levels (unit, integration, system),
it is appropriate to introduce load-generating tools into the Testers’
Workbench. As described in Section 6.13 these tools will generate the
large volumes of data needed for system tests such as stress and perfor-
mance tests. Load generators can be used to produce a stream of trans-
actions. For example, if you were system testing a telecommunication
system you would need a load that simulated a series of transactions in
the form of phone calls of particular types and lengths, arriving from
different locations. Since a very large volume of data is produced when
load generators are used, tools to collect and analyze the data should be
available to testers.

1 4 . 2 . 7 T M M L e v e l 4 : M a t u r i t y G o a l s

f o r M a n a g e m e n t a n d M e a s u r e m e n t

The principal focus at level 4 of the TMM is on broadening the definition
of what a testing activity is and extensive measurement of the testing
process. Controlling and monitoring functions can now be fully sup-
ported by a test measurement program that is put into place. Staffing
activities are supported by a training program. The definition of what
is a testing activity is expanded to include reviews/inspections and/or



488 | The Testers’ Workbench

walkthroughs at all phases of the life cycle, and is applied to both software
work products and test-related work products such as test plans, test
designs, and test procedures. This expanded definition of testing covers
activities typically categorized as verification and validation activities. A
major goal for this broadened set of testing operations is to uncover de-
fects occurring in all phases of the life cycle, and to uncover them as early
as possible. Defects uncovered by reviews as well as execution-based tests
are saved as a part of project history, and deposited in the defect repos-
itory. Test cases and test procedures are stored for reuse and regression
testing [11,13]. The Extended/Modified V-Model illustrates the integra-
tion of these activities and provides support for several TMM level 4
maturity goals [19,20]. Testing at TMM level 4 is also applied to the
evaluation of software quality. Quality requirements for the software are
established at project initiation, and testing is used to determine if the
requirements have been met. TMM level 4 has the following maturity
goals:

Establish an Organizationwide Review Program

At TMM level 3 an organization integrates testing activities into the soft-
ware life cycle. At level 4 this integration is augmented by the establish-
ment of a review program. Reviews are conducted at all phases of the life
cycle to identify, catalog, and remove defects from software work prod-
ucts and test work products early and effectively. Reviewers are trained
and review metrics are used to evaluate and improve the review process.

Establish a Test Measurement Program

Although simple test measurements have been recommended for collec-
tion at lowering TMM levels to establish a baseline process, and for the
controlling and monitoring of testing, no formal test measurement pro-
gram has yet been put into place. At TMM level 4 an organization is
mature enough to support a formal test measurement program. Such a
program is essential for the following:

• evaluating the quality of the testing process;

• evaluating software quality;

• assessing customer satisfaction;



48914.2 Tool Categories |

• assessing the productivity of the testing personnel;

• evaluating the effectiveness of the testing process;

• supporting of test process improvement.

A test measurement program must be carefully planned and managed.
At TMM level 4 there is trained staff available to take responsibility for
this program. Staff must identify the test data to be collected, and deci-
sions must be made on how the data is to be used and by whom. Mea-
surements include those related to test progress, test costs, data on errors
and defects, and product measures such as software reliability. Measure-
ment data related to client/user satisfaction should also be collected and
analyzed.

Software Quality Evaluation

One of the purposes of software quality evaluation at this level of the
TMM is to relate software quality issues to the adequacy of the testing
process. Software quality evaluation involves defining measurable quality
attributes, and defining quality goals for evaluating software work prod-
ucts. Quality goals are tied to testing process adequacy since a mature
testing process must lead to software that is at least correct, usable, main-
tainable, portable, and secure.

1 4 . 2 . 8 T o o l s f o r M a n a g e m e n t

a n d M e a s u r e m e n t

At TMM level 4 the definition of a testing activity is extended to include
reviews, and this is expressed as a maturity goal. Measurements and soft-
ware quality evaluation are also important goals. For this level suggested
tools are shown in Figure 14.6. Some of the tools support reviews as a
defect-detecting activity. Reviews are personnel-intense activities and
have very little automated support, but there is a group of tools that can
assist reviewers in understanding the software and detecting defects in
software-related artifacts. The review support tools usually perform some
type of static analysis on the artifact under review. For example, we have
introduced a requirements recorder and a complexity measurer at lower
levels of the TMM to support maturity goals at those levels. Continued



490 | The Testers’ Workbench

TMM level 4 tools for
the Testers’ Workbench

Maturity goals for
measurement and management

Code checkers

Auditors

Code comprehension tools

Test harness generators

Performance analyzers

Network analyzers

Simulators/emulators

Web testing tools

Test management tools

Support for goal
achievement

Establish an organization wide
    review program

Establish a test measurement
    program

Software quality evaluation

FIG. 14.6

Tester’s Workbench tools for TMM

level 4.

use of these tools will support the implementation of requirements and
design reviews. At TMM level 4 tools that perform static analysis of the
code are introduced. These can be used either pre- or postreview to detect
defects before actual execution of the code. These tools detect certain
types of defects—for example, data flow anomalies—and should be used
in conjunction with the review activities. Other types of tools called pro-
gram understanders are also useful to code reviewers and testers to help
build mental models of the code for program understanding tasks. Ex-
amples of the these types of tools are:

1. Code Checkers. Sometimes called static analyzers, these tools
search for misplaced pointers, uninitialized variables, and other data flow
anomalies. Some are able to identify unreachable code.

2. Auditors. These tools will scan the code to identify violations of
established coding standards and/or coding formats.

3. Code Comprehension Tools. Some of the features of these tools
may be duplicated by code checkers. However, many other useful code
properties may be revealed through use of these tools. For example, some
perform forward and backward program slicing, and provide detailed
data and control flow information. More sophisticated versions of these
tools have artificial intelligence components and contain special knowl-



49114.2 Tool Categories |

edge bases of programs plans (stereotypical code patterns). They attempt
to perform reverse engineering tasks and match code to plans for concept
recognition [21–23]. Unfortunately, not many of examples of the latter
type of tool are commercially available at this time.

To support the TMM level 4 maturity goal of software quality eval-
uation the tools listed below are suggested to help automate large-scale
system testing and allow the collection of data related to software quality
attributes. Tools introduced at lower TMM levels also support this goal,
for example, capture-replay tools, complexity measures, defect trackers,
line of code counters, and requirements tracers.

4. Test Harness Generators. To carry out unit, integration, and sys-
tem testing, auxiliary code must be written that is in addition to the code
developed for the system-under-test. This extra code, often called the test
harness, may include drivers, stubs, interfaces to an operating system, and
interfaces to a database system. The test harness may be very large in size,
represent considerable effort, and is often specially built for testing a given
application. Recent advances in the development of interface standards
and standard approaches to describing application interfaces has enabled
the introduction of commercial tools to assist with test harness prepara-
tion [4]. These tools can be very useful; they reduce time and effort in
testing, and produce reusable test harnesses.

5. Performance Testing Tools. These tools monitor timing character-
istics of software components. They support load and stress testing, and
are essential for supporting the testing of real-time systems in order to
evaluate performance quality. The availability of these tools can help to
determine if performance goals have been met.

6. Network Analyzers. These are useful tools for testing network sys-
tems such as software that runs on client/server systems, web environ-
ments, and multitier systems. The tools have the ability to analyze net-
work traffic and identify problem areas and conditions. Many of the
network testing tools allow a tester to monitor and diagnose performance
across a network.

7. Simulators and Emulators. These tools may be used to replace
software or hardware components that are missing, currently unavailable,
or too expensive to replace. Both tools types are used for economic or
safely reasons. Examples are terminal emulators, and emulators or sim-
ulators to substitute for components in nuclear power plants. The tools



492 | The Testers’ Workbench

may be bundled with performance analyzers and/or load generators.
The latter will generate large volumes of test data to test, for example,
transaction-based, operating, and telecommunication systems.

8. Web Testing Tools. These are specialized tools that support the
testing of web-based applications. Many are similar in nature to simula-
tors and emulators in that they simulate real-world web traffic patterns
that allow testers to evaluate the performance capabilities of a web ap-
plication. Measuring performance allows developers to tune a web-based
application so that it operates in an effective manner. Some of the web-
based testing tools also have capabilities that allow users to validate web
links.

9. Test Management Tools. Several measurements have be suggested
for collection at lower levels of the TMM. Forms and templates to facili-
tate this collection should be formalized at TMM level 4. Responsibilities
for data analysis and the dissemination of information should be assigned.
Tools such as spreadsheets and databases can be used to organize and
store some of the data for eventual analysis and application to test process
improvement. Defect trackers complement these tools to store, manage,
and analyze defect data. Another more sophisticated tool that is useful
for collecting and retrieving test-related data is a test management tool.
A database of test cases is part of the tool repository. Ideally this tool
should be a component of a capture-replay system, or have a seamless
interface with a capture-replay system. A fully functioning tool of this
type provides some very valuable capabilities such as:

• a user interface that assists users in managing tests;

• ability to organize tests, and to facilitate retrieval and maintenance;

• ability to manage test execution for tests the user selects;

• ability to generate test reports, for example, on test status, and num-
ber of test cases executed over a specified time period.

1 4 . 2 . 9 T M M L e v e l 5 : M a t u r i t y G o a l s f o r

O p t i m i z a t i o n / D e f e c t P r e v e n t i o n /

Q u a l i t y C o n t r o l

Because of the infrastructure that is in place through achievement of the
maturity goals at levels 1–4 of the TMM, the testing process is now said



49314.2 Tool Categories |

to be defined and managed; its cost and effectiveness can be monitored.
At TMM level 5 mechanisms are in place that allow testing to be fine-
tuned and continuously improved. Quality control techniques are applied
to the testing process so that it can become more predictable and tunable.
Defect prevention and quality control are practiced. Statistical sampling,
measurements of confidence levels, trustworthiness, and reliability drive
the testing process. There is an established procedure for selecting and
evaluating testing tools. Automated tools totally support the running and
rerunning of test cases. Tools also provide support for test case design,
maintenance of test-related items, and defect collection and analysis. The
collection, and analysis of test-related metrics also has tool support. [11–
13] At TMM level 5 reliability growth models use test and defect data to
follow the improvement of reliability through the testing and debugging
processes. Tools such as defect trackers, load generators, network ana-
lyzers, and performance tools supply and collect the necessary data for
reliability evaluation [24]. Maturity goals associated with TMM level 5
are as follows:

Defect Prevention

Mature organizations are able to learn from their past history. Following
this philosophy, organizations at the highest level of the TMM record
defects, analyze defect patterns, and identify root causes of errors. Actions
plans are developed, actions are taken to prevent their recurrence, and
there is a mechanism for tracking action progress. At TMM level 5, defect
prevention is applied across all projects and across the organization.
There is a defect prevention team that is responsible for defect prevention
activities. They interact with developers to apply defect prevention activ-
ities throughout the life cycle.

Quality Control

At level 4 of the TMM organizations focus on testing for a group of
quality-related attributes such as correctness, security, portability, inter-
operability, performance, and maintainability. At level 5 of the TMM,
organizations use statistical sampling, measurements of confidence levels,
trustworthiness, and reliability goals to drive the testing process. The test-
ing group and the software quality assurance group are quality leaders;



494 | The Testers’ Workbench

they work with software designers and developers to incorporate tech-
niques and tools to reduce defects and improve software quality. Auto-
mated tools support the running and rerunning of test cases and defect
collection and analysis. Usage modeling is used to perform statistical test-
ing. Usability testing supports customer satisfaction. The cost of achieving
quality goals is measured relative to the cost of not testing for quantitative
quality goals.

Test Process Optimization

At the highest level of the TMM the testing process is subject to contin-
uous improvement across projects and across the organization. The test
process is controlled and quantified. It can be fine-tuned so that capability
growth is an on-going process. At TMM level 5, organizations realize
that high-quality optimizable processes are an asset. A library of process
component templates is put into place that allows managers throughout
the organization to instantiate an instance of a process or subprocess for
use within a specific project. An organizational infrastructure exists to
support this continual growth and reuse. This infrastructure, consisting
of policies, standards, training, facilities, tools and organizational struc-
tures has been put in place through the goal achievement processes that
constitute the TMM hierarchy.

1 4 . 2 . 1 0 T o o l s f o r O p t i m i z a t i o n / D e f e c t

P r e v e n t i o n / Q u a l i t y C o n t r o l

By moving up the levels of the TMM and assembling a customized Test-
ers’ Workbench, an organization has put into place a set of automated
tools that support all the phases of the testing life cycle, and provide
continuing support for the maturity goals that are already in place.
Management is aware of the benefits of these tools and test-related
measurements.

At TMM level 5, an organization can select additional tools as shown
in Figure 14.7 that assist in defect prevention activities, ensure high-
quality software products, and provide continuous support for test pro-
cess improvement. At this level of the TMM many very mature testing
subprocesses are in place and can be stored in a Process Asset Library for



495 | The Testers’ Workbench

TMM level 5 tools for
the Testers’ Workbench

Maturity goals for
optimization/defect prevention/

quality control

Process asset library
    support tools

Advanced test scripting
    tools

Assertion checkers

Advanced test data
    generators

Advanced test management
    systems

Usability measurement
    tools

Support for goal
achievement

Defect prevention

Quality control

Test process optimization

FIG. 14.7

Testers’ Workbench tools for TMM

level 5.

tailoring and subsequent reuse [25]. Tools can also be used to support
this activity.

1. Process Asset Library (PAL) Support Tools. Currently there are
no commercial tools designed specifically to support test process com-
ponent reuse. Organizations can use conventional tools for this task such
as database management systems or configuration management systems
to store and retrieve test process components. Another alternative is for
an organization to develop its own tool for this purpose.

2. Advanced Test Scripting Tools. Many capture-replay systems in-
clude a test scripting language. This language enables the tester to fully
automate the execution of tests. At TMM level 5 all of the capabilities of
the language should be used by the testing organization, since the test
team is now highly trained, motivated, and has the required expertise to
use the broad power of the language.

3. Assertion Checkers. Assertions are logical statements about pro-
gram conditions that evaluate to “true” or “false.” They describe correct
program behavior. A specialized language is often associated with these
tools to allow users to input the assertions. Test-related information such
as equivalence classes and pre- and postconditions provide useful infor-
mation for designing the assertions [26]. The code-under-test is run under



496 | The Testers’ Workbench

control of the assertion checker and if an assertion is violated the user is
notified. The information is useful for evaluating the code, and locating
defects.

4. Advanced Test Data Generators. Many requirements management
tools such as those described for TMM level 3 have advanced capabilities.
They can be coupled with a test data generator; the requirements infor-
mation is used to create test cases by statistical, algorithmic, or heuristic
methods. Using statistical (or random) methods the tool generates test
data based on input structures and values to form a statistically random
distribution. With the algorithmic approach, the tool uses a set of rules
or procedures to generate test data. Equivalence class partitioning, bound-
ary value analysis and cause-and-effect graphing can be used to drive the
test data generation algorithms. Heuristic, or failure-based test generation
methods require the tools to have a specialized knowledge base. The
knowledge base contain records of failures frequently discovered in the
past as input by a user. The tool uses this information to generate test
data.

5. Advanced Test Management Systems. At TMM level 4 a test man-
agement tool was described that managed test cases, test execution, and
generated test reports. There are more advanced test management systems
that provide a centralized, sharable location for all test-related items in-
cluding test harnesses and test outputs. These could be very important
support tools for test process optimization, quality control, and defect
prevention. Features of such a system should include [27]:

• links to other application packages such as email, project manage-
ment tools, spreadsheets, and reporting tools;

• ability to define, track, and modify requirements and link them to
tests for traceability capabilities;

• ability to track builds and components of the software being
developed;

• ability to define test harnesses at different levels of detail (unit, inte-
gration test, etc.);

• ability to track test execution with links to test automation tools;



49714.2 Tool Categories |

• full capability for defect tracking, including follow-ups;

• ability to develop, store, and track test plans and other test docu-
ments;

• integrated measurement capabilities to facilitate collecting, storing,
and retrieving metrics related to testing activities.

Research versions of this type of tool have been described in the lit-
erature [27]. Commercial tools with all of these capabilities may not be
currently available; however, as the testing maturity level of organizations
increases, the demand will make advanced tool development more at-
tractive for commercial vendors. An organization could use a combina-
tion of existing tools to implement all of these capabilities. There have
been proposals for open architectures that would allow related tools to
be integrated, but these plug-in architectures have not yet become widely
available.

In addition to the features listed above for the advanced test man-
agement tool another benefit of its use is to provide a central site where
all development team members could assess test-related information. This
capability would greatly accelerate discussion and resolution of quality
issues related both to process and product. An advanced test management
tool of this type could also be developed to run on a corporate network.
It could provide all of the capabilities described above, as well as support
for distributed development and testing on a global basis.

6. Usability Measurement Tools. At TMM level 5 an organization
has the capability to perform usability testing as an activity to support
software quality control (see Chapter 12 for discussion). There is a train-
ing program, a motivated staff, policies, measurements, and an organi-
zational quality culture in place to support this type of testing. Simple
tools to support usability testing are video and audio recorders which
help usability testers to record user sessions and play them back for
analysis. Other automated tools are available that will make usability
factors more visible to developers and testers. Tools of this type can au-
tomatically log user actions, log observers notes, identify operational dif-
ficulties, solicit user intentions, analyze decisionmaking, and generate
reports [10].



498 | The Testers’ Workbench

1 4 . 3 The Testers’ Workbench and the Three Crit ical Views

A large number of test-related tools recommended for inclusion in a Test-
ers’ Workbench has been described in this chapter. The order in which
they have been integrated into the Testers’ Workbench is related to their
support for achieving TMM maturity goals. Many of the tools support
the achievement and continuous implementation of more than one ma-
turity goal. For example, a complexity measurer supports test planning,
controlling and monitoring of testing, test measurement, integration of
testing into the software life cycle and software quality evaluation. A
defect tracker supports test planning, controlling and monitoring of test-
ing, test measurement, defect prevention, test process improvement, and
quality control. The tools are introduced at a TMM level that ensures
there will be cultural, managerial, and policy support, as well as staff
with the proper training, education, and motivation to benefit from tool
support.

An organization need not adapt all of the tools described for the
Testers’ Workbench. It is best for an organization to build its own cus-
tomized Testers’ Workbench selecting from among the tools described
here those that satisfy organizational goals and policies, and those that
will fit the organizational culture and environment. The workbench
should be built incrementally, with the tools introduced at the recom-
mended TMM levels. When selecting tools, if possible, choose those that
complement one another in functionality, for example, a capture-replay
tool and a comparator. Pilot projects using the selected tools should be
used for tool evaluation. Measured success in several pilots supports or-
ganizationwide adaptation of the tools.

Tool adaptation is not a maturity goal at any of the TMM levels.
However, tools can support the achievement of TMM maturity goals as
we have seen in this chapter. The selection, integration, and continued
use of testing tools are responsibilities assigned to members of several
different organizational groups. Tool-related responsibilities will vary at
the different TMM levels. For example, at TMM levels 1 and 2 there is
no testing group, and therefore there is little support for the systematic
evaluation and acquisition of testing tools. In addition, the technology
transfer knowledge is lacking to smoothly integrate the tools into the
organizational process. At these levels developers and project managers



49914.3 The Testers’ Workbench and the Three Crit ical Views |

are most likely to be assigned responsibilities for testing tool acquisition
and usage. As an organization’s TMM level increases, the tasks and re-
sponsibilities relating to testing tools will shift from developers (D) and
project managers (PM) to test managers (TM) and testers (T). Upper man-
agement (UM) should be involved at all levels. The shift in responsibilities
is likely to occur when a test organization is formed at TMM level 3. It
is recommended that at this level tool evaluation criteria, procedures, and
processes be established, since there is now an infrastructure in place to
support this. The suggested ATRs for developing the Testers’ Workbench
and the responsible parties are listed below. The reader should keep in
mind that many of these are recommended for the higher TMM levels
(3–5) where the proper infrastructure is in place.

• Policies for tool evaluation, tool usage, tool integration should be
established (PM, TM, UM).

• Goals for the tools should be established (PM, TM).

• Tasks to be automated and/or supported by the tools should be iden-
tified (PM, TM, D, T).

• Sources of funding, resources, and training to support the tools
should be provided (PM, TM, UM).

• Candidate tools should be identified; current technologies should be
researched to identify tool candidates (primarily TM, T).

• A set of tool evaluation criteria should be developed (TM, T).

• Forms for tool evaluation based on the evaluation criteria should be
developed (TM, T).

• A tool evaluation procedure should be developed (TM).

• Relevant measurements to monitor tool usage should be selected
(TM, T).

• Policies for selecting pilot projects should be developed (PM, TM).

• Managers should develop action plans and procedures for integrating
the selected tools into the testing process (PM, TM, UM).



500 | The Testers’ Workbench

• Technology transfer issues should be discussed and resolved (UM,
PM, TM).

• Developers and testers should attend training sessions to learn how
to use selected tools (D,T).

• Developers and testers should apply the selected tools in each project
to support test-related tasks (D,T).

• Developers and testers should collect measurements related to tool
usage to evaluate their effectiveness (D,T).

Users/clients are not usually involved in selecting and using testing
tools. In the case of requirements-based and usability measurement tools,
they may have a role in using the tools.

A final comment on tool acquisition should be made here. Some or-
ganizations prefer to develop their own in-house versions of testing tools.
This often occurs when they cannot find a commercial tool that is suitable
to their needs. However, given the growing tool market and the avail-
ability of so many tools, some of which may be customizable or have
open architectures, it may be more cost-effective to purchase a commer-
cial tool than develop and maintain an in-house version.

E X E R C I S E S

1. Select a set of testing tool evaluation criteria that would be appropriate for

your organization. Based on these criteria, design a form for testing tool evaluation

and acquisition.

2. Why is a ‘‘line of code counter’’ an important tool for any organization to put

in place?

3. Your organization is assessed to be at TMM level 2. Your project manager is

reluctant to provide resources to purchase testing tools. Give an argument to

convince him or her of the usefulness of test tool support. Which tools would you

recommend for your organization at this stage of test process maturity?



50114.3 The Testers’ Workbench and the Three Crit ical Views |

4. How do requirements recorders and requirements-to-test tracers support early

integration of testing activities into the software life cycle?

5. How do capture/replay tools support testing and retesting of software?

6. What role does a complexity measurer play in test planning and in controlling

and monitoring of test?

7. Give your opinion on the use of a code checker before or after a code review.

8. How do simulators and emulators support effective testing?

9. Develop a conceputal design for a test management tool that would faciltiate

test management, test execution, and test montioring.

10. Are there any other test-related tools you would recommend for the Testers’

Workbench that have not been described in this chapter? Which TMM level would

you recommend for their introduction? Which maturity goals do you think they

would support?

11. What are the benefits of having a PAL (Process Assst Library) support tool?

12. What role do managers play in the development of a Testers’ Workbench?

R E F E R E N C E S

[1] R. Firth, V. Mosley, R. Pethia, L. Roberts, W.
Wood, “A guide to the classification and assessment of
software engineering tools,” Technical Report
CMU/SEI-87-TR-10, ESD-TR-87-11, Software Engi-
neering Institute, Carneagie Mellon, 1987.

[2] R. Poston, M. Sexton, “Evaluating and selecting
testing tools,” IEEE Software, pp. 33–42, May 1992.

[3] R. Poston, “Testing tools combine best of new and
old,” IEEE Software, pp. 122–126, March 1995.

[4] R. Poston, Automating Specification-Based Soft-
ware Testing, IEEE Computer Society Press, Los Ala-
mitos, CA, 1996.

[5] C. Kemerer, “How the learning curve affects CASE
tool adaptation,” IEEE Software, pp. 23–28, May
1993.

[6] V. Moseley, “How to assess tools efficiently and
quantitatively,” IEEE Software, pp. 29–32, May 1993.

[7] E. Kit, Software Testing in the Real World,
Addison-Wesley, Reading, MA, 1995.

[8] G. Daich, G. Price, B. Ragland, M. Dawood, Soft-
ware Test Technologies Report, August 1994, Soft-
ware Technology Support Center (STSC) Hill Air
Force Base, UT, August 1994.

[9] IEEE Recommended Practice for the Evaluation
and Selection of CASE Tools (IEEE Std 1209-1992),
copyright 1993 by IEEE, all rights reserved.

[10] E. Dustin, J. Cashka, J. Paul, Automated Software
Testing, Addison-Wesley, Reading, MA, 1999.

[11] I. Burnstein, A. Homyen, T. Suwanassart, G. Sax-
ena, R. Grom, “A testing maturity model for software
test process assessment and improvement,” Software
Quality Professional (American Society for Quality),
Vol. 1, No. 4 Sept. 1999, pp 8–21.

[12] I. Burnstein, A. Homyen, T. Suwanassart, G. Sax-
ena, R. Grom, “Using the testing maturity model to
assess and improve your software testing process,”
Proc. of International Quality Week Conf. (QW ’99),
San Jose, CA, May 1999.



502 | The Testers’ Workbench

[13] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a testing maturity model for software test pro-
cess evaluation,” IEEE International Test Conference
’96, Washington, DC, Oct. 1996, pp. 581–589.

[14] W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995.

[15] IEEE Standard for Software Test Documentation
(IEEE Std 829-1983), copyright 1983 by IEEE, all
rights reserved.

[16] R. Thayer, ed. Software Engineering Project Man-
agement, second edition, IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[17] B. Subramaniam, “Effective software defect track-
ing, reducing project costs, and enhancing quality,”
CrossTalk: The Journal of Defense Software Engineer-
ing, Vol. 12, No. 4, April 1999, pp. 3–9.

[18] T. Khoshgoftarr, J. Munson, “Predicting software
development errors using software complexity met-
rics,” IEEE J. Selected Areas in Comm., Vol. 8, No. 2,
Feb. 1990, pp. 252–261.

[19] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a testing maturity model: part I,” CrossTalk:
Journal of Defense Software Engineering, Vol. 9,
No. 8, August 1996, pp. 21–24.

[20] I. Burnstein, T. Suwanassart, C. R. Carlson, “De-
veloping a testing maturity model: part II,” CrossTalk:
Journal of Defense Software Engineering, Vol. 9,
No. 9, Sept. 1996, pp. 19–26.

[21] I. Burnstein, F. Saner, “Fuzzy reasoning to support
automated program understanding,” International
Journal of Software Engineering and Knowledge En-
gineering, Vol. 10, No. 1, Feb. 2000, pp. 115–137.

[22] W. Kozaczynski, J. Ning, “Automated program
recognition by concept recognition,” Automated Soft-
ware Engineering, Vol. 1, 1994, pp. 61–78.

[23] A. Quilici, “A memory-based approach to recog-
nizing program plans,” CACM, Vol. 37, No. 5, 1994,
pp. 84–93.

[24] H. Pham, Software Reliability and Testing, IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[25] M. Kellner, R. Phillip, “Practical technology for
process assets,” Proc. 8th International Software Pro-
cess Workshop: State of the Practice in Process Tech-
nology, Warden, Germany, March 1993, pp. 107–112.

[26] B. Korel, I. Burnstein, R. Brevelle, “Postcondition
based stress testing in certification of COTS compo-
nents,” Proceedings of the First International Software
Assurance Certification Conference, Washington, DC,
March 1999.

[27] J. Hearns, S. Garcia, “Automated test team man-
agement—it works!!”, Proc. 10th Software Engineer-
ing Process Group Conference (SEPG’98), Chicago,
IL, March 1998.

[28] J. Rubin, Handbook of Usability Testing, John
Wiley & Sons, New York, 1994.



P R O C E S S C O N T R O L

A N D O P T I M I Z A T I O N

1 5 . 0 TMM Maturity Goals: Support for a Qual ity Test ing Process

As an organization moves up the levels of the Testing Maturity Model
and achieves the TMM testing maturity goals, it makes significant im-
provements in the quality of its testing process. The overall testing process
becomes defined, managed, and measured. It is more stable and predict-
able. As a consequence of test process improvement there is also the po-
tential for positive gains in the quality of the software that the organi-
zation produces. At TMM level 5 the focus on process quality continues,
and mechanisms are put in place so that testing can be controlled, fine-
tuned, and continuously improved. The maturity goals of “Defect pre-
vention,” “Quality control,” and “Process optimization” all give support
to continuous process improvement. In the context of the TMM, process
optimization means a testing process that can support:

• automation of testing tasks;

• measurements and mechanisms for process change;



504 | Process Control and Optimizat ion

• control and fine tuning of process steps;

• technology transfer;

• reuse of process components.

These three TMM maturity goals are mutually supportive. For example,
a defect prevention program supports product/process quality control.
Quality control contributes to process optimization, and process opti-
mization activities will support both defect prevention and quality con-
trol. All of these maturity goals are, in turn, supported by the continued
implementation of practices acquired through achievement of the lower-
level maturity goals.

Previous chapters in this book have covered topics that relate to
TMM level 5 maturity goals. For example, software quality control issues
are discussed in Chapter 12. In Chapter 13, the process of defect preven-
tion was described. We have learned about tools for the automation of
test in Chapter 14. Chapters 9 and 11 gave us an understanding of the
role of measurements, and examples of measurements that can be used
for monitoring and controlling the test process. In this chapter we will
focus on test process quality control, and test process optimization issues.
We will learn how the measurements, monitoring system, training pro-
gram, staff, and tools that we have put into place by moving up the TMM
levels supports the following objectives:

(i) development of a standardized baseline for our testing process;
(ii) identification of upper and lower limits for the operation of our test-

ing process;
(iii) application of techniques to tune our testing process so that it stays

within acceptable limits;
(iv) development of systems to continuously improve our testing process;
(v) development of a set of process assets.

1 5 . 1 Process Engineer ing and Qual ity Control

In Chapter 1, arguments were made to support software development as
an emerging engineering discipline. Software testing was presented as a



50515.1 Process Engineer ing and Qual ity Control |

subdiscipline within the domain of software engineering. The important
role of process as an element of an engineering discipline was also de-
scribed. (It is helpful for the reader to review Section 1.1.) If we consider
ourselves to be test specialists and engineers, then test process engineering
and its component activity of test process control are among our respon-
sibilities. Process engineering, like all engineering activities, involves the
development and maintenance of artifacts using appropriate principles,
practices, and procedures. Process artifacts, like software artifacts, should
be planned, measured, evaluated, and reused. Hollenbach and Kellner are
among the researchers who have done work in this area. [1–3]

To support the engineering of processes a process life cycle is needed.
Phases analogous to those described for the software life cycle are useful
in this context. These phases support the development of high-quality
software processes that are engineered, and are candidates for reuse in
future projects. A process life cycle is described below.

1. Requirements Phase. The goals and requirements for the process are
defined. The domain and conditions under which this process will
operate are outlined. Users/customers for the process are described.
Process developers may examine existing processes that are relevant
to help develop the requirements and design for this new process. The
process requirements are reviewed.

2. Design Phase. The process is designed. Process inputs/outputs are
defined, as well as quality indicators, and entry and exit criteria (these
are necessary for process reuse). Interfaces to other processes are de-
scribed in terms of an overall process architecture. This will support
the integration of this process with others it must interact with. In
the detailed design phase the process steps are described, as well as
methods, procedures, roles, and feedback and control mechanisms.
The design is reviewed.

3. Implementation and Testing Phase. The process is implemented (exe-
cuted) and evaluated. It can be evaluated on its own, analogous to a
unit test, or it can be integrated with other interfacing processes and
evaluated as a part of an entire process context. In both cases, process
execution is monitored, measured, and analyzed for effectiveness and
for adherence to standards. An assessment team, or Software Engi-
neering Process Group (SEPG), should be involved in the testing



506 | Process Control and Optimizat ion

phases. If the process looks promising with respect to fulfilling re-
quirements and goals, it could receive approval by the assessment
team for widespread adaptation and reuse.

4. Operation/Maintenance and/or Evolutionary Phase. The process is
maintained and continually improved. Related documentation is up-
dated to reflect any changes. In mature organizations a process un-
dergoes assessment, change, and evolution to higher maturity states.
It may also undergo tailoring for reuse.

In addition to support from a process life cycle, test process engi-
neering is also supported by putting into place TMM practices, and pro-
gressing through TMM assessment/improvement cycles. A discipline
called process control is also an important support tool for process en-
gineering and is part of the TMM goal framework. Process control en-
compasses a set of procedures, and practices that seek to determine if a
process is behaving as expected. A controlled process is desirable since it
is stable and predictable. Process control and quality control are related
concepts. Chapter 12 describes the nature of quality control as applied to
software products. A general definition for quality control was given and
is repeated below for review.

Quality control consists of the procedures and practices employed to ensure that

a work product or deliverable conforms to standards or requirements.

As practioners in an engineering discipline, we can apply quality con-
trol procedures and practices to our processes as well as to our products.
This is a reasonable and practical approach for us because we are now
aware of the direct impact of process on the quality of our products. We
are also more aware of the role of quality attributes and quality mea-
surements. We now realize that process artifacts can be considered as
work products and organizational assets. When our process is engineered
in a disciplined way, and it is controlled, it becomes stable and predict-
able. We can, under these conditions, use its past performance to predict
future performance. We can also be more confident that it can be de-
pended upon to give us high-quality deliverables on time and within bud-
get. Support for process control as a high-level process goal comes from
other process improvement models, for example, the Capability Maturity



50715.1 Process Engineer ing and Qual ity Control |

Model [4]. A Key Process Area (KPA) that supports process control
is described at CMM level 4, and is called “quantitative process man-
agement.” This KPA addresses many of the same concerns as the
TMM maturity goals, “Quality control” (for process) and “Process
optimization.”

Chapter 12 described several process characteristics that were needed
to support quality control for software products. Many of these apply to
quality control of the test process itself. There are additional character-
istics that should be added to the description for completeness. Figure
15.1 shows a fuller set of programs, practices, and procedures necessary
for quantitative quality control of the testing process. These are also listed
below:

• test process policies, goals, and standards;

• test process documentation;

• a training program;

• dedicated, trained, and motivated staff;

• a measurement program;

• a planning process;

• use of statistical process control techniques and tools;

• use of testing tools such as coverage tools and defect trackers;

• test process monitoring and controlling systems;

• a test process assessment system (TMM-AM);

• a defect repository;

• a defect prevention program with action planning and feedback;

• a software engineering or test process group.

Many groups must work together to achieve the goal of test process
quality control. A Software Engineering Process Group (SEPG) is sug-
gested as the umbrella organization for putting the process control team



508 | Process Control and Optimizat ion

Process
quality

Process
stability

Process
predictability

Continuous
process control

Quantitative
test process

control

Test process
    documentation

TMM—assessments

Test planning

Tools, techniques

Test monitoring system

Testers/TPG

SEPG

SQA

Training

Defect prevention

Measurement

Documentation and practices

Participating groupsPrograms

FIG. 15.1

Quantitative test process control—

supporting items.

together. Team participants may be selected from diverse functional units,
for example, development, test, and SQA. Both management and staff
should participate. Each team member will have different responsibilities.
For example, some group members will set and document quantitative
performance goals and limits for the test process. Others will measure its
actual performance when applied to software projects. Group members
will also analyze the measurement results and make adjustments (control
the process) to ensure that the process performs within the acceptable
limits. The role and organization of an SEPG is discussed in more detail
in Section 15.5.

The SEPG alone cannot achieve control of any process without co-
operation from management and staff persons working on the diverse
projects sponsored by the organization. This implies a cultural awareness
and support for process control goals, practices, and measurements
within an organization. Management must ensure that team work and
common goals are emphasized, and that the benefits of process control
and optimization are visible throughout the organization.



50915.2 Fundamentals of Quantitat ive Process Control |

1 5 . 2 Fundamentals of Quantitat ive Process Control

Quantitative process control is supported by statistical process control
techniques and methodologies. Statistical process control (SPC) is a dis-
cipline based on measurements and statistics [5–8]. Decisions are made
and plans developed based on the actual collection and evaluation of
measurement data rather than on intuition and past experience [5]. The
basis for SPC is a view of the development (or testing) process as a series
of steps, each of which is a process in itself with a set of inputs and
outputs. This view is shown in Figure 15.2. Ideally the output of each
step is determined by rules/procedures/standards that prescribe how it is
to be executed. Practically speaking the outcome of a step may be different
then expected. The differences are caused by variations. Variations may
be due to, for example, human error, influences outside of the process,
and/or unpredictable events such as hardware/software malfunctions. If
there are many unforeseen variations impacting on the process steps, then
the process will be unstable, unpredictable, and out of control. When a
process is unpredictable then we cannot rely upon it to give us quality
results.

Implementing statistical process control depends on having trained
and motivated staff who take pride in their work. The staff members must
be flexible and willing and able to make process changes to improve the
quality of their work. SPC also depends on the realization that every
process has variations, and that if the same task is done repeatedly by the
same person, the results/outputs may not always be the same, even if the
same rules and procedures apply. It is important to realize that the mag-
nitude of the variation is an issue. In a defined, managed, and measured
process, variations will be smaller and have smaller impacts on the final
process deliverables. Another issue to consider is the type of variation.
There are two types of variations that are described within the context of
SPC. These are (i) common cause, and (ii) assignable (or special) cause
variations. The total number of variations in a process can be expressed
as the sum of these types of variations:

Total variations � common cause variations
� assignable cause variations

Common cause variations are those caused by so-called “normal”
variations that occur where there are normal interactions between people,



510 | Process Control and Optimizat ion

Step 1
Rules/procedures/standards

Step 1
Microprocess
inputs/outputs

Step 2
Rules/procedures/standards

Step 2
Microprocess
inputs/outputs

Step i
Rules/procedures/standards

Step i
Microprocess
inputs/outputs

Macro process

FIG. 15.2

Process view for support of quality

control.

machines (hardware), methods, techniques, and environments. These are
the cause of noise in the process. Assignable variations come from events
that are not part of the normal process. These show up as highs and lows
in process data. For example, in week 2 the number of test cases executed
in a system test for a product may be low and the next week (week 3) the
value may be high. Such a variation could be due to a failure in system
test support tools that occurred in week 2. The assignable variations are
said to be the signals in process data.

One of the tasks of an SEPG is to determine if a process variation is
caused by special circumstances (an assignable cause) which may be
linked to a specific time or location, or by the variations inherent in the
nature of the process itself (common cause). Identifying the causes of
variation is a key task for the SEPG engaged in SPC activities. The action
necessary to control the process and the choice of staff responsible for the
action are related to the type and nature of the cause. An analogous sit-
uation occurs in the area of defect prevention, where developing preven-
tative actions is dependent on the origins or causes of the defects.



51115.2 Fundamentals of Quantitat ive Process Control |

A technique that is useful for monitoring processes and determining
causes is based on the development of what is called a control chart.
Affourtit describes the control chart as a decision support tool that helps
to develop actions; these actions will lead to control of the process [5].
Control charts are useful for identifying special or assignable causes when
they appear. They also provide information about process performance
over time, and give an indication of process stability and predictability.
Finally, control charts give us quantitative insights into the behavior of
our processes. An example of a generic control chart is shown in Figure
15.3.

A control chart is basically a plot of process-related items. On the
chart there is a depiction of an upper, lower, and average control limit
for a process. The limits are determined by the SEPG by using data col-
lected over many projects. Very often the mean and standard deviations
are calculated for the process data items, and charts such as R charts (a
graph of the range, or difference between the largest and smallest mea-
surement in each sample set over time) and Xbar charts (a graph of the
average of each sample set taken over time) are plotted to help determine
these limits [4–6].

Some data items that can be plotted on a control chart are the number
of users completing a task versus task number (usability test process),
cycle time, versus test task sequence number (test planning process),
source lines of code inspected per hour, versus inspection sequence num-

x
x

x

x

x

x

x

x

x

x
x

x

Upper control limit

Process average

Lower control limit

FIG. 15.3

Generic control chart.



512 | Process Control and Optimizat ion

ber (inspection process), and problem rate, versus week (test process)
[5,7,8]. Note that many different processes can be evaluated using a va-
riety of data items.

The upper control limits (UCL) and lower control limits (LCL) as
depicted on a control chart help the SEPG to separate the signals from
the noise. The limits can be calculated from process data as described in
research work done by Florac [7], Weller [8], and Putman [9]. The vari-
ation of data points inside the control limits is due to noise in the process
(common cause, or normal variations). The points outside the control
limits probably represent assignable causes, that is, these variations are
caused by events outside of the process’s normal operations. If a process
is judged to be out of control from the process data, the SEPG needs to
take a careful look at the points outside of the limits and try find assign-
able causes for them (e.g., the point outside the UCL in Figure 15.3). The
group must then identify ways to eliminate these causes in future execu-
tions of the process. It should also be noted that a process may be judged
to be stable (under control) in the sense that its average and upper/lower
control limits are predictable. However, if a process stabilizes at an un-
acceptable level of performance, then further changes to the process will
be needed to make improvements. A control chart would then help to
show the impact of the changes on process performance. Incremental
changes supported by the TMM maturity goals can guide the improve-
ment efforts.

1 5 . 3 Activ it ies for Quantitat ive Test Process Control

Quantitative management of the testing process can be accomplished by
adapting the tools, methods, and procedures used for general process con-
trol in the software engineering domain. It is useful to initially select test
subprocesses as targets for control since their scope is smaller and there-
fore easier to manage. Some example test subprocesses that are suggested
are inspections, system test, and unit test.

As a precondition to quantitative control, the target testing process,
or subprocess must be documented and its steps well defined. Measure-
ments must be standardized, and expected ranges for the measurements
must also be documented. The measurements are the basic elements of



51315.3 Activ it ies for Quantitat ive Test Process Control |

quality control. They need to be collected and analyzed. Adjustments are
then made to the process based on the analyses so that it becomes stable
and more predictable.

An organization involved in implementing test process quality control
should have a defined and documented test process. At TMM level 5
where quality control is a maturity goal, these requirements are met easily.
The organization should also define activities/tasks and responsibilities to
operate the control system. A procedure for process control should be
developed and documented. Key procedure steps and activities are sum-
marized in Figure 15.4 and are briefly described below. Note the feedback
loop in Figure 15.4 for the last several steps. The steps described here are
very general in the sense that they can be applied to most development
processes. Testers can apply them specifically to the testing process and
test subprocesses.

1 . O rgan i ze a Process Con t ro l Team to Ove rsee the Sys tem.

A team is organized to oversee the process control system. The team
should include developers, testers, and SQA staff. If an organization has
a Software Process Engineering Group (SEPG), then that group and/or
some of its members can serve on the process control team.

2 . Deve lop Po l i c i es , Goa l s , and P lans .

Overall policies, goals, and plans for process control are developed by the
team. Each project may have its own process control plan and process
performance goals. The plans should be reviewed by the process control
team.

3 . A l l oca te Funds and Resources .

Resources and funding are allocated to the process control team. Support
tools such as statistical analysis packages, problem trackers, and data-
bases should be available to the team.

4 . T ra in ing .

The process team and key project staff members are trained in process
control tools and techniques. (The training program as described in Chap-
ter 8 supports this step.)



514 | Process Control and Optimizat ion

Identify
measurements

Collect
measurement data

Analyze data

Determine
causes and adjust

Make
reports

Develop
baseline

Continuously
adjust and improve

Organize team

Develop policies and plans

Allocate resources

Train team

Feedback loop

FIG. 15.4

General steps for process control.

5 . I den t i f y Measuremen ts .

Based on goals and plans, the team identifies the measurements to be
collected for process control. These measurements should reflect key
properties of the process. For test, several of the measurements described
in Chapters 9 and 11 are useful in this context. The team also decides on
strategies and procedures for data collection and analysis.

6 . Co l l ec t and Va l i da te Da ta .

The process control team reviews process control activities with each proj-
ect (test) manager. The team collects and validates process data from
projects across the organization according to the selected procedures and



51515.3 Activ it ies for Quantitat ive Test Process Control |

plans. The data is stored in a measurement database. (The measurement
program as described in Chapter 11 supports this step as well as step 5.)

7 . Ana l y ze Da ta .

Analysis of the data is carried out using appropriately selected tools as in
the control plan. Control charts as described previously are very useful,
and can be developed from the appropriate data for each project to an-
alyze target processes. A baseline, and acceptable levels for process per-
formance in terms of the measurements collected, should result for each
project (upper and lower control limits). Other useful information for
process control can be derived from plots, Pareto, and scatter diagrams
that are prepared from the project data.

8 . De te rm ine Causes , and Make Ad jus tmen ts .

The control charts are used to determine common cause variations and
assignable cause variations. Process adjustments reflecting these causes
are made to align the process’s performance to within acceptable limits.

9 . Compose and D i s t r i bu te Repor t s .

Reports of process control activities from all projects are developed and
disturbed to upper management and other interested parties, for example,
the SQA group.

10 . Deve lop and Document a S tandard i zed Base l i ne
Process fo r the Organ i za t i on .

Process performance data is stored for each project in a process database.
From the accumulation of process control data from the organizational
projects, a baseline for the overall organizational process is developed,
documented, and established as the standard.

11 . Con t i nuous l y Ad jus t Base l i ne and S tandards .

This serves as a process maintenance step. Any changes that result from
the monitoring of new projects (those that are substantially different
from projects developed in the past) and/or applying process adjustments



516 | Process Control and Optimizat ion

should be reflected as changes in the organizational process baseline and
in standards adjustments. For example, results of TMM assessments and
subsequent process changes require adjustments. A feedback loop to step
5 can help to organize the updates and adjustments.

It should be noted that the achievement of process control most often
leads to process changes so that a process becomes both effective and
quantitatively controlled. There are other activities that also lead to pro-
cess change, for example, those involving defect prevention and process
assessment. Several teams may be involved in these process improvement
activities, and they will need to cooperate and coordinate their activities.
They should:

• coordinate their actions;

• share data;

• share resources and personnel;

• support cultural changes;

• support technology transfer.

In earlier sections of this chapter it was suggested that an SEPG serve as
the umbrella organization to coordinate process improvement goals and
activities. Section 15.5 discusses the role of such a team in more detail.

1 5 . 4 Examples of the Appl icat ion of Stat ist ical Process Control

Readers interested in current applications of statistical process control
(SPC) in the software domain can refer to several papers in this area.
Florac and his group have reported on their work in SPC as applied to
the Space Shuttle Onboard Software Project [7]. The purpose of their
study was to determine if using SPC on certain key development processes
could further increase the reliability of the space shuttle’s software. A key
process selected for the study was the software inspection process. It was



51715.4 Examples of the Appl icat ion of Stat ist ical Process Control |

selected because it was a commonly used process that was well docu-
mented, cost effective, and small in scope. The latter factor is important
in starting up an SPC program since initiating SPC systems for large and
complex processes often causes frustration with application of the tech-
niques involved. Another supporting factor for the selection of the in-
spection process was the fact that the researchers also had a database of
inspection process attribute values readily available to them.

The group used inspection data to develop control charts for inspec-
tions performed on six key software components [7]. Most often, control
charts plotted source lines of code per inspection hour versus inspection
sequence number. Upper and lower control limits were determined. The
charts were successfully used to (i) understand the inspection process and
causes of variations, (ii) set baselines for process performance, and
(iii) identity issues requiring actions for process improvement.

Weller also reports on the application of SPC techniques in the soft-
ware domain [8]. In his study at Bull HN Information Systems, SPC was
applied to analyze inspection and test data. Results of the study helped
to understand and predict release quality, and to understand the process
that controls quality. Control charts developed from inspection data were
used to identify causes for variations in the inspection process, and to
determine when the inspection process was under control.

Weller also applied SPC to testing phases. For example, during system
testing SPC was used to help make stop-test decisions. Control charts
similar to the generic example shown in Figure 15.3 were developed plot-
ting problem arrival rates (which indicate defects) versus weeks of testing.
Upper and lower control limits were calculated and indicated on the
charts. SPC techniques supported by control charts were then used by
Weller and his group to determine when the system test process was under
control. Using the charts the researchers were also able to establish a
predicted “weekly problem arrival rate.” An “end of test” point could be
estimated if certain conditions were observed. For example, if the control
chart showed a downward trend of problem arrival over a specific period
of time with points dropping below the LCL this observation was per-
ceived to be an indication of a stop test point. One condition for making
the stop-test decision using this information was that the downward trend
indicate an assignable cause for the variation, and the cause be product-
related. Weller concluded that there were additional costs related to using



518 | Process Control and Optimizat ion

SPC, but these were not high and were offset by the benefits of process
understanding, support for decision making, and the ability to establish
quality goals.

An article by Affourtit is an additional source for discussion of SPC
as applied to the software domain [5]. A good general discussion of SPC
is provided in this article, as well as suggestions for application of SPC to
the design, coding, testing, and maintenance phases of development. For
the testing process use of SPC is suggested to support stop-test decisions;
however, not many experimental details are given. Affourtit also suggests
use of control charts that plot “faults encountered per module” to help
identify defect-prone modules.

1 5 . 5 Test Process Optimizat ion:

The Role of a Process Improvement Group

The characteristics of an optimizing testing process are briefly described
in Section 15.0. In this section the set of characteristics is augmented, and
an optimizing testing process is said to be one that is:

• defined;

• measured;

• managed;

• well staffed;

• quantitatively controlled;

• predictable;

• effective;

• supported by automation;

• able to support technology transfer;

• able to support process component reuse;

• focused on defect prevention;

• focused on process change, continuous improvement.



51915.5 Test Process Optimizat ion: The Role of a Process Improvement Group |

The optimized testing process is monitored, supports software quality
control, and increased tester productivity. It is periodically assessed to
give feedback to management on its status, and to ensure that it is con-
trolled, predictable, and effective. It is also assessed to determine its
strengths and weaknesses (see Chapter 16 for further details on TMM
assessments). Weaknesses are focus areas for process improvement goals
that lead to increased process quality. Strengths suggest areas for process
asset extraction. The optimized testing process makes effective use of
available resources, and is able to incorporate new techniques and tech-
nologies that will result in further improvement gains. It supports a pro-
cess asset library that contains reusable test process components (assets)
applicable throughout the organization.

Application of the TMM supports an organization in achieving an
optimizing level for its test process by raising process performance goals
in a structured and incremental manner. The incremental increase in ca-
pability is supported by a framework of maturity levels, associated ma-
turity goals, and TMM assessments. The latter reveal weak areas in a
testing process that may prevent an organization from reaching high levels
of process performance. Moving up the levels of the TMM builds an
infrastructure of practices, policies, tools, techniques, trained staff, and
organizational groups/structures/teams that can support optimization and
continuous improvement.

To support the growth of a strong test process infrastructure, and to
plan and implement process improvement efforts, a process improvement
group should be founded and be staffed by members who have the mo-
tivation and training required for success in these areas. In many orga-
nizations this group is called the Software Engineering Process Group
(SEPG). This group can support overall process assessment and improve-
ment using models such as the CMM, as well as test process assessment
and improvement with the TMM. A separate Test Process Group (TPG)
that cooperates with the general SEPG or functions as a stand-alone group
is also a possible staffing approach. In subsequent discussions this text
will use the term SEPG in a general sense to cover any of these possible
arrangements. No matter how it is organized, a process improvement
group should focus on process-related activities such as process definition,
analysis and assessment, action planning, and evaluation. The group
should also be involved in identifying reusable process components, and



520 | Process Control and Optimizat ion

making these available throughout the organization. Note that such a
group was described in Section 15.1 as the umbrella organization for
other process-related activities that include process control, defect pre-
vention, and technology transfer.

It is best if a SEPG is a permanent entity in the organization, not one
that is temporality assembled when an assessment is scheduled to take
place. A charter or policy statement relating to the group should be de-
veloped and distributed. This statement should describe group goals,
membership, roles, associations, and responsibilities. Membership in the
SEPG should include personnel from projects in place throughout the
organization such as test managers, project managers, SQA managers,
and lead engineers. It is important to include personnel who are practi-
tioners, that is, staff involved in a “hand-on” manner with the develop-
ment and testing of software. They supply valuable input with respect to
the nature of the current process, and are able to provide the cultural
support and motivation needed for successful process change [10].

With respect to test process improvement, support for a process-
centered group begins formally at TMM level 3 where a test organization
is established, and a training program is in place to increase the level of
skills and knowledge required for the success of this team. It is therefore
appropriate to initiate a Test, or Software Engineering Process Group
(TPG/SEPG) at this TMM level. In addition, at TMM level 3 and higher,
an organization fully understands the value of process change and im-
provement and is more willing to provide the group with adequate re-
sources and funding. Such an organization is also more willing to assign
development and test team members process responsibilities, and these
team members can serve as interfaces or members of a TPG/SEPG. At
TMM levels 4 and 5, the responsibilities of the TPG/SEPG can grow as
more higher level practices are introduced. For example, an organization
at TMM level 5 recognizes that high-quality processes are corporate assets
and would be more willing to provide support for a process asset library.
The TPG/SEPG would then have the responsibility for identifying re-
usable process assets and developing and maintaining the process asset
library (PAL). The relationships between TMM levels and the responsi-
bilities for an SEPG/TPG working on test process improvement are shown
in Figure 15.5.

There are reports in the literature that focus on experiences with an



52115.5 Test Process Optimizat ion: The Role of a Process Improvement Group |

Optimization
(process assets, process change
    management, technology transfer)

Defect prevention
Quality control (process control)
    TMM level 5

Assessments/action planning
All TMM levels (SEPG or TPG may not be
    permanent entity below TMM level 3)

Measurement
TMM level 4

Training
TMM level 3 Example

Responsibilities
of the SEGP or TPG

for test process
improvement

FIG. 15.5

Responsibilities for a SEPG/TPG for

test process improvement.

SEPG. For example, Wigle and Yamamura describe the tasks performed
and the challenges that must be met by an SEPG as a result of their ex-
periences at Boeing [10]. Challenges include people issues such as chang-
ing the organizational culture, and obtaining sponsorship from the dif-
ferent management levels. Process challenges include formation of the
SEPG itself, developing process assets and understanding process im-
provement model practices. Asset challenges include making process as-
sets available to users, and compliance of process assets to company or
industry standards. Readers should be aware of these challenges when
instituting a SEPG or TPG. Wigle and Yamamura also describe the re-
sponsibilities of the SEPG group in their organization. These responsi-
bilities include:

Process Definition: The SEPG documents the organizational software pro-
cess. This documentation can be in the form of software standards doc-



522 | Process Control and Optimizat ion

uments, project guidelines, or software process procedures. The group
reviews the documents. They propose and review changes (improve-
ments), and they ensure that undocumented procedures are recorded. Pro-
cess documents produced at lower maturity levels are revised and updated
by this team to reflect higher level practices.

Process Change Management: The SEPG encourages improvement pro-
posals from process owners/users and reviews them. The group also man-
ages the change process using appropriate forms and reports (these are
analogous to software changes/problem reports). A history of changes is
maintained.

Technology Insertion: The SEPG reviews and selects proposed technologi-
cal changes that may originate from multiple sources. Changes may result
from the introduction of new tools, methods, training procedures, and
techniques. After a change is selected, the SEPG oversees technology
transfer issues. For example, pilot projects are initiated, monitored, and
results evaluated. The SEPG group prepares plans for technology inser-
tion if pilot projects indicate applicability and success.

Process Evaluation: The SEPG team is involved in process control. The
team reviews and analyzes performance measurements that support pro-
cess control. The group oversees the establishment of a process baseline
and also through quantitative analysis and process assessment, identifies
areas for improvement.

Training: Wigle and Yamamura report that in their organization the SEPG
supports staff training. The group is responsible for training planning,
maintaining training records, and preparing training materials.

Process Asset Support: The SEPG establishes and maintains a set of
(i) process assets including a process asset library (PAL), (ii) process mea-
surements, and (iii) lessons learned.

Process Assessment: When an assessment is to be carried out the SEPG
has the responsibility for assessment preparation. The assessments can be
internal self-assessments or performed by an outside group of assessors.
In either of these cases the SEPG supports the necessary preparation ac-
tivities such as data gathering, interviewing, review of documents, and



52315.6 Technology Transfer |

presentations. When the assessment is complete, the SEPG team is in-
volved in action planning and action implementation and evaluation.

Wigle and Yamamura also indicate that in large organizations a hi-
erarchy of SEPG teams may be necessary because of the large number of
projects and staff, and the increased level of process complexity. In the
context of the TMM and test process improvement efforts, several dif-
ferent organizations for a process improvement group have been sug-
gested. They are summarized below.

• an independent Test Process Group (TPG) that specifically addresses
test process issues using TMM guidelines;

• a combination SEPG/TPG; the SEPG component covers general pro-
cess issues related to CMM goals, and the TPG focuses on testing
issues guided by the TMM;

• a single umbrella SEPG that covers all process improvement activities
guided by one or more process improvement models;

• a hierarchical umbrella SEPG for general process improvement; the
TPG can be one part of the hierarchical structure; the umbrella could
also cover the work done by process control and defect prevention
teams.

Each organization should decide on an appropriate process improvement
team structure depending on size, process goals, culture, and resources
available.

1 5 . 6 Technology Transfer

At TMM level 5 an organization has in place a high-quality and effective
testing process. A characteristic of such a high-level process is the ability
to identify, evaluate, and integrate new technologies into the organiza-
tional processes in a smooth and effective way. This ability supports test
process optimization. The CMM indicates the importance of such a group
of abilities by specifying it in a Key Process Area called “technology



524 | Process Control and Optimizat ion

change management” at CMM level 5. In the context of the TMM this
group of abilities is called technology transfer and is a component of the
“test process optimization” maturity goal.

Technology transfer involves several steps or phases. Responsibility
for the implementation of the steps is appropriately assigned to SEPG or
TPG members. The group selected must ensure that there is a policy for
technology change management, there is support for these changes by
upper management, there is a measurement program that will support
evaluation of technological changes, and there is a training program to
introduce new technologies into the organization. These requirements
suggest that a mature testing process is necessary, thus, the reason for
including technology transfer as a component of a TMM level 5 maturity
goal.

The phases required for successful technology transfer are shown in
Figure 15.6, described by Daich [11], and discussed below.

1. Awareness. Members of the SEPG/TPG should request suggestions
for new test technology from practitioners, managers and other in-
formed staff members. SEPG/TPG team members should attend test-
related conferences, search the literature, the internet, organizational
publications, and trade publication for new technologies. The groups
need to learn how these technologies have been applied and which
have had successful application in industry. They should be aware of
areas in the process where new technologies could support improve-
ment, and should keep project and test managers informed with re-
spect to these new technologies and how they could support improve-
ment goals.

2. Understanding. After a new technology is identified and there is and
interest in adoption, the SEPG/TPG should evaluate and thoroughly
understand the new technology. They should obtain available data
and documentation relating to the new technology, and solicit reports
on usage, weaknesses, and strengths. Criteria such as those described
in Chapter 14 for test tool evaluation can be used in this context.
Report forms for evaluation of tools and technologies based on a
documented set of evaluation criteria, should be developed and be
available for application and distribution.



52515.6 Technology Transfer |

Awareness

Understanding

Trial use

Adoption

Widespread
adoption over
organization

Policies

Resources

SEPG

Training program

Measurement
    program

Technology transfer support

FIG. 15.6

Steps in the technology transfer

process.

3. Trial Use (Pilots) When the SEPG/TPG team identifies a promising
new technology, plans for applying that technology to a select num-
ber of pilot projects should be made. As in other process improvement
trials, appropriate pilots should be selected with trained and moti-
vated staff. The SEPG should support pilot project staff, and ensure
that all necessary resources are provided. Data based on the incor-
poration of the new technology is collected as the project progresses,
and upon completion, the feasibility, economics, and effectiveness
of the new technology is evaluated. Benefits of more widespread use
are discussed. The SEPG/TPG then decides whether to abandon this
technology, continue with pilot studies, or work toward broader
adoption.

4. Adoption. When results from pilot projects indicate that a new tech-
nology is promising and suitable for adoption on a larger scale then
the new technology should be applied in a wider variety of projects
across the organization. That is, the scope of application should be
broader then in the case of the pilot projects. As in the case of trial
use in pilots, support by the SEPG/TPG group for managers and prac-
titioners is important in this phase. Application on this larger scale
gives management and the SEPG/TPG additional opportunities to



526 | Process Control and Optimizat ion

evaluate the technology. Projects should be selected, personnel
trained, and results evaluated through documented procedures.

5. Organizational Adaptation. When results from broader-scale appli-
cation indicate that the new technology has a positive impact on the
test process, then it can integrated and applied across the organization
according to a documented procedure. The documents describing the
organizational test process and policy should be updated to reflect
the new technology. Training in the new technology should be wide-
spread over the organization to ensure all effected personnel under-
stand how to use and apply it.

As the reader will note, technology transfer requires a good deal of
effort and coordination by diverse groups in the organization. A time
frame of many months from initial identification of a new technology to
its organizational adoption is not unusual. Technology transfer is a nec-
essary aspect of test process optimization efforts and should be strongly
supported by upper management and key organizational players.

1 5 . 7 Process Reuse

Organizations are now beginning to realize that processes are corporate
assets and those of high quality should be documented and stored in a
process repository in a templatelike form that is modifiable for reuse in
future projects. Such a process repository is often called a process asset
library (PAL). Process reuse must be supported by a process life cycle, a
process reuse policy, and a process repository or library [1–3]. Manage-
ment must give support for reuse, and training to develop reusable pro-
cesses must be available. A process measurement program, and a group
such as SEPG must be in place. An organization undergoing regular pro-
cess assessments has additional support for process reuse since this prac-
tice provides a mechanism for identifying and evaluating potentially re-
usable processes. Procedures, policies, and practices that support general
process reuse apply to test process reuse as well. Organizations on TMM
level 5 have the capabilities to implement test process reuse with support
from management, the test group, and an SEPG.



52715.7 Process Reuse |

Process reuse in the context of the current discussion means the use
of one process description to create another process description. It does
not mean multiple executions of the same process on a given project [1].
For process reuse to succeed, an organization should view process com-
ponents as reusable objects in the same context as reusable design and
code objects. Ideally, a reusable process should be stored in the process
repository in a format that allows application to appropriate organiza-
tional projects. There are many potential benefits of process reuse, for
example, Refs. 1–3:

• transfer of process knowledge between projects;

• transfer of expertise between projects;

• reduction of training costs;

• support for process improvement over the organization;

• improved project planning;

• increased product quality;

• increased process quality;

• increased productivity;

• reduced cycle time.

One way to identify reusable test processes is through TMM assess-
ment and improvement efforts. From an assessment, an overall process
profile is developed that indicates the strengths and weakness of a testing
process. Areas of strength are indicators of test subprocesses that are can-
didates for reuse, especially at the highest levels of the TMM. These may
represent so-called “core-processes” which are vital for operation and
considered to be organizational assets. After identifying the areas of
strength, further work will need to be done to make the candidate pro-
cesses suitable for inclusion in a process reuse library. For example a
suitable process definition and associated process measurements must be
available, and a template for the process developed (see next section on
reusable process templates). Reuse candidates can also be a product of



528 | Process Control and Optimizat ion

process improvement and optimization efforts where new processes are
designed to strengthen a weak area of an existing process. Figure 15.7
shows the process characteristics needed to select candidate process com-
ponents for reuse. They are also described below. Note that these char-
acteristics are similar to those required for successful reuse of software
components.

1. The process should be defined and documented according to orga-
nizational standards. That includes having a requirements and design
description for the process. Entrance and exit conditions for the pro-
cess should be documented. An input and output specification should
also be available. Applicable domains and the implementation envi-
ronment should also be identified.

2. The process should be easy to understand and implement. Its imple-
mentation steps and associated procedures should be clear and un-
ambiguous.

3. The process should have associated measurements available, for ex-
ample, costs of implementation, time requirements for process steps,
and levels of expertise needed. These can serve as quality indicators
for outputs of the process and for the process itself.

Process asset
library

Easy to
understand

Defined and
documented

Requirements,
design description

Certified
by SEPG

Has associated
measurements

Is flexible and
modifiable

Adequately
tested

Well-defined
interface

Process risks
identified

Assessed and
effective

Reusable process
component

Process template

FIG. 15.7

Characteristics of a reusable process.



52915.7 Process Reuse |

4. The process should have been carefully reviewed and successfully ap-
plied to several projects to ensure that it has been adequately tested
in the field. The projects should represent a variety of organizational
projects to demonstrate the various application domains for the
process.

5. Process-related risks should be evaluated and documented.
6. The process should have a well-defined interface to other related

processes.
7. The process should be flexible and modifiable so that it can be applied

to different projects.
8. The process should be certified by the SEPG and/or an assessment

team as a candidate for reuse.

1 5 . 7 . 1 T e m p l a t e s f o r R e u s a b l e P r o c e s s e s

Process reuse has been reported in the literature by researchers such as
Hollenbach and Frakes [1], Kellner and Phillip [2], and Kellner and Bri-
and [3]. To support process reuse, each candidate process object meeting
the reuse criteria should represented by a process template. The template
should contain information that allows the process components to be
tailored for specific projects. Hollenbach and Frakes describe such a tem-
plate in their work [1]. Homyen expands on this work and gives an in-
stantiation of a template for an action planning process [12]. A useful
process template specification should allow both common and variant

Process Reuse Template

Process name

General process information

Customer description

Interface description

Procedural description

Context description

Measurement description

FIG. 15.8

Example template for reusable process [1].



530 | Process Control and Optimizat ion

elements of a process to be described so that the process can be applied
in a variety of situations. The template can be partitioned into major and
minor components. Some example template components are shown in
Figure 15.8. A brief description from Hollenbach for each component is
given below [1].

General Information

• Unique process identifier and a version number.

• A description of the purpose of the process.

• Standards applicable to the process and the products it produces.

• Related processes—processes that interface with this process.

Customer Descr ipt ion

A description of the potential customers, both internal and external, that
may receive products and services from the outputs of this process.

Interface Descr ipt ion

Entrance Criteria: conditions that must be satisfied before the process steps
can be initiated. A discussion of process inputs and outputs.

Exit Criteria: conditions that must be satisfied to consider the process
complete.

Procedural Descr ipt ion

A description of the groups that participate in the process, and their re-
sponsibilities for carrying out the process steps.

A description of the tasks that need to be accomplished during the process
execution.

Tools and resources: describe any tools needed to enact the process.

Context Descr ipt ion

Domain: In this section the application domains to which this process is
applicable are described. All necessary domain knowledge needed for the



53115.7 Process Reuse |

execution of the process is also described. A description of how the pro-
cess has been used for past projects is included. Appropriate metrics and
process results should also be included.

Organization: The description should include the organization size appro-
priate for this process and the size limits. This template component should
also contain a description of the specific organizational groups or func-
tions that need to be in place to carry out the process steps.

Project: An appropriate project length for this process should be described
as well as an appropriate level of software size and complexity.

Communications: This template component should describe how the group
will communicate, and whether a local or distributed group can carry out
the process.

Management: A description of the costs and benefits of this process and
the risks associated with its execution is also included.

Measurement Descr ipt ion

Tracking, evaluation, and quality indicators: This process template compo-
nent should contain the measures that can be used to track the process
and evaluate its outcome. Performance evaluation should be tied to cus-
tomer products and services that result. These are quality indicators. Mea-
surements that will be collected during process execution at critical points
also need to be described. These will be used to evaluate the process itself.

1 5 . 7 . 2 P r o c e d u r e s f o r P r o c e s s R e u s e

Hollenbach and Frakes describe what they call a context for defining and
tailoring reusable processes [1]. Their goal was to use the context to create
reusable processes that project (and test) managers can cost-effectively
tailor to their project requirements. There are three major phases in this
context: a defining phase, a tailoring phase, and an implementation phase.
Within each of these phases there are several sub phases. These are shown
in Figure 15.9 and described in the paragraphs below.



532 | Process Control and Optimizat ion

Define the reusable process

Develop training for the reusable process

Tailor the reusable process

Train for the applicable project

Enact the reusable process on the project

Refine the reusable process

Define

Tailor

Implement

FIG. 15.9

Tailoring a reusable process [1].

Def ine the Reusable Process

In this step a process description is developed along with guidelines on
how to tailor the process, and a description of output work products. The
process definition can be in the form of a process manual, handbook, or
a set of process procedures. The candidate process must be tested to en-
sure it is fit for (re)use.

Develop Training for the Reusable Process

A training package for the process should be developed. At TMM levels
3 and higher there is a training program and staff in place to develop
such a package.

Tai lor the Reusable Process to the Project

Tailoring consists of retrieving a suitable process (as a template from a
PAL) and applying it in a new context, that is, a new project. The project
(or test) manager instantiates the process for this project. Changes may
be needed to meet the requirements and environment of the new project.
Tailoring should begin with a plan for tailoring efforts, followed by the
selection of a reusable process by the process team. A project-specific
process description results in a document suitable for use by project (or
test) managers and software engineers.



53315.8 Activ it ies, Tasks, and Responsibi l i t ies for Test Process Control and Optimizat ion |

Tai lor ing the Reusable Process Training to the
Tai lored Project Process

The generic training package is tailored to meet project-specific needs.
The training package is used to instruct project staff.

Enact the Process on the Project

The tailored process is implemented (executed) for the project. It is moni-
tored and controlled using appropriate mechanisms. An SQA or SEPG
team follows the project to ensure the process is properly executed. Mea-
surements are taken during process execution.

Ref ine the Process

Using the measurements taken during process execution, the process is
evaluated. The SEPG group determines whether the process is stable (they
can use SPC techniques), and effective. If there are failures, the process is
analyzed to determine why and where it is weak. Appropriate changes
are made to the process definition, staff is retrained, and the process re-
executed.

In summary, the practice of process reuse is relatively new, but re-
search in this area is accelerating. Resulting applications of the research
ideas look promising. Organizations on level 5 of the TMM have the
required infrastructure to successfully implement this practice. The po-
tential benefits of process reuse are great, and include higher-quality pro-
cesses and products, cost reductions, and a shorter time to market.

1 5 . 8 Activ it ies, Tasks, and Responsibi l i t ies for Test Process

Control and Optimizat ion

Test process control and test process optimization require much support
and effort on the part of two of the critical groups, managers, and testers.
Users/clients do not play any significant role in support of these maturity
goals. Some examples of major ATRs are described in the paragraphs
below.



534 | Process Control and Optimizat ion

Achieving the maturity goals of test process control and optimization
require that managers:

• provide resources and funding for these activities;

• assist in developing appropriate polices, plans, and supporting doc-
uments;

• support and charter teams such as the SEPG/TPG;

• provide resources for training for involved personnel;

• assist in selecting and providing support for pilot projects that are
involved in process control implementation and trial technology;

• be aware of current tools and technology to support optimization;

• provide support for technology transfer;

• support cultural changes necessary for process control, technology
transfer, and process change management;

• support training for process control, optimization, and reuse;

• support periodic process assessments with the TMM;

• support development and maintenance of a process asset library, and
reuse of process assets;

• tailor processes retrieved from the PAL and apply them to new proj-
ects (test managers).

A tester’s role in process control and optimization includes the following:

• serve members of an SEPG/TPG (specific duties for the SEPG/TPG
are described in Section 15.3);

• assist in developing policies, plans, standards, and other documents
related to process control and optimization;

• participate in pilot projects for process change and technology
transfer;

• enroll in training classes to learn appropriate techniques and tools
for process control, optimization, and reuse;



53515.8 Activ it ies, Tasks, and Responsibi l i t ies for Test Process Control and Optimizat ion |

• have an awareness of new and useful tools and technologies and iden-
tify promising candidates to the SEPG/TPG team;

• collect measurement data from projects under study by SEPG/TPG;

• help to develop control charts, identify process variations and causes,
and prepare reports;

• help to identify process assets and support the process asset library;

• support integration of process changes and approved new tech-
nologies;

• serve as members of a TMM assessment team.

E X E R C I S E S

1. Processes, like software systems, have a life cycle. Describe a set of life cycle

phases that would be applicable to processes.

2. What is process control? Which groups should be involved in its

implementation?

3. What are some of the reasons for process variations? How do process con-

trollers address these variations?

4. What are some of the activities necessary for process control, and how can

these be applied to control of the testing process?

5. Suppose you are a test manager. What are your specific responsibilities with

respect to test process control? Use Figure 15.4 as a guide to your answer.

6. Describe some of the responsibilities that could be assigned to a Software

Engineering/Test Process Group. What role can they play in test process assess-

ment and technology transfer?

7. What are some characteristics of a reusable process?

8. What role does a process asset library (PAL) play in process reuse? What are

the costs and benefits of maintaining a PAL?

9. Develop a process template using the components described in the text for a

reusable unit test process whose goal is a specific degree of branch coverage.



536 | Process Control and Optimizat ion

The process will be used to unit test real-time systems. Make any necessary

assumptions you need to complete the template.

10. How does achievement of the maturity goals at lower TMM levels support test

process optimization at level 5?

11. Consider the situation where a new testing method and support tools are to

be adopted on an organizationwide basis. Describe the technology transfer steps

needed to support this goal.

12. Suppose you are a member of the training staff. What types of training mod-

ules would you prepare to support test process reuse?

13. Why is an SEPG group so necessary for support of test process optimization?

Are there any other groups in an organization that might play a role in achieving

this goal? If yes, then give reasons for your choices.

R E F E R E N C E S

[1] C. Hollenbach, W. Frakes, “Software process reuse
in an industrial setting,” Proc. Fourth International
Conf. on Software Reuse, Orlando, FL, April 1996,
pp. 22–30.

[2] M. Kellner, R. Phillip, “Practical technology for
process assets,” Proc. Eighth International Software
Process Workshop: State of Practice in Process Tech-
nology, Warden, Germany, March 1993, pp. 107–112.

[3] M. Kellner, L. Briand, J. Over, “A method for de-
signing, defining, and evolving software processes,”
Proc. Fourth International Conf. on the Software Pro-
cess, Brigthon, UK, Dec. 1996, pp. 37–48.

[4] M. Paulk, C. Weber, B. Curtis, M. Chrissis, The
Capability Maturity Model, Addison-Wesley, Reading
MA., 1995.

[5] B. Affourtit, “Statistical process control applied to
software,” Total Quality Management for Software,
G. Schulmeyer, J. McManus, eds., Van Nostrand Rein-
hold, New York, 1992.

[6] L. Zells, “Learning from Japanese TQM applica-
tions to software engineering,” Total Quality Manage-
ment for Software, G. Schulmeyer, J. McManus, eds.,
Van Nostrand Reinhold, New York, 1992.

[7] W. Florac, A. Carleton, J. Barnard, “Statistical pro-
cess control: analyzing a space shuttle onboard soft-
ware process,” IEEE Software, Vol. 17, No. 4, 2000,
pp. 97–106.

[8] E. Weller, “Practical applications of statistical pro-
cess control,” IEEE Software, Vol. 14, No. 3, 2000,
pp. 48–55.

[9] D. Putman, “Using statistical process control with
automated test programs,” CROSSTALK: The Journal
of Defense Software Engineering, Vol. 11, No. 8, Au-
gust 1998, pp. 16–20.

[10] G. Wigle, G. Yamamura, “Practices of an SEI
CMM level 5 SEPG,” CROSSTALK: The Journal of
Defense Software Engineering, Vol. 10, No. 11,
Nov. 1997, pp. 19–22.

[11] G. Daich, G. Price, B. Ragland, M. Dawood, Soft-
ware Test Technologies Report, August 1994, Soft-
ware Technology Support Center (STSC) Hill Air
Force Base, UT, August 1994.

[12] A. Homyen, “An assessment model to determine
test process maturity,” Ph.D. Thesis, Illinois Institute
of Technology, Chicago, IL, 1998.



T H E T E S T I N G M A T U R I T Y

M O D E L A N D T E S T

P R O C E S S A S S E S S M E N T

1 6 . 0 The Need for a Testing Matur ity Model

The organizing framework behind this text is the Testing Maturity Model
(TMM) which was developed by a research group headed by the author
at the Illinois Institute of Technology [1–5]. The TMM was designed to
be used by software development organizations to assess and improve
their testing processes. It is also useful as a model that illustrates in stages
how a testing process should grow incrementally in proficiency. This
property makes it useful as an educational tool to introduce testing con-
cepts, principles, and best practices in an evolutionary manner. Chapter
1 describes several aspects of the TMM including its basic structure and
maturity levels. Chapter 14 offers more details on the maturity levels and
their relationship to the tools in the Testers’ Workbench.

It this chapter additional aspects of the TMM are described for those
readers interested in implementing test process assessment and improve-



538 | The Testing Matur ity Model and Test Process Assessment

ment efforts in their organizations. Among the areas discussed are the
history of TMM development and the TMM assessment process. A com-
parison between the TMM and other existing process improvement mod-
els is made, and relationships between the models are described. Finally,
some applications of the TMM in industry are given with implications
for future work.

The development of the TMM was driven by the need for high-qual-
ity software and the important role that quality software systems play in
our society. The central role of software-based systems has made it im-
perative that quality issues relating to both the software product and
process be addressed. The TMM is focused on process, specifically, on
the software testing process. Testing as defined in the TMM is applied in
its broadest sense to encompass all software quality–related activities.
Improving the testing process through application of the TMM maturity
criteria has the potential to make a positive impact on software quality,
software engineering productivity, and cycle time reduction efforts.

1 6 . 1 Approach to Model Development

A principle objective for developing the Testing Maturity Model was to
make available a model that could be used by software development or-
ganizations to evaluate and improve their testing processes. The intended
use of the TMM is to support assessment and improvement drives from
within an organization. Test process assessment and improvement efforts
can be carried out as an independent set of activities, or performed in
conjunction with general software process improvement efforts driven by
other models. In these contexts the TMM can be used by:

• an internal assessment team to identify the current testing capability
state;

• upper management to initiate a testing process improvement
program;

• software quality assurance engineers to develop and implement test
process improvement plans;



53916.1 Approach to Model Development |

• development/testing teams to improve testing effectiveness;

• users/clients to define their role in the testing process.

Several process evaluation and improvement models and standards
have been developed over the last decade. Some examples include the
Capability Maturity Model (CMM), its successor the Integrated Capa-
bility Maturity Model for Software (CMMI) [6,7], ISO 9001 [8], BOOT-
STRAP [9], and SPICE [10]. Most of these models do not adequately
address testing issues. For example, in the CMM:

• the concept of testing process maturity is not addressed;

• there is inadequate attention paid to the role of high-quality testing
as a process/product improvement mechanism;

• testing issues are not adequately addressed in the many of the key
process areas;

• quality-related issues such as testability, test adequacy criteria, test
planning, and software certification are not satisfactorily addressed;

• advanced testing practices such as usage profiling, statistical testing,
and quantitative control of the testing process are not described in
sufficient detail.

Because of the important role of testing in software process and product
quality, and the limitations of existing process assessment models, the
Testing Maturity Model was developed. The following components sup-
port the objectives of TMM development:

Component 1 A set of levels that defines a testing maturity hierarchy. Each
level represents a stage in the evolution of a mature testing process. The
levels guide an organization to higher degrees of test proficiency and
should be addressed in the order specified by the TMM. Movement to an
upper level implies that lower-level practices continue to be in place.

Component 2 A set of maturity goals and subgoals for each level (except
level 1). The maturity goals identify testing improvement goals that must
be addressed in order to achieve maturity at that level. The subgoals define
the scope, boundaries, and needed accomplishments for a particular level.



540 | The Testing Matur ity Model and Test Process Assessment

Associated with each maturity goal is also a set of Activities, Tasks, and
Responsibilities (ATRs) needed to support it. The ATRs describe the
practices that need to be institutionalized to achieve testing process ma-
turity. The ATRs are assigned to the three critical groups essential to
testing efforts—managers, developers/testers, and users/clients. Inclusion
of the three critical groups (views) is unique to the TMM. The views
specify roles for all of the stakeholders in the testing process, and promote
both internal and external support for test process assessment and
improvement.

Component 3 An assessment model consisting of three components: (i) a
set of maturity goal-related questions designed to determine the current
test process state, (ii) a set of guidelines designed to select and instruct the
assessment team, and (iii) an assessment procedure with steps to guide
the assessment team through test process evaluation and improvement.

The general requirements for TMM development are as follows.

1. The model must be acceptable to the software development com-
munity, and be based on agreed upon software engineering principles
and practices. At the higher maturity levels it should be flexible
enough to accommodate future best-test practices.

2. The model must allow for the development of testing process ma-
turity in structured stepwise phases that follow natural process
evolution.

3. There must also be a support mechanism for test process assessment
and improvement.

To satisfy these requirements, four sources as shown in Figure 16.1
serve as the principal inputs to TMM development. They are the Ca-
pability Maturity Model (CMM) [6,11,12], Gelperin and Hetzel’s Evo-
lutionary Testing Model [13], Current Industrial Testing Practices [14],
and, Beizer’s Progressive Phases of a Testers’ Mental Model [15].

Like the widely accepted CMM, the TMM is a staged model (see
Section 16.2) and uses the concept of maturity levels as a script for testing
process evaluation and improvement. The TMM levels have a structural
framework as do the levels in the CMM. A unique component called



54116.1 Approach to Model Development |

Testing Maturity Model

Level 1

5
4

3
2

Capability maturity
    model for
    software

CMM

(SEI)

Survey of current
    industrial testing
    practices

(Durant)

Evolutionary
    testing model

(Gelperin and
    Hetzel)

Progressive phases
    of a tester’s
    mental model

(Beizer)

FIG. 16.1

Input sources for development of the

TMM.

the “critical views” has been added to the framework in order to formally
include the key groups necessary for test process evolution.

To support the self-assessment process, the TMM uses the question-
naire/interview evaluation approach of the CMM. Besides being related
to the CMM through these structural similarities, the TMM can be vi-
sualized as a complement to the CMM. This view is understandable since
(i) a mature testing process is dependent on general process maturity, and
(ii) organizational investment in assessments can be optimized if assess-
ments in several process areas can be carried out in parallel. TMM/CMM
relationships are discussed in more detail in Section 16.8 of this chapter.

A Testing Maturity Model should reflect the evolutionary pattern of
testing process maturity growth documented over the last several decades.
This approach will expedite movement to higher maturity levels of the



542 | The Testing Matur ity Model and Test Process Assessment

model as it will allow organizations to achieve incremental test process
improvement in a way that follows natural process evolution. Designers
of the CMM also considered historical evolution an important factor in
process improvement model development. For example, concepts from
Crosby’s quality management maturity grid, which described five evolu-
tionary stages in the adaptation of quality practices, were adjusted for the
software process and used as input for development of the CMM maturity
levels [6].

The historical model of testing reported in a key paper by Gelperin
and Hetzel [13] provided a foundation for historical level differentiation
in the TMM and served as one of the inputs to TMM development. The
Gelperin/Hetzel model describes phases and test goals for the periods of
the 1950s through the 1990s. The initial period in their model is described
as “debugging-oriented.” During that period most software development
organizations did not differentiate between testing and debugging. Test-
ing was an ad hoc activity associated with debugging to remove bugs from
programs. Testing has since progressed through several additional phases
according to the Gelperin/Hetzel model to culminate in a “prevention-
oriented” period that encompasses best current testing practices, and re-
flects the optimizing level 5 of both the CMM and the TMM.

A survey of current industrial practices also provides important input
to TMM level definition [14]. It illustrates the best and poorest testing
environments in the software industry of 1993, and allows TMM devel-
opers to extract realistic benchmarks by which to evaluate and improve
testing practices. In addition, concepts associated with Beizer’s evolution-
ary model of the individual tester’s thinking process [15] has been inte-
grated into the TMM. Its influence on TMM development is based on
the premise that a mature testing organization is built on the skills, abil-
ities, and attitudes of individuals that work within it.

During the period in which the TMM was being developed, two other
models that support testing process assessment and improvement were
reported. The model proposed by Gelperin and Hayashi, called the “test-
ability maturity model,” uses a staged architecture for its framework
[16,17]. Three maturity levels are described by the authors, along with
six key support areas, which they reported to be analogous to key process
areas in the CMM. The three levels in the model are defined loosely as
weak, basic, and strong. The internal level structure is not described



54316.2 Process Improvement Model Representat ions |

in detail in the report, nor is it clear where the six key support areas fit
into the three-level hierarchy. A simple scorecard that covers 20 test pro-
cess–related issues is provided, to be used by an organization to determine
its “testability maturity model level” [17]. No formal assessment process
is reported.

Koomen and Pol describe what they call a “test process improvement
model (TPI),” which is based on a contiguous model architecture [18,19].
Their model contains 20 key areas each with different levels of maturity.
Each level contains several checkpoints that are helpful for determining
maturity. In addition, improvement suggestions to reach a target level are
provided with the model. These are helpful for generating action plans.

In contrast to these two test process improvement models the TMM
structure has the following advantages:

• it is more detailed and fine-grained in its level structure, key practices,
and roles;

• it provides greater coverage of test-related issues;

• it is well-suited to support incremental test process maturity growth;

• it is supported by a well-defined assessment model;

• its structure is more compatible with the widely used staged version
of the CMM which facilitates parallel process improvement efforts.

1 6 . 2 Process Improvement Model Representat ions

Process improvement models were categorized in the previous section as
belonging to two major architectural groups that are called staged and
continuous representations. These model groups are shown in Figure
16.2. Each type contains what are called process areas. Process areas rep-
resent aspects of a process to focus on for improvement. Each process
area has a purpose or goal, and a set of practices associated with it. A
staged representation for a process improvement model means that pro-
cess areas are grouped into stages or maturity levels. Within a stage or
level, an organization must put into place all the practices recommended



544 | The Testing Matur ity Model and Test Process Assessment

Maturity level 1

Maturity level 2

Maturity level n

Process area 4
Process area 5

Process area 1
Process area 2
Process area 3

Process area A
Capability levels

Process area B
Capability levels Process area C

Capability levels

Staged process improvement models Continuous process improvement models

FIG. 16.2

Staged and continuous process

improvement model representations.

for all the process areas contained in that level in order to successfully
achieve or complete that stage or level. When an organization has
achieved the goals a particular level (and all lower levels), it is said to
have a process maturity at that level.

To use staged models effectively an organization should address the
goals in each level in the order specified by the model. Skipping of levels
is not recommended. However, an organization may begin a practice at
a lower maturity level where it is not formally specified by a staged model,
but when the practice is formalized at a given level the implication is that
it is then documented, applied consistently, and institutionalized. For ex-
ample, in the TMM it is recommended that simple measurements be col-
lected beginning at TMM level 1; however, a formal measurement pro-
gram is specified at TMM level 4. At level 4 the measurement program
is supported by an institutional infrastructure that is put into place by
achieving maturity goals at the lower TMM levels. It is formally docu-
mented, supported by management, practiced uniformly in all projects,
and maintained by a motivated and trained staff.

The levels in staged process improvement models are usually associ-
ated with a specific numerical value, and so a process maturity level num-
ber can be assigned to an organization after its process has been evaluated
with respect to achievement of the process areas in the model. The level
number is a process metric that can be used as an indicator of performance
for the process. Outside organizations may use that level number as a



54516.3 The TMM Structure: The Testing Matur ity Levels |

basis for selecting among competing contractors, bidders, or vendors.
Processes assessed to be at the highest maturity levels are expected to
perform more effectively and complete projects closer to planned sched-
ules and budgets than those operating at the lower maturity levels. As a
result of the more predictable and managed processes operating at higher
maturity levels, it is more likely that product quality will be of a consis-
tently higher level as compared to products resulting from processes as-
sessed to be at lower maturity levels.

The CMM is a widely used example of a staged process improvement
model [6,11,12]. It contains five process maturity levels each of which
consists of several process areas. The process areas contain goals, com-
mon features, and practices. The TMM is also a staged model and is, as
previously discussed, characterized by five testing maturity levels within
a framework of goals, subgoals, activities, tasks, and responsibilities. The
goals, subgoals, and activities, tasks, and responsibilities define its process
areas, and describe its recommended practices [1–5].

Continuous models also contain process areas, but these are not
grouped by levels. There are sets of goals and practices that are generic
in nature and may apply to several process areas. Other goals and prac-
tices may be specific to individual process areas. Process areas have ca-
pability levels so that an organization when achieving all of the practices
associated with an area (both generic and specific) attains a capability
level for that area. The order in which an organization addresses process
areas is not represented in this type of model; however, there may be
recommendations for a sequence. The SPICE model (Software Process
Improvement and Capability dEtermination), and the Electronics Indus-
tries Alliance Interim Standard 731 Systems Engineering Capability
Model (EIA/IS-731), are examples of continuous models [10,20]. The In-
tegrated Capability Maturity Model (CMMI) developed by the Software
Engineering Institute has both a continuous and a staged version [7,21].

1 6 . 3 The TMM Structure: The Testing Matur ity Levels

The TMM is defined by five maturity levels: Initial; Phase Definition;
Integration; Management and Measurement; and Optimization, Defect
Prevention, and Quality Control. These were shown in Figure 1.5 and are



546 | The Testing Matur ity Model and Test Process Assessment

repeated in Figure 16.3 for review. Chapters 1 and 14 described the set
of maturity goals associated with each maturity level.

Each maturity level has an internal structure, which was shown in
Figure 1.7 and is repeated in Figure 16.4. Note that each level implies a
specific testing process capability. With the exception of level 1, several
maturity goals (MG) that identify key process areas are indicated at each
level. The maturity goals represent testing improvement goals that must
be addressed in order to achieve maturity at that level. As required by its
staged model architecture, the TMM specifies that in order to be placed
at a given level, an organization must satisfy the maturity goals at that
level and all lower levels.

As shown in Figure 16.4 each maturity goal is supported by one or
more maturity subgoals (MSG). The MSGs specify less abstract objectives
and they define the scope, boundaries, and needed accomplishments for
a particular level. The maturity goals and subgoals are achieved through
a set of activities and tasks with responsibilities (ATRs).

The ATRs are a unique aspect of the TMM structure [1–5]. They
address implementation and organizational adaptation issues at each spe-
cific level. Activities and tasks are defined in terms of actions or practices
that must be performed at a given level to improve testing capability; they
are linked to organizational commitments. Responsibilities are assigned
for these activities and tasks to three groups that are believed to represent
the key participants in the testing process—managers, developers/testers,
and users/clients. In the model they are referred to as “the three critical
views (CV)” [1–5].

The manager’s view involves commitment and the ability to perform
activities and tasks related to improving testing capability. Examples of
managers in the context of the TMM are project managers, test group
managers, test organization managers, and software quality assurance
managers. Also included in this view are upper-level managers such as
site or division managers.

The developer/tester’s view encompasses the technical activities and
tasks that when applied, constitute quality testing practices. Developers
and testers are those staff members who are involved with specifying,
designing, coding, and testing software. They may be called software en-
gineers, test engineers, test specialists, programmers, coders, or software
developers.



54716.3 The TMM Structure: The Testing Matur ity Levels |

Level 1: Initial

Level 2: Phase Definition 

Institutionalize basic testing techniques and methods
Initiate a test planning process
Develop testing and debugging goals

Level 3: Integration

Control and monitor the testing process
Integrate testing into the software life cycle
Establish a technical training program
Establish a software test organization

Level 4: Management and Measurement

Software quality evaluation
Establish a test measurement program
Establish an organizationwide review program

Level 5: Optimization/Defect Prevention 
and Quality Control

Test process optimization
Quality control
Application of process data for defect prevention

FIG. 16.3

The five-level structure of the Testing

Maturity Model.

The user’s/client’s view is defined as a cooperating or supporting
view. The focus is on soliciting client/user support, consensus, and par-
ticipation in activities such as requirements analysis, usability testing, op-
erational profile modeling, and acceptance test planning. The user view
represents those who will be the end users of the software being devel-
oped. The client view represents those who may have initiated the project



548 | The Testing Matur ity Model and Test Process Assessment

Levels

Testing
capability

Maturity goals

Maturity subgoals

Activities/tasks/responsibilities

indicate contain

supported by

achieved by

address organized by

Critical views

Manager Developer/tester User/client

Implementation
and organizational

adaptation

FIG. 16.4

The internal structure of TMM

maturity levels.

and/or signed the contract and/or will be providing compensation to the
development organization. Clients and users may be internal or external
to the organization developing the software.

A set of ATRs for the TMM is described throughout this text at
the ends of relevant chapters. The complete set of ATRs appears in Ap-
pendix III.

1 6 . 4 The TMM Assessment Model (TMM-AM): Design Approach

In order for an organization to self-evaluate its testing process a formal
assessment model supported by steps, activities, tasks, and forms is
needed. Such a model should also provide support for process improve-
ment actions when the evaluation is complete. The TMM Assessment



54916.5 The TMM Assessment Model Components |

Model (TMM-AM) meets these requirements. It uses the TMM as its
reference model, and measures an organization’s testing process against
TMM maturity goals. Unlike many other process assessment and im-
provement models, use of TMM-AM does not require participation of an
external body to perform a certification process.

The CMM and SPICE Assessment Models were used to guide devel-
opment of the TMM-AM [6,11,12,22,23]. The goal was to have the re-
sulting TMM-AM be compliant with the Capability Maturity Model Ap-
praisal Framework (CAF) [24] so that organizations would be able to
perform parallel assessments in multiple process areas. Based on a set of
16 test process assessment principles [25], the CMM Assessment Model,
SPICE, and the CAF, a set of components for the TMM-AM was devel-
oped that will be described in the subsequent sections of this text.

1 6 . 5 The TMM Assessment Model Components

The three major components of the TMM-AM are (i) team training and
selection criteria, (ii) the assessment procedure, and (iii) the assessment
instrument (a questionnaire). A set of inputs and outputs is also prescribed
for the TMM-AM [25]. The relationship among these items is shown in
Figure 16.5. A discussion of the components follows.

1 6 . 5 . 1 A s s e s s m e n t T e a m S e l e c t i o n a n d T r a i n i n g

Performing a test process assessment, gathering and interpreting data, and
developing the final reports is a complex process. This process should be
the responsibility of an assessment team. The team members need to be
knowledgeable and motivated. A candidate for TMM assessment team
membership should have TMM assessment knowledge, be well-respected
in the organization, be motivated to improve the testing process, have the
ability to implement change, and have several years of develop-
ment/testing, and/or managerial experience (an average of 7 years is rec-
ommended) [25]. Team members may come from the projects being se-
lected for assessment or from other projects in the organization. An
assessment team should have a leader(s) who has a high level of technical
and managerial expertise, experience in TMM assessments, is a problem
solver, and has excellent communication skills. The team leader should



550 | The Testing Matur ity Model and Test Process Assessment

Interview data

Questionnaire data

Assessment plan

Related documents

TMM-AM training
and team selection

criteria

Testing Maturity Model

TMM-AM
questionnaire

TMM-AM assessment
procedure

TMM level

Test process profile

Test strengths,
weaknesses

Action plans

Assessment record

TMM assessment
process

Inputs Outputs

FIG. 16.5

TMM Assessment Model

inputs/outputs [25].

ensure that all team members have the proper motivation and training to
carry out their assessment tasks.

The size of a TMM assessment team may vary, and depends on the
scope of the assessment, the experience level of the team, and the size and
complexity of the organizational projects being assessed. A team size of
4–8 members is suggested.

Preparation for the assessment team should be under the direction of
the assessment team leader. The training program staff in the organization
should be involved in development, distribution, and discussion of
the relevant materials. Training material modules should include topics
such as:

• introduction to process improvement models;

• an overview of the TMM;

• interviewing techniques;

• assessment planning;



55116.5 The TMM Assessment Model Components |

• data analysis;

• report development.

Each of these topics can be presented in a modular form perhaps as a
“minicourse.” Training activities also include team-building exercises, a
walk through the assessment process, filling out a sample TMM ques-
tionnaire and other assessment-related forms, and learning to prepare
final reports [25].

1 6 . 5 . 2 . T h e A s s e s s m e n t P r o c e d u r e

The TMM-AM assessment procedure consists of a series of steps that
guide an assessment team through a testing process self-assessment. The
principal goals for the TMM assessment procedure are:

1. to support the development of a test process profile and the deter-
mination of a TMM level;

2. to guide the organization in developing action plans for test process
improvement;

3. to ensure the assessment is executed with efficient utilization of the
organization’s resources;

4. to guide the assessment team in the collection, organization, and anal-
ysis of assessment data.

The steps in the assessment procedure are shown in Figure 16.6, and a
summary of each one follows [25].

Preparat ion

Preparing for a TMM assessment requires effort and coordination on the
part of many staff members throughout the organization. There are sev-
eral key activities to carry out in this step. The first task is to select the
assessment team members and the team leader. The leader must ensure
that the team undergoes proper training as described in the previous sec-
tion. When training is completed, the assessment team develops the as-
sessment plan. The plan should describe the scope of the assessment, as-



552 | The Testing Matur ity Model and Test Process Assessment

Preparation

Conducting

Reporting

Analyzing

Action planning

Implementing improvement

TMM Assessment Procedure

FIG. 16.6

Steps in the TMM assessment

procedure.

sessment inputs and outputs, estimated schedules and costs, tasks and
responsibilities, control mechanisms, and risk factors that could impact
on the outcome of the assessment. Assessment techniques and tools
should be described.

The organizational units selected for assessment are also identified in
this step. These units should be prepared for participation. Preparing the
units includes selecting a coordinator who will be the liaison to the as-
sessment team, briefing the unit members on the nature of the assessment,
gathering support information, developing confidentiality agreements,
and selecting specific projects. Projects that are selected should:

• be representative of the software products of major concern to the
organization, and have an impact on the business in terms of revenue,
profit, or strategic value;

• be representative of the software and testing processes used in the
organization;

• be variable in size and duration with a life cycle of at least 6 months.

The project/test managers of the selected projects should support test pro-
cess assessments. It is best if selected projects are not managed by an
assessment team member.



55316.5 The TMM Assessment Model Components |

Conduct ing the TMM Assessment

In this step the assessment team collects and records assessment infor-
mation for interviews, presentations, the TMM questionnaire, and rele-
vant documents. A test management support system as described by
Hearns and Garcia is very helpful for (i) automatically collecting and
organizing test process related data, and (ii) for use in cross-checking data
from multiple sources [26]. The TMM Traceability Matrix as described
in Section 16.7 can also be used by the assessment team to check the
accuracy, consistency, and objectivity of the data. This helps to ensure
that assessment results will be reliable and reproducible.

The TMM level of the organization, which is a measure of its current
testing maturity level, is determined by analysis of the collected data and
use of a ranking procedure as described in Section 16.6 of this chapter.

Report ing the Assessment Outputs

The TMM-AM outputs include a test process profile, a TMM level, and
an assessment record. The assessment team prepares the test process pro-
file which gives an overall summary of the state of the organization’s
testing process. The profile should include the following sections as shown
in Figure 16.7.

1. A table of contents.
2. An executive summary (includes maturity level rating).
3. A maturity goal and subgoal record. This is a listing of all the TMM

maturity goals and subgoals and their rating.
4. A summary of test process strengths, weaknesses, and areas not rated.
5. Recommended areas for improvements, and priorities for action

planning.

The TMM level is a numerical value from 1 to 5 that indicates the
current testing process maturity level of the organization. Level values
correspond to the testing maturity hierarchy shown in Figure 16.2.

The assessment record is also completed in this step. It is a compre-
hensive written account of the actual assessment that includes names of



554 | The Testing Matur ity Model and Test Process Assessment

1.  . . .

1.  . . .

Not applicable

Test Process Profile: Organization XYZ
March 2001

Table of Contents 

Executive Summary
Maturity Level
Maturity Profile

Maturity Goal Record

TMM level Maturity goals Satisfied Not satisfied Not rated Notes

2
Phase
definition

Inititate

Test planning

Testing/debugging
    goals

X

X

3

Areas of strengths in the testing process
1.  . . .
2.  . . .

Areas of weakness in the testing process
1.  . . .
2.  . . .

Areas not rated

Areas selected for improvement (by priority)

I.
II.

Assessment AnalysisIII.

1.

Maturity Subgoal Record2.

. . .

. . .

. . .

. . .

. . .

FIG. 16.7

Sample test process profile [25].



55516.5 The TMM Assessment Model Components |

assessment team members, assessment unit coordinators, assessment in-
puts and outputs, actual schedules and costs, tasks performed, task du-
rations, persons responsible, data collected, and problems that occurred.
The assessment outputs are delivered as a written report (the final assess-
ment report), which may be accompanied by a presentation.

Analyz ing the Assessment Outputs

In this step the assessment team, along with managers and software qual-
ity engineers, use the assessment outputs to identify and prioritize goals
for improvement. An approach to prioritization is described by Homyen
[25]. It is based on previous work in this area by Humphrey and Sweet
[27]. The prioritization process begins with a selection of about five areas
that are believed to be very important in improving testing process quality
in the organization being assessed. Each area is assigned a value to rep-
resent its relative importance. A scale from 1 to 10 can be used. The next
step is to quantify the current capability in the selected areas. A scale of
0 to 10 can be used in this step. A value of zero could indicate “we don’t
perform this practice at all,” whereas a value of ten might indicate “we
perform this practice consistently and correctly.” The “degree of satis-
faction” measurement for related maturity subgoals as described in Sec-
tion 16.6 can provide useful information for selecting a value. A priority
can be calculated by subtracting item 2 from item 1. The area with the
highest positive priority value is ranked first, and so on. Action plans can
be developed for the highest-ranking areas first, as described in the next
step. Lower-priority areas can be addressed in future action planning
sessions.

Act ion Planning

An action planning team develops actions plans that focus on improve-
ments in the high-priority areas that have been identified in the previous
step. This team can include assessors, software engineering process group
members (SEPG), SQA staff, and/or opinion leaders chosen from the
assessment participants [28]. Action planning can be implemented in
workshop format. When the action plan draft is completed it should be
reviewed.



556 | The Testing Matur ity Model and Test Process Assessment

The action plan describes specific activities, resources, and schedules
needed to improve existing practices, and/or to add missing practices, so
that the organization can move up to the next TMM level. An action plan
is much like a project plan, and should be sufficiently detailed so that it
can be readily executed. It should include the items shown in Figure 16.8.
These include goals and improvement targets, tasks, activities, responsi-
bilities, estimates of costs, and benefits. Risks associated with actions
should be analyzed, and status tracking systems should be described. Pilot
projects to which the action plan will be applied should be selected by
the team. Process reuse possibilities in a the case of successful executions
of the plan should also be considered by the team.

Implement ing Improvement

After the action plans have been developed and approved, they are applied
to the selected pilot projects. The pilot projects need to be monitored and
tracked to ensure task progress, and achievement of the target goals. Fa-
vorable results with the pilot projects set the stage for organizational ad-
aptation of the new process.

1 6 . 5 . 3 T h e T M M A s s e s s m e n t Q u e s t i o n n a i r e

In general, assessment instruments are used to support the collection and
analysis of information from an assessment, maintain a record of results,
and provide information for assessment post mortem analysis. There are
several choices of assessment instruments including questionnaires, check-
lists and forms. The questionnaire was selected as the TMM assessment
instrument for the following reasons. Use of a questionnaire supports
CAF compliance [24], facilitates integration with other related process
assessment instruments [23], insures assessment coverage of all activities,
tasks and responsibilities identified in each maturity goal for each level
of the TMM, provides a framework in which to collect and store assess-
ment data, and provides guidelines for the assessors as to which areas
should be the focus of an interview.

It should be noted that the TMM questionnaire is not the sole source
of input for determination of TMM rank or for the generation of testing
assessment results. The data from completed questionnaires must be aug-
mented and confirmed using information collected from interviews and
presentations, as well as by inspection of relevant documents. Section 16.7



55716.5 The TMM Assessment Model Components |

Action Plan for Test Process Improvement

Plan Components

Description of goals and improvement targets

Tasks and activities

Responsibilities

Resources required

Estimates of costs/benefits

Schedules

Risks

Tracking and controlling systems

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

FIG. 16.8

Action plan components.

describes forms that support assessors in the collection and verification
of data.

The TMM questionnaire consists of eight parts which are (i) instruc-
tions for use, (ii) respondent background, (iii) organizational background,
(iv) maturity goal and subgoal questions, (v) testing tool use questions,
(vi) testing trends questions, (vii) recommendations for questionnaire im-
provement, and (viii) a glossary of testing terms [25,29].

Components 2 and 3 of the questionnaire are used to gather infor-
mation about the respondent (the staff member completing the question-
naire), the organization, and the units that will be involved in the TMM
assessment. The maturity goal and subgoal questions in component 3 are
organized by TMM version 1.1 levels, and include a developer/tester,
manager, and client/user view. Questions cover issues related to all of the
maturity goals and subgoals. A sample of the format of the TMM ques-
tionnaire is shown in Figure 16.9. The questions are designed to determine
to what extent an organization has in place mechanisms to achieve the
maturity goals, and resolve maturity issues at each TMM level. The test-
ing tool component records the type and frequency of test tool use which
can help the team make tool recommendations for the future in order to
assemble a Testers’ Workbench (see Chapter 14). The testing trends sec-
tion was added to provide a perspective on how the testing process in the
organization has been evolving over the last several years. This infor-
mation is useful for preparing the assessment profile and the assessment



558 | The Testing Matur ity Model and Test Process Assessment

Yes No
Does not

apply Not knownQuestion

Do developers follow a written
organizational policy for testing?

Comments

Have testing policy documents
been distributed to project
managers and developers?

Comments

Is there an organizational
policy for test planning?

Comments

1.

2.

3.

FIG. 16.9

Format of the TMM questionnaire.

record. The recommendations component allows each respondent to give
questionnaire developers feedback on the clarity, completeness, and us-
ability of the questionnaire document. Readers can view version 1.2 of
the TMM questionnaire in Appendix III of this text.

1 6 . 6 The TMM Ranking Procedure

The ranking procedure for the TMM-AM is based on a procedure de-
scribed by Masters and Bothwell in their work on the Capability Maturity
Model Assessment Framework [24]. In the testing domain, the TMM is
the reference model for test process ranking, and the TMM questionnaire,



55916.6 The TMM Ranking Procedure |

along with other assessment information, provides the input data for the
ranking. The final outputs of the ranking procedure are (i) a testing ma-
turity level number that represents the current state of an organization’s
testing process, and (ii) a summary report of the areas of strength and
weakness in an organization’s testing process. This information becomes
a part of the test process profile and assessment record.

The TMM ranking algorithm requires first a rating of the maturity
subgoals, then the maturity goals, and finally the maturity level [25]. As
in the ranking system of Masters and Bothwell, the TMM ranking starts
with four major rating possibilities for the TMM maturity goals and
subgoals.

1. Satisfied: A maturity goal, or subgoal is satisfied if this area has been
implemented and instituted by the organization as defined by the
TMM, or there is a satisfactory alternative in place.

2. Unsatisfied: A maturity goal, or subgoal is said to be unsatisfied if
this area as defined in the TMM is weakly implemented and/or
weakly instituted by the organization, and there is no satisfactory
alternative in place.

3. Not Applicable: A maturity goal or subgoal is not applicable if it is
not relevant in view of the organization’s environment.

4. Not Rated: A maturity goal or subgoal is not rated if the associated
appraisal findings do not adequately cover it, or it is beyond the scope
of the current TMM appraisal.

In addition to these four major rating categories, the TMM ranking
procedure offers an auxiliary level of detail which is described as “the
degree of satisfaction.” Using this finer rating granularity, an organization
is able to rate its achievement level in terms of very high, high, medium,
low, and, very, low degrees of satisfaction for the TMM maturity su-
bgoals. The finer level of granularity provides a richer source of infor-
mation on which to base final assessment results, and gives assessors ad-
ditional support for the selection of weak and strong areas in the testing
process. It also helps action planners prioritize test process areas that need
to be addressed.

The TMM questionnaire as described in the previous section is com-
pleted by appropriate respondents for all projects/units within the scope
of the assessment. The questionnaire results, confirmed by inspection of



560 | The Testing Matur ity Model and Test Process Assessment

other assessment information, provide the data that allows a final assign-
ment of the four ratings described above for each maturity goal. The
following steps are applied in the TMM ranking procedure:

• rate the maturity subgoals;

• rate the maturity goals;

• determine the maturity level;

• identify strong and weak areas in the testing process.

Rat ing the Matur i ty Subgoals (MSG)

Each maturity subgoal has a set of associated questions on the TMM
questionnaire [25]. The rating level is calculated as shown in Figure 16.10
using a scheme similar to Cook [30]. The “YES” answers refer to the
column marked “YES” in the TMM questionnaire as shown in Figure
16.9. The number of “does not apply” and “not known” answers are
also tabulated. From Figure 16.10 it can be seen that if the number of
“YES” answers in a maturity subgoal (MSG) area is 50% or greater the
maturity subgoal is said to be satisfied. Satisfaction can be had at three
levels as shown (very high, high, and medium). If the percentage of “YES”
responses is less than 50% the subgoal is said to be unsatisfied (at two
possible levels). If the percent of “does not apply” responses is greater
than or equal to 50, then a “not applicable value” is assigned to the
maturity subgoal. If the percent of “not known” responses is greater than
or equal to 50, then a rank of “not rated” is assigned.

Rat ing the Matur i ty Goals (MG)

The rating for each maturity goal is determined in manner shown in Fig-
ure 16.11. The rating for each maturity goal is dependent on considera-
tion of the ratings of all the maturity subgoals within its scope.

Determining a Test ing Matur i ty Level For a Project/Unit

The TMM has been described as a staged process improvement model.
Therefore, the ranking procedure specifics that a testing maturity level is



56116.6 The TMM Ranking Procedure |

satisfied if all the testing maturity goals within the level and each lower
level are satisfied. The output testing maturity level ranking is that of the
highest testing maturity level satisfied [24,25].

If only one significant project (unit) is selected for assessment, then
the organization can use the maturity level determined for that project as
its testing maturity level. This is one example of a simple ranking case.
Another simple ranking case occurs when all of the projects assessed are
found to be at the same maturity level. A more complex case will occur
when all assessed projects are ranked at two or more different TMM levels
(a difference of more than two levels will probably be very rare). In those
cases the organization will have to make decisions based on the number
of assessed projects at a particular level, and the importance of the pro-
jects at each level. Conditions can also be attached to assignment of a
maturity level As a simple example, if 80% of the assessed projects are
at a given maturity level, then the overall organizational maturity level
can be considered to be at this level. If 60–80% of the projects are at a
given level, and they are highly important projects, then an organization
can be considered to be at that level given the condition that it improves
the deficiencies in the projects identified at a lower maturity levels [25].

Ident i fy ing Strong and Weak Areas in the Test ing Process

The assessment team can use the findings from maturity subgoal/maturity
goal rankings to map out the strong and weak areas in the testing process.
This material should be included in the test process profile. Areas of high
strength will have a “very high” degree of satisfaction that implies they

if % of “yes” answers is >90  (MSG is satisfied)

if % of “yes” answers is 50–69  (MSG is satisfied)

if % of “yes” answers is 30–49  (MSG is unsatisfied)

Degree of satisfaction is: very high

Degree of satisfaction is: high if % of “yes” answers is 70–90  (MSG is satisfied) 

Degree of satisfaction is: medium

Degree of satisfaction is: low

Degree of satisfaction is: very  low if % of “yes” answers is <30  (MSG is unsatisfied)

FIG. 16.10

Calculation of degree of satisfaction

for maturity subgoals.



562 | The Testing Matur ity Model and Test Process Assessment

% of satisfied MSG is ≥50

% of not applicable MSG is ≥50

% of not rated MSG is ≥50

MG is satisfied if:

MG is unsatisfied if: % of satisfied MSG is <50

MG is not applicable if:

MG is not rated if:

FIG. 16.11

Calculation of maturity goal rankings.

are consistently, successfully, and completely performed by an organiza-
tion as described in the TMM. Better then 90% of the required activities,
tasks, and responsibilities in this area are implemented by the organiza-
tion. Those areas with a “high” degree of satisfaction may also be con-
sidered areas of strength. Weakest areas will be those where the degree
of satisfaction is “low” or “very low.” Those are areas where the respon-
dent answers on the TMM questionnaire indicates that they are incon-
sistently, incompletely, or incorrectly performed by the organization. Im-
provement effects should be strongly considered for these areas, that is,
they should be areas of high priority for action planning.

1 6 . 7 Forms, and Tools for Assessment Support

To support an assessment team, several forms and a tool that implements
a web-based version of the TMM questionnaire [25,29] have been de-
veloped. These forms and tools are important to ensure that the assess-
ments are performed in a consistent, repeatable manner, to reduce asses-
sor subjectivity and to ensure the validity, usability, and comparability of
the assessment results. The tools and forms developed to support TMM
assessments include the test process profile and test process assessment
record whose roles have been described in previous sections of this chap-
ter. Additional items are described below.

Team Training Data Recording Template

Training for a TMM assessment team is discussed in Section 16.6. The
“team training and recording template” allows the assessment team



56316.8 Relat ionship of the TMM to Other Process Improvement Models |

leader and training program manager to record and validate team training
data. Completed instances of the template can be used in future assess-
ments to make any needed improvements to the assessment training pro-
cess. An example format is shown in Figure 16.12.

Traceabi l i ty Matr ix

The “traceability matrix,” in conjunction with the assessment team train-
ing procedure, the “team data recording template” and the traceability
matrix review, were introduced to address the issue of interrater agree-
ment and general assessment reliability [31]. The matrix, which is filled
in as assessment data is collected, allows the assessors to identify sources
of data, cross-check the consistency and correctness of the data from mul-
tiple sources, and resolve any data-related issues. Review of the matrix
data by the assessment team supports the elimination of biases, and in-
accuracies. The matrix and the matrix review process help to ensure data
integrity and the reproducibility of the assessment results. A sample for-
mat is shown in Figure 16.13.

Web-Based Quest ionnaire

A prototype of a web-based version of the questionnaire was implemented
by members of the TMM research group. It was believed that such a tool
would enable assessors to easily collect assessment data from distributed
sites. The data could then be organized and stored in a central data re-
pository that could be parsed for later analysis [29]. This approach to
tool design also would allow the tool implementation to run on multiple
operating systems and collect data from users around the world, thus
providing support for test process assessment to local and global orga-
nizations.

1 6 . 8 Relat ionship of the TMM to Other Process Improvement Models

The TMM is a process improvement model that specifically focuses on
the testing process. The nature of the TMM allows it to be applied by an
organization in many ways. Some possible applications are described
below.



564 | The Testing Matur ity Model and Test Process Assessment

Training
module

ID

Description Instructor Date Attendees Comments

________ ________ ________ ________ ________ ________

FIG. 16.12

Sample format for the team training

and data recording template.

Perform parallel assessments and improvement efforts in several pro-
cess areas. The TMM can be used in conjunction with staged models such
as the CMM and the CMMI-SE/SW (staged version) to evaluate both the
general development process and the testing process as well. Since the
models are of similar structure, and the model vocabularies and goals
overlap, parallel training and parallel assessments can be accomplished
by an assessment team. Improvement efforts may overlap a well since
there are common goals to be achieved. The TMM can also be used to
address testing issues in conjunction with contiguous models such as ISO
12207. Overlapping process areas that relate to testing can be evaluated
and improved using the TMM, while other process areas fall under the
umbrella of the broader-scoped models.

An additional circumstance for TMM application might arise where
an organization has already satisfied a quality standard for its overall
software process but wants to focus additional efforts on testing. As a
subsequent discussion of other process improvement models will show,
testing issues are often underemphasized. Using the TMM as a comple-
ment to these models can result in bringing management attention to the
testing process and extracting a commitment for additional testing re-
sources to address the problem areas identified by a test assessment.

Perform assessment and improvement of the test process. The advan-
tage of using a focused model such as the TMM is that an organization
can initiate a process improvement effort in a specific process area. The
narrower process scope allows for a smaller resource commitment, a fas-
ter learning curve, and a shorter time period for benefits to become ap-
parent. Successful improvement in this one process area can provide the
needed expertise and motivation to address other areas.



56516.8 Relat ionship of the TMM to Other Process Improvement Models |

Activity Result Information Sources Comments

Rate the MG
for test planning

rating of “satisfied” Questionnaire
(questions #x, y, z)

Interviews of testers, test
managers

Reviewed test plan
template (ID #123)

Reviewed test policy statement
(policy ID, abc-1)

Testers regularly use
test plan template
ID #123 for all
projects

1.

2.

3.

4.

FIG. 16.13

Sample traceability matrix.

Another advantage of the TMM, especially for smaller organizations,
is that a TMM assessment can be conducted by an internal assessment
team; no outside certifier is required. The results are private, and the
organization can use the findings as it sees fit to improve its testing pro-
cess. An organization also has the option to hire an outside consulting
team to perform a TMM assessment. This approach may be more feasible
for a smaller company just beginning to initiate process improvement
efforts. The assessment results in this case are also private and belong to
the assessed organization to use as it sees fit unless otherwise specified
(see the next section on industrial applications of the TMM).

Readers should note that even though it is possible to assess the test-
ing process as an independent entity, testing and other process improve-
ment efforts cannot be entirely decoupled. The testing process is a com-
ponent, or subprocess, of the overall software development process, and
certain practices in the development process are needed to support high-
quality testing and successfully higher levels of test process maturity. For
example, effective test planning needs support from project planning, con-
figuration management, and requirements development/management.
Test process controlling and monitoring needs support from development
process controlling and monitoring.

Use as an educational and training tool. The TMM is a rich source
of testing knowledge. Its maturity levels are based on the historical evo-
lution of the testing process and current best practices. The maturity
goals, subgoals, and practices described in the ATRs can be introduced



566 | The Testing Matur ity Model and Test Process Assessment

incrementally as testing topics to students and practitioners in order to
improve their expertise in the testing domain. This text is an example of
use of the TMM in an educational context. Finally, the TMM can also
be used as a guiding framework and educational tool for initiating
user/client involvement in the testing process.

Applications for the TMM note its possible use in conjunction with
other process improvement models. There are a growing number of pro-
cess assessment and improvement models/life cycle standards that are ap-
plicable to the needs of software development organizations. Most have
a broader process scope than the TMM, and apply to the software de-
velopment process in its entirety. A very few focus on specific software
subdomains such as documentation and design [30,32]. To apply most
of these models, external auditors are required to conduct an assessment
or certification procedure. Examples of broad-scoped process assessment
and improvement models have already been discussed in this text. One
widely used example is the Capability Maturity Model (CMM) developed
at the Software Engineering Institute (SEI) [6,11]. Its successor, the
Integrated Capability Maturity Model for Systems Engineering and Soft-
ware Engineering (CMMI-SE/SW) [20,21,33,34], is a result of an SEI
effort to ingrate its family of models into an inclusive entity that supports
integrated product and process improvement efforts across an entire en-
terprise. The scope of what is called the CMMI project includes integra-
tion of the CMM and the Systems Engineering (SECM) and Integrated
Product and Process Development (IPPD) Capability Models. The
CMMI-SE/SW that resulted from this integration is broader in scope than
its predecessor, and exists in both a staged and a contiguous version. It
has some additional process areas and features not included in the original
CMM.

Other process improvement models currently available have been de-
veloped by the joint efforts of the International Standardization Organi-
zation and International Electrotechnical Commission (ISO/IEC). Ex-
amples are SPICE [10,22], its successor ISO/IEC 15504 [35,36], and
ISO/IEC 12207 [37,38]. The SPICE model, which has a contiguous ar-
chitecture, was developed to satisfy several goals: (i) to help advance the
state of the art for process assessment, (ii) to provide a publicly shared
model for assessment based on existing models, and (iii) to integrate the
efforts of model developers. It is now evolving into a standard known as



56716.8 Relat ionship of the TMM to Other Process Improvement Models |

the ISO/IEC 15504. ISO/IEC 12207 focuses on the entire software life
cycle, from initial concept to software retirement, and includes software
quality components. It is especially suited for acquisitions since it recog-
nizes the distinct roles of acquirer and supplier.

There is also an ISO 9000 series of models [8], including ISO 9001
and ISO 9000-3 [6,39]. The ISO 9000 series focuses on management
system standards and can be applied over many domains. The ISO 9001
standard was designed to be used by outside auditors as a basis for cer-
tifying that an organization can design, develop, and produce products
(such as software) and services at a high quality level. ISO 9000-3 is a
guide for applying ISO 9001 to the development, supply, and mainte-
nance of software.

The models described in these series are examples of both staged and
contiguous architectures, and they do cover testing issues, but in a limited
manner. The approach to addressing testing issues in many of the mod-
els/standards consists of a limited number of test-related process areas
distributed throughout the maturity or capability levels. These coexist
with process areas that focus on many other aspects of the software pro-
cess. The comprehensive presentation of testing issues and the opportu-
nity for incremental growth of testing knowledge and expertise as pro-
moted by the TMM is lacking. In addition, the models do not provide
adequate support to an organization that wishes to add more complex
and high-level testing practices in a stepwise progressive manner. Finally,
the descriptions of testing goals and practices does not achieve the level
of detail and attention as specified in the TMM.

As an example, software testing is addressed directly in only a small
component of the “software product engineering” process area of the
CMM at level 3 (see Table 16.1). Lower levels of the CMM pay little
attention to testing goals and practices. Using the CMM, an organization
whose goal it is to reach level 3 must implement many testing practices
simultaneously at that level. In the TMM the practices are distributed
over multiple levels allowing for an incremental implementation. In ad-
dition, an organization using the CMM must devote staff and resources
to other process areas besides testing to satisfy the level 3 goals. An even
greater number of process areas must be addressed along with testing at
corresponding levels of the CMMI-SE/SW. For many organizations, es-
pecially those with limited resources, this is difficult to accomplish, and



568 | The Testing Matur ity Model and Test Process Assessment

TMM CMM CMMI-SE/SW

level MG level KPA level KPA

2 Test planning

Testing/debugging

policies/goals

Basic testing techinques/

methods

2 Requirements

management (S)

Project planning (S)

Configuration

management (S)

2 Requirements

management (S)

Project planning (S)

Configuration

management (S)

3 Software product

engineering (P)

(particularly activities 5, 6,

7 except for independent

test group, TMM level 3,

statistical testing, usage

profiles, TMM level 4,

managing and controlling,

TMM level 3)

3 Requirements

development (S)

Validation (P)

Risk management (S)

3 Control/monitor test

Integration of test

Test training

Test organization

2

3

Project tracking/

oversight (S)

Organization process

focus (S)

(apply to test process/test

group)

Training (S,P)

Intergroup coordation (S,P)

SQA (S)

2

3

Project monitoring

and control (S)

SQA (S)

Organizational training

Organizational process

focus (S) (apply to test

process/test group)

KPA, key process area; MG, maturity goal; (S), supporting role; (P), parallel role.

TABLE 16 .1

Common process areas: levels 2, 3 TMM and

CMM, CMMI-SE/SW.



56916.9 Industr ial Appl icat ions of the TMM |

as a consequence their testing processes may suffer from lack of adequate
attention and investment. Use of software subdomain-specific models
such as the TMM that focus on one vital process at a given time may be
more effective for this type of organization.

Tables 16.1, 16.2, and 16.3 summarize the process areas in some of
the key process improvement models that overlap with the maturity goals
of the TMM. Note in the case of the CMM and the CMMI-SE/SW as
shown in Tables 16.1 and 16.2, supporting areas (S) and parallel (P) areas
are denoted. Supporting areas encompasses those software development
goals and related practices that should be in place to support achievement
of TMM maturity goals. Parallel areas (P) are those that are similar in
nature in the models being compared, and that can be simultaneously
pursued. Satisfying the goals and implementation of the practices in one
model may lead to satisfactory implementation in the other.

1 6 . 9 Industr ial Appl icat ions of the TMM

The TMM was completed in 1998, and several organizations have re-
cently begun to apply it in an industrial setting. The organizations cur-
rently using the TMM include software test consulting firms, software
training groups, large telecommunications companies, and a hard-
ware/software enterprise. Some organizations experimenting with the
TMM are domestic (U.S.); others are international. In addition, a study
of TMM applications in Japan is now in progress [40]. This section will
provide the reader with an overview of how the TMM has been put into
practical use by a variety of organizations.

1 6 . 9 . 1 T M M A p p l i c a t i o n I : E v a l u a t i n g t h e

U s a b i l i t y o f t h e T M M Q u e s t i o n n a i r e

The initial trial usage of the TMM focused on evaluating the usability of
the questionnaire, experimenting with the ranking algorithm using actual
industrial data, generating sample action plans, and studying problems
of testing process improvement in real-world environments [25,29,41].
The evaluation of the questionnaire and collection of the data was per-



570 | The Testing Matur ity Model and Test Process Assessment

TMM CMM CMMI-SE/SW

level MG level KPA level KPA

4 Software quality

evaluation

Test measurement

Review program

3

4

Peer reviews (S,P)

Software quality

management (P)

3

4

Verification (S,P)

Measurement and

analysis (S,P)

5 Test Process

optimization

Quality control

Defect prevention

3

4

5

Organizational process

definition (S,P)

Quantitative process

management (S,P)

Defect prevention (P)

Technology change

management (S,P)

Process change

management (S,P)

3

4

4

5

Organizational process

def (S,P)

Organizational proc

performance (S,P)

Quantitative project

management (S)

Organizational innovation

& deployment (S)

Casusal analysis &

resolution (P)

KPA, key process area; MG, maturity goal; (S), supporting role; (P), parallel role.

TABLE 16 .2

Common process areas: Levels 3, 4 TMM and

CMM, CMMI-SE/SW.

formed by two software engineers who worked on different types of pro-
jects and in different companies. One engineer was employed by an or-
ganization that evaluates household hardware products (Organization I),
and was manager of a team that developed internal software products to
assist the hardware engineers in their testing tasks. The other engineer
was employed by an organization that produced both hardware and soft-
ware products for the telecommunications industry (Organization II).

The questionnaire evaluation for this study focused on (i) clarity of
the questions, (ii) organization of the questions, (iii) ease of use, and (iv)
coverage of TMM maturity goals and subgoals. Feedback from the eval-
uation enabled TMM developers to revise and reorganize the TMM ques-



57116.9 Industr ial Appl icat ions of the TMM |

TMM

level

ISO-9001

areas

ISO/IEC 12207

areas

2 4.10 (test) 5.3.7 SW Test only

5.3.8 SW Integration

5.3.11 System qual-test

5.3.13 SW

Acceptance support

6.5 Validation process

3 4.2 Quality systems 6.3 Quality assurance

4.18 Training 7.4 Training process

4 4.10 Inspections 6.4 Verification

4.12 Inspection, test status 6.6 Joint review process

4.16 Quality records 6.8 Problem resolution

4.20 Statistical techniques

5 4.14 Defect prevention 7.1 Management process

7.2 Infrastructure process

7.3 Improvement process

TABLE 16 .3

Common process areas: TMM/ISO-9001/

ISO/IEC 12207.

tions for better understandably and to improve question sequencing. A
revised version appears in Appendix III of this text.

Both engineers involved in this study performed a limited TMM as-
sessment on their testing groups. The assessment was limited in the sense
that only the questionnaire data was used to generate a TMM rank. An
interesting result of this experiment was that although the two organi-
zations were evaluated to be at TMM level 1, the areas of testing strength
and weakness of each were quite different for the projects that were eval-
uated. Organization I had weaknesses in two of the three maturity goals
at TMM level 2, and had not addressed any testing issues at higher levels



572 | The Testing Matur ity Model and Test Process Assessment

of the TMM. Organization II had a weakness in one of the TMM level
2 maturity goals, which could easily be rectified. There were indications
that it could satisfy some of the maturity goals at the higher levels of the
TMM. However, practices in some of these areas were informal and un-
structured. Additional work would need to be done to truly achieve all
of the level 3 maturity goals.

Since this application of the TMM was limited in scope, no actual
improvement actions were carried out; however, sample action plans for
improvement were suggested for both organizations that focused on areas
of test weakness. An action plan template for use with the TMM as shown
in Figure 16.14 was developed to instantiate the plans. Included items in
the sample action plans were an action identifier, the planned start and
end date for the action, a description of the action item, the related TMM
maturity goal that the action will address, the deliverables that will result
from the action, and the groups responsible for carrying out the action.

1 6 . 9 . 2 T M M A p p l i c a t i o n I I : I d e n t i f y i n g T e s t

P r o b l e m A r e a s a n d R i s k s

A preliminary application of the TMM was reported by Olsen and Stall-
Vinje at a large European-based technology enterprise [42]. As described
in their study, both authors were members of special-interest groups on
test. Olsen was employed by the technology company under study and
Stall-Vinje was president of a software test consulting firm. The TMM
was applied in three different projects from different divisions of the or-
ganization to identify major problems and areas for improvement in the
testing process. The projects included an integrated business system
14,000 function points in size (Project 1), a new release of a civil service
system (Project 2), and a COBOL-based telecommunication billing system
that was under development at three different geographical sites (Project
3). Using the TMM the authors were able to identify the strengths and
weaknesses in the testing process for all three of the projects. These find-
ings are summarized in Table 16.4.

In this study the authors found that the TMM was useful for test
process evaluation especially to identify problem, or risk-prone, areas,
and to predict where testing problems might occur in future projects. They
also found the TMM to be a good source of knowledge and direction for
test process improvements.



57316.9 Industr ial Appl icat ions of the TMM |

1 6 . 9 . 3 T M M : A p p l i c a t i o n I I I :

S o f t w a r e T e s t C o n s u l t i n g

The TMM has been utilized by several software test consulting firms that
work with clients to evaluate and improve their testing processes. The
range of clients is broad and includes those who develop software in
application areas such as telecommunications and finance. Emphasis is
on testing issues relating to methodologies, processes, and quality assur-
ance. The consultants are also involved in training software quality and
test professionals in areas such as test planning, test design, testing tools,
defect tracking, and requirements development and tracking. One such
organization located in the midwest has recently begun to offer TMM
assessments to their clients [43]. For one of its clients application of the
TMM Assessment Model revealed the following characteristics of their
testing process:

• it was chaotic, unfocused, and undocumented;

• there was no testing group (developers performed all testing);

• test planning was very poor;

• there was an absence of testing/debugging goals.

Action Plan Template 
Summary of action plan goals

Item ID
Dates

Action items
Related

TMM goal Deliverables ResponsibilitiesStart End

FIG. 16.14

Action plan template for test process

improvement.



574 | The Testing Matur ity Model and Test Process Assessment

Project

ID

TMM

level

Summary of

weaknesses

Summary of

strengths

1 2 Monitoring, measurement,

vendor management*

Good test planning; a test

organization

2 1 Inadequate test planning;

inadequate test resources

Some testing goals, polices

3 1

(very

close to

level 2)

Some planning weakness;

some weakness in use of

basis test techniques; need

for simple test

measurements; need for

monitoring

A test group; integration of

test activities into SW life

cycle; good test leadership

*Not covered by TMM maturity goals

TABLE 16 .4

Summary of TMM Findings at European Technology

Enterprise.

In addition, the consultants found that requirements management was
very poor at this organization, and that no simple product or process
measurements were being collected that could help define a test process
baseline. This client group was essentially at TMM level 1.

The TMM provided support for the group to successfully implement
the following test process improvement action items for this client. Similar
action items were also recommended to other clients whose testing pro-
cesses were subsequently evaluated with the TMM and also found to
operate at low levels of test effectiveness [43]:

• design a baseline testing process (necessary for those organizations
whose testing process is poor and/or ill-defined);

• improve test planning;



57516.9 Industr ial Appl icat ions of the TMM |

• improve requirements management, and traceability to test;

• recommend requirements and testing tools;

• initiate a simple defect tracking system;

• initiate a test process monitoring procedure;

• train staff in testing process issues.

There are two major risks identified by all of the consulting groups
in applying the TMM. These risks (developer/tester- and manager-related)
are often associated with any process improvement effort. One of the risks
lies in the lack of support from developers for test process improvement.
This may be true particularly for organizations at lower TMM levels (1,2)
where no test organization is in place. Developers may be unfamiliar with,
and lack education in, the area of testing processes. As a result, they may
be uncooperative and unwilling to implement changes. It is vital in this
case, as in all cases, to also have strong support from management for
any test process improvement efforts. Lack of management support can
also spell failure for any process assessment and improvement effort. The
greatest successes in improving a development or test process usually oc-
cur when full support from management is obtained. In one instance
where management support was lacking the midwest consultants report
that their team was “at the mercy of the developers and project manager
who resented our presence.”

The midwest group continues to apply the TMM as a tool to evaluate,
understand, and improve the quality of software testing processes in
industry. In some cases they perform what they call “TMM mini-
assessments” that are organized as follows [43]:

Preparation: The following items are prepared:

1. Executive Summary and thank you letter.
2. Hard and electronic copies of questionnaire.
3. Instruction Sheet for client participants.

Presentation to client:

4. Meet with client, make presentation, obtain approval and support.



576 | The Testing Matur ity Model and Test Process Assessment

5. Meet with participants, review instructions, identity respondents, dis-
tribute questionnaires, return these to the consultants in three days.

Analysis:

6. Analyze data.
7. Conduct interviews (scheduled by client team).

Report:

8. Develop test process assessment profile and report.
9. Deliver to client and make recommendations for improvement.

The midwest consulting group is also planning to work with the author
to develop a set of automated tools and training materials to assist with
TMM assessments [43].

1 6 . 9 . 4 T M M A p p l i c a t i o n I V : T h e R o l e o f H u m a n

F a c t o r s i n P r o c e s s A s s e s s m e n t

In this application the TMM was used to study the testing process at a
single site of a very large international enterprise that develops both hard-
ware and software. The engineers at this site are involved in developing
software for use with hardware devices. The principal investigator par-
ticipating in this TMM study is a software engineer working at the site.

The site has been certified for ISO 9000 and has won a quality award
as well. These indicators of quality were very positive; however, the en-
gineer was concerned about the possibility of complacency in the areas
of product and process quality. In many cases where current quality is
high, there is a tendency for an organization to rest on its laurels and to
become indifferent to making further improvements. The investigating
engineer wanted to identify a process evaluation/improvement system that
was cost effective and efficient, and that would support the site in ongoing
process evolution and improvement. The TMM was found to be an ideal
model to apply for the following reasons [44].

1. There was a perception at the site that the testing process needed to
be examined.



57716.9 Industr ial Appl icat ions of the TMM |

2. Management’s attention needed to be focused on software test.
3. Since the TMM supports an internal testing process assessment, it

could be used as a tool to continually improve testing. Improved test-
ing would support growing businesses’ needs and demands.

4. Since the TMM supports an internal assessment procedure it is more
cost effective than hiring an independent assessment team.

5. The TMM is based on concepts similar to the CMM, the latter of
which management was familiar with. The TMM also has overlap-
ping areas with other process improvement models in which the or-
ganization was interested in establishing compliance.

6. Findings from a TMM assessment could be used to leverage man-
agement support for test process improvements.

7. Application of the TMM could renew efforts to focus on software
product quality.

One of the useful findings that resulted from this study was the im-
portance of considering human factors in performing a TMM assessment
[44]. In order to accurately determine the state of a testing process, the
participants in the assessment must provide accurate and consistent in-
formation. They must be motivated to work with the assessment team
toward the goal of test process improvement. Therefore it is important
for the participants to be trained and prepared, and that the assessment
process be tailored so that it is a good fit with the cultural norms of the
organization. In addition, it is also very important for the TMM assess-
ment team to obtain strong management support for the assessment and
the process changes that may follow. This maximizes the chances for
success (see Section 16.9.3).

To address these human factor issues, the investigator in this TMM
study has added phases or steps to augment the “preparation phase” of
the assessment procedure as described by Homyen [25]. The new initial
phase is called the “proposal phase.” It is suggested by the investigator
that this phase be applied to organizations new to TMM assessments,
and/or those that are conservative in their approach to process changes.
The proposal phase includes activities such as a study of the organiza-
tional culture, obtaining support from SEPG or other process improve-
ment groups, enlisting volunteers to sign up for an informal assessment
(filling out the TMM questionnaire), educating staff and upper manage-



578 | The Testing Matur ity Model and Test Process Assessment

ment on the TMM, and having a kick-off meeting for participants. During
this phase the questionnaire information is tallied and reported back to
SEPG and/or upper management. The results provides a rough picture of
the testing process, and can be used to motivate and initiate further ac-
tions. When this step is complete a formal proposal for a TMM assess-
ment is developed, and potential sponsors and projects are identified. At
this time, the TMM team should ensure that there is a statistically sig-
nificant number of participants for the assessment. A buy-in plan for up-
per management is developed, and the plan and proposal are presented
to this group. The TMM team uses the buy-in plan and the proposal to
obtain commitment, support, and funding from upper management for
the assessment. Having this commitment from management is essential
for the process assessment and improvement effort to succeed.

In what is called the “human-oriented preparation phase,” the TMM
investigator augments the original “preparation” step of the TMM with
a developer/tester buy-in plan. The buy-in plan is important to make the
participants aware that process improvement is everybody’s effort, that
there are many benefits that result from an assessment, and that quality
practices play a critical role in product quality. Note that in the midwest
consulting group study, lack of developer/tester support was sited as one
of the risks in applying an assessment model for process improvement.
The suggested buy-in plan reduces that risk.

The investigator has suggested several tools that can be used to sup-
port the collection and processing of TMM assessment data. In this par-
ticular study commercially available tools were used to produce the ques-
tionnaire online and store the data. It was found that the participants
preferred the electronic form of the questionnaire rather than a paper
version. The raw data from the questionnaire was moved to a commercial
program that produces spreadsheets. Fonts and colors in the spreadsheet
program were used to highlight ranges of values. The spreadsheet was
also used to produce the TMM rankings.

The assessment data was collected by a group of seven participants;
two were SEPG leaders (SEPG1 and SEPG2) and five were test leaders
(TL1–TL5). Each was responsible for a varying number of developers and
testers; however, the SEPG members were responsible for larger groups
than the test leaders (TL). Within these groups some of the developers
had part-time testing responsibilities [44]. A summary of the TMM rank-
ing results found in this study is shown in Table 16.5.



57916.9 Industr ial Appl icat ions of the TMM |

The rankings that resulted from this study are preliminary for this
organizational site, and a more formal assessment is planned to obtain
test process baseline rankings. The major lessons learned from the study
are described below.

• Human factors are an important consideration in conducting an as-
sessment, An augmented TMM “preparation phase” is useful to ad-
dress human factors issues. Tools, training, and customization of
work steps should be provided to support a successful assessment. As
part of the training and customization process, instructors should
provide a mapping of terms used by the TMM with those used by
the organization. This is useful even though the TMM questionnaire
has a glossary of terms. It helps to minimize the number of “don’t
know” and inaccurate answers.

• Performing an assessment even one that is as informal as in this study,
has many benefits and is an excellent tool for gaining knowledge
about the nature of a process. It is also a tool to gain management
support and resources for test process improvement.

• Some the weakest test process areas found in this study were:

—developing testing/debugging policies and goals;

—integration of test into the software life cycle;

—identifying test risks;

—ensuring independence of the test group;

—training;

—developing an organizationwide review program;

—developing a test measurement program.

• Satisfying TMM level 5 maturity goals may be very difficult for a
particular organization or group. The investigator suggested that for
this site, smaller groups of developers/testers led by test leaders who
are involved in the low-level details of testing should work toward
reaching TMM level 4. This may be a more practical goal for these



580 | The Testing Matur ity Model and Test Process Assessment

Summary of TMM Ranking Results

Group

TMM

Level Comments on results

TL1 1 Poor use of test plan template; poor use of

requirements as input to test plan; no test risks

identified for test plan; no integration of test into

life cycle.

TL2 1 Absence of debugging policies/goals; lack of

controlling and monitoring; no integration of

test into life cycle.

TL3 1 No separation of testing and debugging; poor

developer/tester ratio; poor institutionalization

of basic testing techniques and methods.

TL4 2 Need tech training program; integration of test

to reach level 3.

TL5 1 Many “not applicable” and “don’t know”

answers on questionnaire.

SEPG1 1 This group can satisfy all maturity goals at all

TMM levels except for test planning and test

measurement programs that have weaknesses.

This group leads the test efforts at this site.

SEPG2 2 Achieves all TMM maturity goals through level

4. One weakness is in risk management for test.

TABLE 16 .5

Summary of TMM ranking results for

a hardware/software enterprise.

groups. Reaching TMM level 5 needs to be addressed at a more global
level and involve many SEPG participants who oversee large groups
of testers, and who have a more high-level view of testing. They can
provide the support, expertise, and oversight needed to raise the en-
tire group to TMM level 5.

The TMM investigator concluded that this preliminary study was



58116.9 Industr ial Appl icat ions of the TMM |

very informative for the organizational site. Many testing issues were
raised, and the developers, testers, and managers got a better understand-
ing of the nature of their testing processes. For the short term the detailed
results were returned to each of the participants (SEPG1, SEPG2, and
TL1–5) with insights and feedback to help them improve their testing
processes. In the future a formal TMM assessment is planned, with fund-
ing and support to be obtained from upper management. This preliminary
study has paved the way for obtaining such support.

1 6 . 9 . 5 L e s s o n s L e a r n e d f r o m t h e

T M M S t u d i e s

These experimental studies indicate that the TMM shows promise as a
tool useful for software test process understanding, evaluation, and im-
provement. It is also a rich knowledge source for software engineers, test
specialists, and managers who want to learn about good testing practices,
and how to improve the effectiveness of their current testing process. The
TMM is unique in that it provides a distinct role for all of the stakeholders
in the testing process through its three critical views. Participation and
communication by all interested parties is promoted. In addition, the stud-
ies show that the flexible design of the TMM allows it to be applied by
different types of organizations involved in developing and testing soft-
ware systems from a wide variety of problem domains.

Another useful finding that resulted from these studies is the signifi-
cance of the role that human factors play in the success of an assessment
and improvement effort. Human factors in these studies center around
two groups—the technical staff (developers and testers) and the mana-
gerial staff (upper- and lower-level managers). The following three areas
were found to be human factors focal points that should be noted by
assessment teams.

1. Staff should be trained and motivated.

To support successful test process assessment and improvement efforts,
an organization needs to ensure that its technical staff is properly trained,
motivated, and provided with support tools to do the job. This require-
ment has roots in “Total Employee Involvement (TIE)” effort, which in
itself was a part of the “Total Quality Management” movement in Japan
[45]. Staff must be convinced that process assessment and improvement



582 | The Testing Matur ity Model and Test Process Assessment

is a team project and requires participation by all. They must also be
convinced that everybody benefits from the effort.

2. The assessment effort should be tailored to meet the cultural norms of
the organization.

In addition to providing training and tools, the assessment leaders may
also need to tailor the assessment steps, forms, and procedures so that
they are a good fit for a particular organizational environment. Tailoring
has been shown to promote success in process assessment and improve-
ment efforts on the personnel level with the Personal Software Process
(PSP) [46]. Assessment team members may need to perform tailoring on
both a fine- and coarse-grained level. As a fine-grained example, in TMM
application IV the investigator found that differences in interpretation of
technical terms needed to be resolved so that the TMM questionnaire
could be completed properly and accurately.

3. The assessment team should obtain commitment and support from
management.

These studies illustrate the importance of management involvement and
commitment for the success of any process assessment and improvement
effort. Past experiences with the quality efforts such as Total Quality
Management (TQM), and with process assessment/improvement efforts
using the CMM, PSP, and ISO-9000, also point out the importance of
this commitment. To quote from Paulk et al., “Improvement requires
strong management support and a consistent long-term focus” [6]. A
management buy-in plan and kick-off meeting as implemented by the
TMM application IV investigator promotes this needed managerial sup-
port and commitment. The TMM assessment procedure steps can easily
be augmented to include this item.

Finally, the TMM rankings placed most of the groups assessed in
these initial studies at low levels of the TMM (levels 1, 2). In several cases
there were weaknesses in basic areas such as testing planning and the
development of testing/debugging policies. These findings parallel results
obtained in initial studies using the CMM as a reference model for process
assessment. Many organizations were then assessed to be at a CMM level
of 1 and 2. Now that there is a broad recognition for the value of quality



58316.9 Industr ial Appl icat ions of the TMM |

processes, many organizations have made significant investments in pro-
cess improvements and have raised their maturity ratings. Business needs
and competition promoted the proliferation of improvement efforts.
When organizations become more aware of the need to focus on testing
as (i) an important quality-enhancing process, and (ii) a process that adds
value to their products, they will invest more resources. The best practices
required of a high-quality testing process will be widely applied in indus-
try, and as a consequence TMM levels should rise.

At this time the midwest consulting group continues to work with its
industrial clients and apply the TMM to their testing processes. The in-
vestigator at the hardware/software enterprise hopes to obtain support
for a planned full TMM assessment at his site. Several additional con-
sulting, software development, and training organizations are also in the
process of applying the TMM in their work The author plans to publish
reports with industrial collaborators as they become available.

R E F E R E N C E S

[1] I. Burnstein, T. Suwanassart, and C. Carlson, “De-
veloping a testing maturity model: part I,” CrossTalk:
Journal of Defense Software Engineering. Vol. 9,
No. 8, 1996, pp. 21–24,

[2] I. Burnstein, T. Suwanassart, and C. Carlson, “De-
veloping A testing maturity model: part II,” CrossTalk:
Journal of Defense Software Engineering. Vol. 9,
No. 9, 1996, pp. 19–26.

[3] I. Burnstein, A. Homyen, R. Grom, C. R. Carlson,
“A model for assessing testing process maturity,”
CrossTalk: Journal of Department of Defense Soft-
ware Engineering, Vol. 11, No. 11, Nov. 1998,
pp. 26–30.

[4] I. Burnstein, A. Homyen, T. Suwanassart, G. Sax-
ena, R. Grom, “Using the testing maturity model to
assess and improve your software testing process,”
Proc. of International Quality Week Conf. (QW’99),
San Jose, CA, May 1999.

[5] I. Burnstein, A. Homyen, T, Suwanassart, G. Sax-
ena, R. Grom, “A testing maturity model for software
test process assessment and improvement,” Software
Quality Professional (American Society for Quality),
Vol. 1, No. 4, Sept. 1999, pp. 8–21.

[6] M. Paulk, C. Weber, B. Curtis, and M. Chrissis,
The Capability Maturity Model, Addison-Wesley,
Reading, MA, 1995.

[7] Software Engineering Institute, www.sei.cmu.
edu/cmmi/publications

[8] F. Coallier, “How ISO 9001 fits into the software
world,” IEEE Software, Vol. 11, No. 1, 1994,
pp. 98–100.

[9] A. Bicego, P. Kuvaja, “BOOTSTRAP: Europe’s
assessment method,” IEEE Software, Vol. 10, No. 3,
1993, pp. 93–95.

[10] M. Paulk, M. Konrad, “An overview of ISO’s
SPICE project,” American Programmer, Vol. 7, No. 2,
1994, pp. 16–20.

[11] M. Paulk, B. Curtis, M. Chrissis, and C. Weber.
“Capability maturity model, version 1.1,” IEEE Soft-
ware, Vol. 10, No. 4, 1993, pp. 18–27.

[12] M. Paulk, C. Weber, S. Garcia, M. Chrissis, and
M. Bush, “Key practices of the capability maturity
model, version 1.1,” Technical Report, CMU/SEI-93-
TR-25, 1993, Software Engineering Institute, Pitts-
burgh, PA.



584 | The Testing Matur ity Model and Test Process Assessment

[13] D. Gelperin, B. Hetzel, “The growth of software
testing,” Communications of the Association of Com-
puting Machinery, Vol. 31, No. 6, 1988, pp. 687–695.

[14] J. Durant, “Software testing practices survey re-
port,” Technical Report, TR5-93, Software Practices
Research Center, 1993.

[15] B. Beizer, Software Testing Techniques, second
edition, Van Nostrand Reinhold, New York, 1990.

[16] D. Gelperin, A. Hayashi, “How to support better
software testing,” Application Trends, May 1996,
pp. 42–48.

[17] D. Gelperin, “What’s your testability maturity?”
Application Trends, May 1996, pp. 50–53.

[18] T. Koomen, M. Pol, “Improvement of the test pro-
cess using TPI,” Technical Report, IQUIP Informatica
B.V., Diemen, The Netherlands, 1998, http://www.
iquip.nl.

[19] T. Koomen, M. Pol, Test Process Improvement,
Addison-Wesley, Reading, MA, 1999.

[20] A. Clouse, C. Wells, “Transitioning from EIA/IS-
731 to CMMI,” CrossTalk: Journal of Department of
Defense Software Engineering, Vol. 13, No. 7, July
2000, pp. 15–20.

[21] S. Shrum, “Choosing a CMMI model represen-
tation,” CrossTalk: Journal of Department of Defense
Software Engineering, Vol. 13, No. 7, July 2000,
pp. 6–7.

[22] International Organization for Standardization
(ISO), ISO/IEC Software Process Assessment Working
Draft-Part 3: Rating processes, version 1.00; Part 5:
Construction, selection and use of assessment instru-
ments and tools, version 1.00; Part 7: Guide for use in
process improvement, version 1.00, International Or-
ganization for Standardization, Geneva, 1995.

[23] D. Zubrow, W. Hayes, J. Siegel, D. Golden-
son, “Maturity questionnaire,” Technical Report,
CMU/SEI-94-SR-7, Software Engineering Institute,
Pittsburgh, PA, 1994.

[24] S. Masters, C. Bothwell, “A CMM appraisal
framework, version 1.0,” Technical Report, CMU/SEI-
95-TR-001, Software Engineering Institute, Pitts-
burgh, PA, 1995.

[25] A. Homyen, “An assessment model to determine
test process maturity,” Ph.D. thesis, Illinois Institute of
Technology, Chicago, IL, 1998.

[26] J. Hearns, S. Garcia, “Automated test team man-
agement—it works!” Proc. of the 10th Software Eng.
Process Group Conference (SEPG’98), 6–9 March,
Chicago, IL, 1998.

[27] W. Humphrey, W. Sweet, “A method for assessing
the software engineering capability of contractors,”
Technical Report, CMU/SEI-87-TR-23, Software En-
gineering Institute, Pittsburgh, PA, 1987.

[28] J. Puffer, A. Litter, “Action planning,” IEEE Soft-
ware Engineering Technical Council Newsletter,
Vol. 15, No. 2, 1997, pp. 7–10.

[29] R. Grom, “Report on a TMM assessment support
tool,” Technical Report, Illinois Institute of Technol-
ogy, Chicago, IL, 1998.

[30] C. Cook, M. Visconti, “New and improved docu-
mentation model,” Technical Report, Oregon State
University, 1996.

[31] K. El Emam, D. Goldenson, L. Briand, P. Mar-
shall, “Interrater agreement in SPICE-based assess-
ments: some preliminary reports,” Proc. Fourth Inter-
national Conference on the Software Process,
Brighton, UK, 1996, pp. 149–156.

[32] G. Saxena, “A framework for building and eval-
uating process maturity models,” Ph.D. thesis, Illinois
Institute of Technology, Chicago, IL, 1999.

[33] J. Weszka, P. Babel, J. Ferguson, “CMMI:
evolutionary path to enterprise process improvement,”
CrossTalk: Journal of Department of Defense Soft-
ware Engineering, Vol. 13, No. 7, July 2000,
pp. 8–11.

[34] CMMI Product Development Team, “CMMI for
systems engineering/software engineering, version 1.02
(CMMI-SE/SW, V1.02) staged representation,” Tech-
nical Report, CMU/SEI-2000TR-018, ESC-TR-2000-
018, Software Engineering Institute, Nov. 2000.

[35] D. Kitson, “An emerging international standard
for software process assessment,” Proc. IEEE Third
International Software Engineering Standards Sym-
posium and Forum, Walnut Creek, CA, June 1999.

[36] S. Garcia, “Evolving improvement paradigms:
Capability Maturity Models and ISO/IEC 15504
(PDTR),” Software Process Improvement and Prac-
tice, Vol. 3, No. 1, 1998.

[37] International Organization for Standardization
(ISO), “ISO/IEC 12207: Information Technology—
Software Life Cycle Processes,” 1995.



58516.9 Industr ial Appl icat ions of the TMM |

[38] J. Moore, “ISO 12207 and related software life
cycle standards,” http://www.acm.org.tsc/lifecycle.
html.

[39] R. Kehoe, A. Jarvis, ISO-9000-3, Springer-Verlag,
New York, 1995.

[40] I. Burnstein, T. Suwanassart, private correspon-
dence, 2001.

[41] J. Hook, “Evaluation of the TMM question-
naire,” Technical Report, Illinois Institute of Technol-
ogy, Chicago, IL, 1997.

[42] K. Olsen, P. Stall Vinje, “Using the testing matur-
ity model in practical test-planning and postevalua-
tion,” EuroSTAR98 Conference, Munich, Germany,
1998.

[43] I. Burnstein, L. Miller (President, Midwest Soft-
ware Testing Lab, Inc.), private correspondence,
2000–2001.

[44] H. Tran, “A procedure on how to conduct a test-
ing maturity assessment on a software development or-
ganization using the TMM assessment methodology,”
M.S. thesis, University of Minnesota, Rochester, MN,
2001.

[45] L. Zells, “Learning from Japanese TQM appli-
cations to software engineering,” Total Qualty Man-
agment for Software, G. Schulmeyer, J. McManus,
eds., Van Nostrand Reinhold, New York, 1992.

[46] K. El Emam, B. Shostak, N. Madhavji, “Imple-
menting concepts from the personal software process
in an industrial setting,” Proc. Fourth International
Conference on the Software Process, Improvement,
and Practice, Brighton, UK, 1996, pp. 117–130.



This page intentionally left blank 



A P P E N D I X I

T E S T - R E L A T E D R E F E R E N C E S

I . S o f t w a r e T e s t i n g : R e l a t e d C o n f e r e n c e s

Listed below are references to test and process-related conferences of in-
terest. This list is not meant to be exhaustive, just representative of avail-
able conferences in these areas. Some of the conference are held once per
year; others are held several times per year. Locations of the conferences
may vary from year to year.

Software Test Automation Conference and Expo
Software Quality Engineering
330 Corporate Way
Orange Park, FL 32073
www.sqe.com
www.stickyminds.com (newsletter)

Software Engineering Process Group Conference
Carnegie Mellon University
Software Engineering Institute
Pittsburgh, PA 15213-3890



588 | Appendix I

International Software Test Professionals Week
Practical Software Quality Techniques, PSQT
International Institute for Software Testing
Software Dimensions
8476 Bechtel Ave
Inver Grove Heights, MN 55076
www.testinginstitute.com

Software Technology Conference
Hill Air Force Base STSC
5045 Old Main Hill
Logan, UT 84322-5045
www.stc-online.org

International Internet and Software Quality Week Conference
Software Research, Inc.
901 Minnesota Street
San Francisco, CA 94107
www.qualityweek.com

I I . W e b S i t e s f o r S o f t w a r e P r o c e s s a n d

S o f t w a r e Q u a l i t y I n f o r m a t i o n

This list contains web sites that focus on general process improvement
material. Testers and test managers may find some very useful informa-
tion at these sites.

1. Software Technology Support Center

www.stsc.hill.af.mil

This center is sponsored by the US Department of Defense. They
distribute a very useful publication called CrossTalk which is free
of charge.

2. Software Process Improvement Network (SPIN)

www.cmu.edu/collaborating/spins/spins.html



589Test-Related References |

SPIN groups offer a forum for exchanging information, experiences,
and knowledge about software process improvement. In many large
cities there are local SPIN groups. Associated with most local SPIN
groups is a regular series of presentations by practitioners involved
in process improvement efforts.

3. Software Engineering Institute

www.sei.cmu.edu

This is a federally funded research center that has developed the
CMM family of models. Details on the CMMI project can be
found at

www.sei.cmu.edu/cmmi

4. Software Engineering Process Office (SEPO)

http://sepo.nosc.mil

This is the software engineering source for the Space and Naval War-
fare Systems Center. It does offer consulting services for government
and industry partners.

5. The Software Engineering Laboratory (SEL)

http://sel.gsfc.nasa.gov

The SEL has collected and analyzed software development metrics
from projects within the NASA Goddard Space Flight Center.

6. Software Productivity Consortium

www.software.org

Partnership of industry, government, and academia. Develops process
methods, tools, and support services.

7. European Software Process Improvement Foundation (ESPI)

www.espi.co.uk

Provides software engineering information and promotes quality soft-
ware practices through process improvement.

8. EGroups

www.egroups.com/group.spi

Electronic forum for exchanging information relating to software
process improvement.



590 | Appendix I

9. Software Process Improvement and Capability dEtermination (SPICE)

www.sqi.gu.edu.au/spice/contents.html

Developers of SPICE process improvement model. SPICE is interna-
tional initiative to develop an international standard for software pro-
cess assessment.

10. American Society for Quality (ASQ)

www.asq.org

Publisher of Software Quality Professional, a journal containing
high-quality papers covering aspects of software test and quality. The
society is also involved in the certification of quality engineers, spon-
sors quality/test conferences, posts books, and has a six-sigma forum.

11. Software Engineering Body of Knowledge (SWEBOK). Developed by
a joint IEEE/ACM task force.

www.swebok.org

SWEOK contains knowledge areas and descriptions of topics that are
essential for all software engineers to know.

12. Quality Assurance Institute (QAI)

www.qaiusa.com

Sponsors conferences, certification, and educational activities.

I I I . T e s t - O r i e n t e d W e b S i t e s

There are many web sites devoted to testing. Many offer testing services.
The following is a list of some useful test-related web sites that contain
links to papers, conferences, and services of interest to test professionals.

1. RBSCB Bibliography: Testing Object-Oriented Software

www.rbsc.com

Has a good listing of papers related to testing of object-oriented
systems.

2. Software Quality and Testing Resource Center



591Test-Related References |

www.softwareqatest.com

Has links to many testing resources and tools.
3. Society for Software Quality

www.ssq.org

This is an organization whose members work to promote quality in
software development.

4. IEEE Standards Web Site

standards.ieee.org/catalog

Lists IEEE standards documents and how to order copies. The IEEE
web site is:

ieee.org

5. Software Testing Institute (STI)

www.ondaweb.com

Lists publications, research documents, and services for test profes-
sionals. Also has a Software Testing Newsletter and an STI Buyer’s
Guide which is a directory of vendors and consultants.

6. Software Testing On-line Resources

www.mtsu.edu/�strom/

This is a good source for test-related material. It is maintained by
Middle Tennessee State University. There is a list of researchers in
test, reviews, monographs, and educational sources.

7. Software Testing and Quality Engineering Magazine (STQE)

www.stqemagazine.com/

This site describes a magazine that contains articles on software
testing.

8. Software Research (SR Institute, Test Works)

www.soft.com

Sponsor of research conferences on testing, site has a newsletter with
archives.



592 | Appendix I

I V . B i b l i o g r a p h y ( P a p e r s a n d B o o k s )

This section contains a list of papers and books related to software testing
that are of interest to developers, testers, and managers. The list is in
alphabetical order and contains a compilation of the references mentioned
in each book chapter as well as additional items that augment the material
in the text.

Abramovici, M., M. Brever, A. Friedman, Digital System Testing and
Testable Design, Computer Science Press, New York, 1990.

Abran, A., J. Moore, P. Bourque, R. Dupuis, eds., “Guide to the Software
Engineering Body of Knowledge—Trial Version,” IEEE Computer Soci-
ety Press, Los Alamitos, CA, 2001.

Affourtit, B., “Statistical process control applied to software,” Total
Quality Management for Software, G. Schulmeyer, J. McManus, eds.,
Van Nostrand Reinhold, New York, 1992.

Arnold, T., W. Fuson, “Testing in a Perfect World,” Comm. of the ACM,
Vol. 37, No. 9, 1994, pp. 78–86.

Ayer, S., F. Patrinostro, Software Configuration Management, McGraw-
Hill, New York, 1992.

Bartol, K., D. Martin, “Managing the consequences of the DP turnover:
a human resources planning perspective,” Proc. 20th ACM Computer
Personnel Research Conf., 1983, pp. 79–86.

Basili, V., D. Weiss, “A methodology for collecting valid software engi-
neering data,” IEEE Transactions on Software Engineering, Vol. SE-10,
No. 6, 1984, pp. 728–738.

Beizer, B., Black Box Testing, Wiley, New York, 1995.

Beizer, B., Software Testing Techniques, second edition, Van Nostrand
Reinhold, New York, 1990.

Beizer, B., Software System Testing and Quality Assurance, Van Nos-
trand Reinhold, New York, 1984.

Berard, E., Essays on Object-Oriented Software Engineering, Volume 1,
Prentice Hall, Englewood Cliffs, NJ, 1993.



593Test-Related References |

Bertolino, A., “Software testing,” in Guide to the Software Engineering
Body of Knowledge, version 0.7, A. Abran, J. Moore, P. Bourque, R.
Dupuis, eds., April 2000.

Bicego, A., P. Kuvaja, “BOOTSTRAP: Europe’s assessment method,”
IEEE Software, Vol. 10, No. 3, 1993, pp. 93–95.

Binder, R., “Design for testability in object-oriented systems,” Comm. of
the ACM, Vol. 37, No. 9, 1994, pp. 87–101.

Boehm, B., “Software risk management: principles and practices,” IEEE
Software, Jan. 1991, pp. 32–41.

Boehm, B., Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981.

Boehm, B., J. Brown, M. Lipow, “Quantitative evaluation of software
quality,” IEEE 2nd International Conf. on Software Engineering, San
Francisco, CA, pp. 592–605, Oct. 1976.

Booth, P., An Introduction to Human–Computer Interaction, Lawrence
Erlbaum Associates, London, 1989.

Brettschneider, R., “Is your software ready for release?” IEEE Software,
Vol. 6, No. 4, pp. 100–108, 1989.

Burnstein, I., F. Saner, “Fuzzy reasoning to support automated program
understanding,” International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 1, Feb. 2000, pp. 115–137.

Burnstein, I., A. Homyen, T. Suwanassart, G. Saxena, R. Grom, “A Test-
ing Maturity Model for software test process assessment and Improve-
ment,” Software Quality Professional (American Society for Quality),
Vol. 1, No. 4, Sept. 1999, pp. 8–21.

Burnstein, I., A. Homyen, T. Suwanassart, G. Saxena, R. Grom, “Using
the Testing Maturity Model to assess and improve your software testing
process,” Proc. of International Quality Week Conf. (QW’99), San Jose,
CA, May 1999.

Burnstein, I., A. Homyen, R. Grom, C. R. Carlson, “A model for assessing
testing process maturity,” CrossTalk: Journal of Department of Defense
Software Engineering, Vol. 11, No. 11, Nov. 1998, pp. 26–30.



594 | Appendix I

Burnstein, I., T. Suwanassart, C. R. Carlson, “Developing a Testing Ma-
turity Model: part I,” CrossTalk: Journal of Defense Software Engineer-
ing, Vol. 9, No. 8, August 1996, pp. 21–24.

Burnstein, I., T. Suwanassart, C. R. Carlson, “Developing a Testing Ma-
turity Model: part II,” CrossTalk: Journal of Defense Software Engi-
neering, Vol. 9, No. 9, Sept. 1996, pp. 19–26.

Card, D. “Leaning from our mistakes with defect causal analysis,” IEEE
Software, Vol. 13, No. 1, 1998, pp. 56–63.

Cangussu, J., R. DeCarlo, A. Mathur, “A Formal Model of the Test Pro-
cess,” IEEE Trans. Software Engineering, Vol. 28, No. 8, August 2002,
pp. 782–796.

Chen, M., M. Kao, “Investigating test effectiveness on object-oriented
software: a case study,” Proc. Twelfth International Quality Week Conf.,
May 1999.

Chen, T., Y. Yu, “On the expected number of failures detected by sub-
domain testing and random testing,” IEEE Trans. Software Engineering,
Vol. 22, 1996, pp. 109–119.

Chernak, Y., “Validating and improving test case effectiveness,” IEEE
Software, Vol. 16, No. 1, 2001, pp. 81–86

Chilenski, J., P. Newcomb, “Formal Specification Tools for Test Cover-
age Analysis,” Proc. IEEE Conf. on Knowledge-Based Software Engi-
neering, Monterey, CA, 1994, pp. 59–68.

Cho, C., “Statistical methods applied to software quality control,” in
Handbook of Software Quality Assurance, second edition, G. Schul-
meyer, J McManus, eds., Van Nostrand Reinhold, New York, 1992.

Clarke, L., A. Podgurski, A. Richardson, S. Zeil, “A comparison of data
flow path selection criteria,” Proc. Eighth International Conf. on SW
Engineering, August 1985, pp. 244–251.

Clouse, A., C. Wells, “Transitioning from EIA/IS-731 to CMMI,”
CrossTalk: Journal of Department of Defense Software Engineering,
Vol. 13, No. 7, July 2000, pp. 15–20.



595Test-Related References |

CMMI Product Development Team, “CMMI for systems engineer-
ing/software engineering, version 1.02 (CMMI-SE/SW, V1.02) staged
representation,” Technical Report CMU/SEI-2000TR-018, ESC-TR-
2000-018, Software Engineering Institute, Nov. 2000.

Coad, P., E. Yourdon, Object-Oriented Analysis, second edition, Your-
don Press, Englewood Cliffs, NJ, 1991.

Coallier, F., “How ISO 9001 fits into the software world,” IEEE Soft-
ware, Vol. 11, No. 1, 1994, pp. 98–100.

Cobb, R., H. Mills, “Engineering software under statistical quality con-
trol,” IEEE Software, Vol. 7, No. 5, 1990, pp. 44–54,

Cook, C., M. Visconti, “New and improved documentation model,”
Technical Report, Oregon State University, 1996.

Crosby, P., Quality Is Free: The Art of Making Quality Certain, Mentor,
New American Library, New York, 1979.

Daich, G., G. Price, B. Ragland, M. Dawood, Software Test Technologies
Report, August 1994, Software Technology Support Center (STSC) Hill
Air Force Base, UT, August 1994.

Dalal, S., C. Mallows, “Some graphical aids for deciding when to stop
testing software,” IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 2, 1990, pp. 169–175.

Dalal, S., C. Mallows, “When should one stop testing software?” J. Amer-
ican Statistical Assoc., Vol. 81, No. 403, pp. 872–879, 1988.

Delamaro, M., J. Maldonado, A. Mathur, “Interface mutation: an ap-
proach for integration testing,” IEEE Transactions on Software Engi-
neering, Vol. 27, No. 3, March 2001, pp. 228–247.

DeMillo, R., R. Lipton, F. Sayward, “Hints on test data selection: help
for the practicing programmer,” Computer, Vol. 11, No. 4, 1978,
pp. 34–41.

Deming, W., Out of the Crisis, MIT Center for Advanced Engineering
Study, Cambridge, MA, 1986.

Dieli, M., “A problem-solving approach to usability test planning,” Proc.



596 | Appendix I

International Professional Communication Conf., Seattle, pp. 265–267,
1988.

Doong, R., P. Frankl, “The ASTOOT approach to testing object-oriented
programs,” ACM Transactions of Software Engineering and Methodol-
ogy, Vol. 3, 1994, pp. 101–130.

D’Souza, R., R. LeBlanc, “Class testing by examining pointers,” J. Object
Oriented Programming, July–August 1994, pp. 33–39.

Duran, J., S. Ntafos, “An evaluation of random testing,” IEEE Trans.
SW Engineering, Vol. 10, 1984, pp. 438–444.

Durant, J., Software Testing Practices Survey Report, Software Practices
Research Center, Technical Report, TR5-93, May 1993.

Dustin, E., J. Rashka, J. Paul, Automated Software Testing, Addison-
Wesley, Reading, MA, 1999.

Ehrlich, W., B. Prasanna, J. Stampfel, J. Wu, “Determining the cost of a
stop-test decision,” IEEE Software, Vol. 10, No. 2, pp. 33–42, 1993.

El Emam, K., D. Goldenson, L. Briand, P. Marshall, “Interrater agree-
ment in SPICE-based assessments: some preliminary reports,” Proc.
Fourth International Conference on the Software Process, Brighton, UK,
1996, pp. 149–156.

Endres, A., “An analysis of errors and causes in system programs,” IEEE
Transactions on Software Engineering, Vol. SE-1, No. 2, 1975.

Fagen, M., “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182–211.

Fenton, N., “Software measurement: a necessary scientific basis,” IEEE
Transactions on Software Engineering, Vol. SE-20, No. 3, pp. 199–206,
1994.

Fenton, N., Software Metrics: A Rigorous Approach, Chapman & Hall,
London, 1991.

Fiedler, S., “Object-oriented unit testing,” Hewlett-Packard Journal,
April 1989, pp. 69–74.



597Test-Related References |

Firth, R., V. Mosley, R. Pethia, L. Roberts, W. Wood, A Guide the Clas-
sification and Assessment of Software Engineering Tools, Technical Re-
port, CMU/SEI-87-TR-10. ESD-TR-87-11, Software Engineering Insti-
tute, Carnegie Mellon, 1987.

Florac, W., A. Carleton, J. Barnard, “Statistical process control: analyzing
a space shuttle onboard software process,” IEEE Software, Vol. 17,
No. 4, 2000, pp. 97–106.

Frankl, P., E. Weyuker, “Provable improvements on branch testing,”
IEEE Trans. Software Engineering, Vol. 19, No. 10, 1993, pp. 962–975.

Frankl, P., E. Weyuker, “A formal analysis of the fault-detecting ability
of testing methods,” IEEE Trans. Software Engineering, Vol. 19, No. 3,
1993, pp. 202–213.

Freedman, P., G. Weinberg, Handbook of Walkthroughs, Inspections,
and Technical Reviews, Dorest House Publishing, New York, 1990.

Ganesan, K., T. Khoshgoftaar, E. Allen, “Case-based software quality
prediction,” International Journal of Software Engineering and Knowl-
edge Engineering, Vol. 10, No. 2, 2000, pp. 139–152.

Gale, J., J. Tirso, C. Burchfiled, “Implementing the defect prevention pro-
cess in the MVS interactive programming organization,” IBM Systems
Journal, Vol. 29, No. 1, 1990.

Garcia, S., “Evolving improvement paradigms: Capability Maturity Mod-
els and ISO/IEC 15504 (PDTR),” Software Process Improvement and
Practice, Vol. 3, No. 1, 1998.

Gelperin, D., A. Hayashi, “How to support better software testing,” Ap-
plication Trends, May 1996, pp. 42–48.

Gelperin, D., “What’s your testability maturity?” Application Trends,
May 1996, pp. 50–53.

Gelperin, D., B. Hetzel, “The growth of software testing,” CACM,
Vol. 31, No. 6, 1988, pp. 687–695.

Gilb, T., Principles of Software Engineering Management, Addison-
Wesley, Reading, MA, 1988.



598 | Appendix I

Gotterbarn, D., K. Miller, S. Rogerson, “Computer society and ACM
approve software engineering code of ethics,” IEEE Computer, Vol. 32,
No. 10, Oct. 1999, pp. 84–88.

Grady, R., Practical Software Metrics for Project Management and Pro-
cess Improvement, Prentice Hall (Pearson Education), Engelwood Cliff,
NJ., 1992.

Grady, R., D. Caswell, Software Metrics: Establishing a Companywide
Program, Prentice Hall (Pearson Education), Englewood Cliff, NJ, 1987.

Graham, D., “Measuring the effectiveness and efficiency of testing,” Proc.
Software Testing, Paris, June 1996.

Gutjahr, W., “Partition testing vs. random testing: the influence of un-
certainty,” IEEE Trans. Software Engineering, Vol. 25, No. 5., Sept./Oct.
1999, pp. 661–674.

Grom, R., “Report on a TMM assessment support tool,” Technical Re-
port, Illinois Institute of Technology, Chicago, IL, 1998.

Hamlet, D., “Are we testing for true reliability?” IEEE Software, Vol. 9,
No. 4, pp. 21–27, 1992.

Harel, D., “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, Vol. 8, 1987.

Harrold, M., G. Rothermel, “Performing data flow testing on classes,”
Proc. Second ACM SIGSOFT Symposium on Foundations of Software
Engineering, Dec. 1994, pp. 154–163.

Harrold, M., J. McGregor, K. Fitzpatrick, “Incremental testing of object-
oriented class structures,” Proc. 14th International Conf. on Software
Engineering, May 1992, pp. 68–80.

Hearns, J., S. Garcia, “Automated test team management: it works!!”
Proc. 10th Software Engineering Process Group Conference (SEPG’98)
Chicago, IL, March 1998.

Hetzel, B., The Complete Guide to Software Testing, second edition, QED
Information Sciences, Inc., Wellesley, MA. 1988.

Hollenbach, C., W. Frakes, “Software process reuse in an industrial set-



599Test-Related References |

ting,” Proc. Fourth International Conf. on Software Reuse, Orlando, FL,
April 1996, pp. 22–30.

Homyen, A. “An assessment model to determine test process maturity,”
Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, 1998.

Hook, J., “Evaluation of the TMM questionnaire,” Technical Report,
Illinois Institute of Technology, Chicago, IL, 1997.

Horgan, J., S. London, M. Lyu, “Achieving software quality with testing
coverage measures,” IEEE Computer, Vol. 27, No. 9, 1994, pp. 60–68.

Horgan, J., S. London, “Data flow coverage and the C language,” Proc.
ACM SIGSOFT Symposium on Testing, Analysis, and Verification, Oct.
1991, pp. 87–97.

Howden, W., “Weak mutation testing and completeness of test sets,”
IEEE Trans. Software Engineering, Vol. 8, No. 4. 1982, pp. 371–379.

Howden, W., “A survey of dynamic analysis methods,” In Software Test-
ing and Validation Techniques, second edition, E. Miller, and W. How-
den, eds., IEEE Computer Society Press, Los Alamitos, CA, 1981.

Humphrey, W., A Discipline for Software Engineering, Addison-Wesley,
Reading, MA. 1995.

Humphrey, W., Managing the Software Process, Addison-Wesley, Read-
ing, MA, 1990.

Humphrey, W., W. Sweet, “A method for assessing the software engi-
neering capability of contractors,” Technical Report, CMU/SEI-87-TR-
23, Software Engineering Institute, Pittsburgh, PA, 1987.

Hurst, P., “Software project management: threads of control,” in Soft-
ware Engineering Project Management, second edition, R. Thayer, ed.,
IEEE Computer Society Press, Los Alamitos, CA, 1997, pp. 410–422.

IEEE Software, “Tools assessment,” special issue, May 1992.

Institute of Electrical and Electronics Engineers, Inc., IEEE Standards
Collection for Software Engineering, 1994 edition, New York, 1994.

Institute of Electrical and Electronics Engineers, Inc., IEEE Standard



600 | Appendix I

1044-1993, IEEE Standard Classification for Software Anomalies, 1993,
all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 830-1993, Recommended Practices for Software Requirements
Specification, 1993, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Std
1045-1992, Standard for Software Productivity Metrics, 1992, all rights
reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 1061-1992, IEEE Standard for a Software Quality Metrics Meth-
odology, 1992, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE standards
IEEE(ANSI) Standard 1209-1992, IEEE Recommended Practice for the
Evaluation and Selection of CASE Tools, 1992, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE Standard. 828-
1990, IEEE/ANSI Standard for Software Configuration Management
Plans, 1990, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 730-1989, Standard for Software Quality Assurance Plans, 1989,
all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 1028-1988, IEEE Standard for Software Reviews and Audits, 1988,
all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, (Reaff 1989), 1988, all rights
reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE Standard.
1042-1987, IEEE/ANSI Guide to Software Configuration Management,
(Reaff. 1993), 1987, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Std



601Test-Related References |

1008-1987, Standard for Software Unit Testing, (Reaff 1993), 1987, all
rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 1016-1987, Recommended Practices for Software Design Descrip-
tions, (Reaff. 1993), 1987, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 1012-1986, (Reaff 1992), Standard for Software Verification and
Validation Plans, 1986, all rights reserved.

Institute of Electrical and Electronics Engineers, Inc., IEEE/ANSI Stan-
dard 829-1983, (Reaff 1991), Standard for Software Test Documenta-
tion, 1983, all rights reserved.

International Organization for Standardization (ISO), ISO/IEC Software
Process Assessment Working Draft—Part 3: Rating processes, version
1.00; Part 5: Construction, selection, and use of assessment instruments
and tools, version 1.00; Part 7: Guide for use in process improvement,
version 1.00, International Organization for Standardization, Geneva,
1995.

International Organization for Standardization (ISO), ISO/IEC 12207,
Information Technology: Software Life Cycle Processes, 1995.

International Organization for Standardization (ISO), Information Tech-
nology: Software Product Evaluation: Quality Characteristics and Guide-
lines for Their Use, ISO/IEC IS 9126, Geneva, ISO, 1991.

Jacobson, I., M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley,
Reading, MA, 1992.

Jorgensen, P., C. Erikson, “Object-oriented integration test,” CACM,
Vol. 37, No. 9, 1994, pp. 30–38.

Juran, J., M. Gryna, M. Frank, Jr., R. Bingham, Jr. (eds.), Quality Control
Handbook, third edition, McGraw-Hill, New York, 1979.

Juran, J., Managerial Breakthrough, McGraw-Hill, New York, 1964.

Kaner, C., J. Falk, H. Nguyen, Testing Computer Software, second edi-
tion, Van Nostrand Reinhold, New York, 1993.



602 | Appendix I

Kehoe, R., A. Jarvis, ISO-9000-3, Springer-Verlag, New York, 1995.

Kellner, M., L. Briand, J. Over, “A method for designing, defining, and
evolving software processes,” Proc. Fourth International Conf. on the
Software Process, Brigthon, UK, Dec. 1996, pp. 37–48.

Kellner, M., R. Phillip, “Practical technology for process assets,” Proc.
8th International Software Process Workshop: State of the Practice in
Process Technology, Warden, Germany, March 1993, pp. 107–112.

Kemerer, C., “How the learning curve affects CASE tool adaptation,”
IEEE Software, pp. 23–28, May 1993.

Khoshgoftarr, T., J. Munson, “Predicting software development errors
using software complexity metrics,” IEEE J. Selected Areas in Comm.,
Vol. 8, No. 2, Feb. 1990, pp. 252–261.

Kit, E., Software Testing in the Real World, Addison-Wesley, Reading,
MA, 1995.

Kitson, D., “An emerging international standard for software process as-
sessment,” Proc. IEEE Third International Software Engineering Stan-
dards Symposium and Forum, Walnut Creek, CA, June 1999.

Koomen, T., M. Pol, Test Process Improvement, Addison-Wesley, Read-
ing, MA, 1999.

Koomen, T., M. Pol, “Improvement of the test process using TPI,” Tech-
nical Report, IQUIP Informatica B.V., Diemen, The Netherlands, 1998,
http://www.iquip.nl.

Korel, B., I. Burnstein, R. Brevelle, “Postcondition–based stress testing in
certification of COTS components,” Proceedings of the First Interna-
tional Software Assurance Certification Conference, Washington, D.C.,
March 1999.

Kozaczynski, W., J. Ning, “Automated program recognition by concept
recognition,” Automated Software Engineering, Vol. 1, 1994, pp. 61–78.

Kung, D., P Hsia, J. Gao, Testing Object-Oriented Software, IEEE Com-
puter Society Press, Los Alamitos, CA, 1998.

Laitenberger, O., K. El. Eman, T. Harbich, “An internally replicated



603Test-Related References |

quasi-experimental comparison and checklist and perspective-based read-
ing of code documents,” IEEE Transactions on Software Engineering,
Vol. 27, No. 5, May 2001, pp. 387–421.

Laski, J., B. Korel, “A data flow oriented testing strategy,” IEEE Trans.
Software Engineering, Vol. 9, No. 3, 1983, pp. 347–354.

Lee, L., The Day the Phones Stopped, Primus, New York, 1992.

Legg, D., “Synopsis of COCOMO,” Software Engineering Project Man-
agement, second edition, R. Thayer, ed., IEEE Computer Society Press,
Los Alamitos, CA, 1997, pp. 230–245.

Linnenkugel, U., M. Mullerburg, “Test data selection criteria for (soft-
ware) integration testing,” Proc. First International Conf. Systems Inte-
gration, April 1990, pp. 709–717.

Lyu, M., A. Nikora, “Applying reliability models more effectively,” IEEE
Software, Vol. 9, No. 4, pp. 43–52, 1992.

Mantei, M., “The effect of programming team structures on program-
ming tasks,” Communications of the ACM, Vol. 24, No. 3, 1981,
pp. 106–113.

Marick, B., The Craft of Software Testing, Prentice Hall, Englewood
Cliffs, NJ, 1995.

Marks, D., Testing Very Big Systems, McGraw-Hill, New York, 1992.

Martin, J., W. Tsai, “N-fold inspection: a requirements analysis tech-
nique,” Comm. ACM, Vol. 33, No. 2, 1990, pp. 225–232.

Masters, S., C. Bothwell, “A CMM appraisal framework, version 1.0,”
Technical Report, CMU/SEI-95-TR-001, Software Engineering Institute,
Pittsburgh, PA, 1995.

Mays, R., “Defect prevention and total quality management,” in Total
Quality Management For Software, G. Schulmeyer, J. McManus, eds.,
Van Nostrand, Reinhold, NY, 1992.

McCabe, T., G. Schulmeyer, “The Pareto principle applied to software
quality assurance,” in Handbook of Software Quality Assurance, second



604 | Appendix I

edition, G. Schulmeyer, J. McManus, eds., Van Nostrand Reinhold, New
York, 1992.

McCabe, T., C. Butler, “Design complexity measurement and testing,”
CACM, Vol. 32, No. 12, 1989. pp. 1415–1425.

McCabe, T., “A complexity measure,” IEEE Transactions on Software
Engineering, Vol SE-2, No. 4, 1976, pp. 308–320.

McCall, J., P. Richards, G. Walters, Factors in Software Quality, Tech-
nical Report 77CIS 02, General Electric, Command and Information Sys-
tems, Sunnyvale, CA, 1977.

McGregor, J., A. Kare, “Parallel architecture for component testing of
object-oriented software,” Proc. Ninth International Quality Week
Conf., May 1996.

Mills, C., “Usability testing in the real world,” SIGCHI Bulletin, Vol. 19,
No. 1, pp. 43–46, 1987.

Mills, H., M. Dyer, R. Linger, “Cleanroom software engineering,” IEEE
Software, Vol. 4, No. 5, pp. 19–24, 1987.

Mills, H., “On the statistical validation of computer programs,” Tech-
nical Report, FSC-72-6015, IBM Federal Systems Division, Gaithersburg,
MD, 1972.

Moore, J., “ISO 12207 and related software life cycle standards,”
http://www.acm.org.tsc/lifecycle.html.

Morell, L. “Theoretical insights into fault-based testing,” Proc. Second
Workshop on Software Testing, Verification, and Analysis (IEEE/
ACM/SIGSOFT), Banff, Canada, 1988, pp. 45–62.

Moseley, V., “How to assess tools efficiently and quantitatively,” IEEE
Software, pp. 29–32, May 1993.

Murphy, G., P. Townsend, P. Wong, “Experiences with cluster and class
testing,” CACM, Vol. 37, No. 9, 1994, pp. 39–47.

Musa, J., “Operational profiles in software reliability engineering,” IEEE
Software, Vol. 10, No. 3, pp. 14–32, 1993.



605Test-Related References |

Musa, J., A. Ackerman, “Quantifying software validation: when to stop
testing,” IEEE Software, Vol. 6, No. 3, May 1989.

Musa, J., A Iannino, K. Olomoto, Software Reliability, Measurement,
Prediction Application, McGraw-Hill, New York, 1987.

Myers, G., “A controlled experiment in program testing and code walk-
throughs/inspections,” CACM, 1978, pp. 760–768.

Myers, G., The Art of Software Testing, John Wiley, New York, 1979.

Olsen, K., P. Stall Vinje, “Using the testing maturity model in practical
test-planning and postevaluation,” EuroSTAR98 Conference, Munich,
Germany, 1998.

Osterweil, I., “Strategic directions in software quality,” ACM Computing
Surveys, Vol. 28, No. 4, 1996, pp. 738–750.

Ostrand, T., E. Weyuker, “Data flow–based test adequacy analysis for
languages with pointers,” Proc. ACM SIGSOFT Symposium on Testing,
Analysis, and Verification, Oct. 1991, pp. 74–86.

Parrish, A., S. Zweben, “Analysis and refinement of software test data
adequacy properties,” IEEE Trans. Software Engineering, Vol. 17,
No. 7, 1991, pp. 565–581.

Paulk, M., C. Weber, B. Curtis, M. Chrissis, The Capability Maturity
Model, Addison-Wesley, Reading MA., 1995.

Paulk, M., M. Konrad, “An overview of ISO’s SPICE project,” American
Programmer, Vol. 7, No. 2, Feb. 1994, pp. 16–20.

Paulk, M., M. Konrad, “An overview of ISO’s SPICE project,” American
Programmer, Vol. 7, No. 2, 1994, pp. 16–20.

Paulk, M., B. Curtis, M. Chrissis, and C. Weber, “Capability Maturity
Model, version 1.1,” IEEE Software, Vol. 10, No. 4, 1993, pp. 18–27.

Paulk, M., C. Weber, S. Garcia, M. Chrissis, M. Bush, “Key practices of
the Capability Maturity Model, version 1.1,” Technical Report,
CMU/SEI-93-TR-25, Software Engineering Institute, Pittsburgh, PA,
1993.



606 | Appendix I

Perry. D., G. Kaiser, “Adequate testing and object-oriented program-
ming,” J. Object Oriented Programming, Vol. 2, No. 5, 1990,
pp. 13–19.

Perry, W., Effective Methods for Software Testing, John Wiley, New
York, 1995.

Pham, H., Software Reliability and Testing, IEEE Computer Society Press,
Los Alamitos, CA, 1995.

Poston, R., Automating Specification-Based Software Testing, IEEE
Computer Society Press, Los Alamitos, CA, 1996.

Poston, R., “Testing tools combine best of new and old,” IEEE Software,
Vol. 12, No. 2, 1995, pp. 122–126.

Poston, R., “Automated testing from object models,” Comm. of the
ACM, Vol. 37, No. 9, 1994, pp. 48–58.

Poston, R., M. Sexton, “Evaluating and selecting testing tools,” IEEE
Software, pp. 33–42, May 1992.

Pressman, R., Software Engineering: A Practitioner’s Approach, fifth edi-
tion, McGraw-Hill, Boston, MA, 2001.

Prowell, S., C. Trammell, R. Linger, J. Poore, Cleanroom Software En-
gineering, Addison-Wesley, Reading, MA, 1999.

Puffer, J., A. Litter, “Action planning,” IEEE Software Engineering Tech-
nical Council Newsletter, Vol. 15, No. 2, 1997, pp. 7–10.

Putman, D., “Using statistical process control with automated test pro-
grams,” CrossTalk: The Journal of Defense Software Engineering,
Vol. 11, No. 8, August 1998, pp. 16–20.

Quilici, A., “A memory-based approach to recognizing program plans,”
CACM, Vol. 37, No. 5, 1994, pp. 84–93.

Rakos, J., Software Project Management for Small- to Medium-Sized
Projects, Prentice Hall, Englewood Cliffs, NJ, 1990.

Rangaraajan, K., P. Eswar, T. Ashok, “Retesting C�� classes,” Proc.
Ninth International Quality Week Conf., May 1996.



607Test-Related References |

Rapps, S., E. Weyuker, “Selecting software test data using data flow in-
formation,” IEEE Trans. Software Engineering, Vol. 11, No. 4, 1985,
pp. 367–375.

Richards, F., Computer Software: Testing, Reliability Models and Quality
Assurance, Technical Report, NPS-55RH74071A, Naval Postgraduate
School, Monterey, CA, 1974.

Roper, M., Software Testing, McGraw-Hill, London, 1994.

Roper, T., Software Testing Management: Life on the Critical Path, Pren-
tice Hall, Englewood Cliffs, NJ, 1993.

Rubin, J., Handbook of Usability Testing, John Wiley, New York, 1994.

Sauer, C., D. Jeffery, L. Land, P. Yetton, “The effectiveness of software
development technical reviews: a behaviorally motivated program of re-
search,” IEEE Transactions on Software Engineering, Vol. 26, No. 1,
2000, pp. 1–14.

Saxena, G., “A framework for building and evaluating process maturity
models,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL, 1999.

Schell, D., “Overview of a typical usability test,” Proc. International Pro-
fessional Communications Conf., Winnipeg, pp. 117–125, 1987.

Schulmeyer, G., “Software quality assurance metrics,” in Handbook of
Software Quality Assurance, G. Schulmeyer and J. McManus, eds., Van
Nostrand Reinhold, New York, 1992.

Schulmeyer, G., “The move to zero defect software,” in Handbook of
Software Quality Assurance, second edition, G. Schulmeyer, J. McManus,
eds., Van Nostrand Reinhold, New York, 1992.

Schulmeyer, G., “Software quality lessons from the quality experts,” in
Handbook of Software Quality Assurance, second edition, G. Schul-
meyer, J. McManus, eds., Van Nostrand Reinhold, New York, 1992.

Sheldon, F., K. Kavi, R. Tausworthe, J. Yu, R. Brettschneider, W. Everett,
“Reliability measurement: from theory to practice,” IEEE Software,
Vol. 9, No. 4, pp. 13–20, July 1992.

Shrum, S., “Choosing a CMMI model representation,” CrossTalk: Jour-



608 | Appendix I

nal of Department of Defense Software Engineering, Vol. 13, No. 7,
July 2000, pp. 6–7.

Smith, M., D. Robson, “A framework for testing object-oriented pro-
grams,” J. Object Oriented Programming, June 1992, pp. 45–53.

Shooman, M., Software Engineering: Design, Reliability and Manage-
ment, McGraw-Hill, New York, 1983.

Speed, J., “What do you mean I can’t call myself a software engineer?”
IEEE Software, Nov./Dec. 1999, pp. 45–50.

Spencer, B., “Software inspections at applicon,” CrossTalk: Journal of
Defense Software Engineering, Vol. 7, No. 10, Oct. 1994, pp. 11–17.

Subramaniam, B., “Effective software defect tracking: reducing project
costs and enhancing quality,” CrossTalk: The Journal of Defense Soft-
ware Engineering, Vol. 12, No. 4, April, 1999, pp. 3–9.

Sullivan, P., “Beyond a narrow conception of usability testing,” IEEE
Transactions on Professional Communications, Vol. 32, No. 4, pp. 256–
264, 1989.

Suwannasart, T., “Towards the development of a testing maturity
model,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL, 1996.

Thayer, R., ed., Software Engineering Project Management, second edi-
tion, IEEE Computer Society Press, Los Alamitos, CA, 1997.

Tian, J. L. Peng, “Test-execution-based reliability measurement and mod-
eling for large commercial software,” IEEE Transactions on Software
Engineering, Vol. 21, No. 5, 1995, pp. 405–414.

Tichy, W., “Design, implementation, and evaluation of a revision control
system,” Proc. Sixth International Conf. Software Engineering, 1982,
pp. 58–67.

Tsai, B., S. Stobart, N. Parrington, I. Mitchell, “A state-based testing
approach providing data flow coverage in object-oriented class testing,”
Proc. Twelfth International Quality Week Conf., May 1999.

Voas, J., “Certification: reducing the hidden costs of poor quality,” IEEE
Software, July/August 1999, pp. 22–25.



609Test-Related References |

Voas, J., “Certifying off-the-shelf software components,” IEEE Com-
puter, June 1998, pp. 53–59.

Voas, J., “A dynamic failure model for propagation and infection analysis
on computer programs,” Ph.D. Thesis, College of William and Mary in
Virginia, May 1990.

Wakid, S., D. Kuhn, D. Wallace, “Toward credible IT testing and certi-
fication,” IEEE Software, July/August 1999, pp. 39–47.

Walton, G., J. Poore, C. Trammell, “Statistical testing of software based
on a usage model,” Software: Practice and Experience, Vol. 25, No. 1,
1995, pp. 97–108.

Weiser, M., “Programmers use slices when debugging,” CACM, Vol. 25,
No. 7, 1982, pp. 446–452.

Weller, E., “Using metrics to manage software projects,” IEEE Software,
Vol. 9, No. 5, 1994, pp. 27–32.

Weller, E., “Practical applications of statistical process control,” IEEE
Software, Vol. 14, No. 3, 2000, pp. 48–55.

Weszka, J., P. Babel, J. Ferguson, “CMMI: evolutionary path to enterprise
process improvement,” CrossTalk: Journal of Department of Defense
Software Engineering, Vol. 13, No. 7, July 2000, pp. 8–11.

Weyuker, E., T. Ostrand, J. Brophy, R. Prasad, “Clearing a career path
for software testers,” IEEE Software, Vol. 17, No. 2, March/April 2000,
pp. 76–82.

Weyuker, E., “The evaluation of program-based software test adequacy
criteria,” CACM, Vol. 31, No. 6, 1988, pp. 668–675.

Weyuker, E., “Axiomatizing software test data adequacy,” IEEE Trans.
Software Engineering, Vol. 12, No. 12, 1986, pp. 1128–1138.

Whittaker, J., “What is software testing? and why is it so hard?” IEEE
Software, Jan./Feb. 2000, pp. 70–79.

Wilde, N., “Testing your objects,” The C Users Journal, May 1993,
pp. 25–32.



610 | Appendix I

Wigle, G., G. Yamamura, “Practices of an SEI CMM level 5 SEPG,”
CrossTalk: The Journal of Defense Software Engineering, Vol. 10,
No. 11, Nov. 1997, pp. 19–22.

Wilkins, B., Principles of Testing in VSLI Circuits and Systems in Silicon,
A. Brown, ed., McGraw-Hill, New York, 1991, pp. 222–250.

Zawacki, R., “How to pick eagles,” Datamation Magazine, Sept. 1995,
pp. 115–16.

Zeitler, D., “Realistic assumptions for software reliably models,” Proc.
International Symp. Software Reliability Eng., IEEE Press, Los Alamitos,
CA, pp. 67–74, 1991.

Zells, L., “Learning from Japanese TQM applications to software engi-
neering,” Total Quality Management for Software, G. Schulmeyer, J.
McManus, eds., Van Nostrand Reinhold, New York, 1992.

Zhu, H., “A formal analysis of the subsume relation between software
test adequacy criteria,” IEEE Transactions on Software Engineering,
Vol. 22, No. 4, 1996, pp. 248–255.

Zhu, H., P. Hall, J. May, “Software unit test coverage and adequancy,”
ACM Computing Surveys, Vol. 29, No. 4, 1997, pp. 366–427.

Zubrow, D., W. Hayes, J. Siegel, D. Goldenson, “Maturity question-
naire,” Technical Report, CMU/SEI-94-SR-7, Software Engineering In-
stitute, Pittsburgh, PA, 1994.



A P P E N D I X I I

S A M P L E T E S T P L A N

This appendix contains an abbreviated version of a system test plan that
was developed for instructional purposes. It will illustrate for the reader
the contents of several of the major components of a typical test plan.
Test plan attachments are not included in this example.

For pedagogical purposes, the software to be tested is an automated
course scheduling system called the “College Course Scheduler (CCS),”
which is under development for a local college. The proposed client is
South Central College. The college offers bachelors and masters degree
programs, and both undergraduate and graduate courses are listed in its
catalog and course schedules. The dean of the college is the principle
liaison to the development group called Windy City Developers Corpo-
ration. The users are departmental administrative assistants and chair-
persons, and the college registrar.

P r o j e c t B a c k g r o u n d

Currently the class scheduling is done manually based on college-based
policies. Each instructor specifies in writing the courses he or she prefers



612 | Appendix I I

to teach for the given semester, and his or her time-of-day preferences for
lecture and laboratory sessions. The preferences as input by the instructor
must be valid courses and lecture times, which are specified for each de-
partment. The written preferences are submitted to the administrative
assistant in the department who does the manual scheduling. If an instruc-
tor does not submit a written list of preferences, the courses are scheduled
without preferences. The final schedule lists each course offered, the in-
structor, the class time, and the room. Unschedulable items are listed in
a separate report. Hard copies of the final schedule are sent to each
instructor.

When manually scheduling, the administrative assistant must be sure
that the following rules are adhered to:

1. the classroom is large enough to hold the enrolled students;
2. a slot for a room is given to only one course;
3. graduate-level courses are given preference over undergraduate

courses;
4. no two graduate courses can be scheduled at the same time.

G e n e r a l P r o j e c t O v e r v i e w

Based on interviews with client groups, the automated course scheduler
will operate as follows. Instructor preferences for courses, time slots, and
special needs should be emailed to the administrative assistants of their
respective departments in a timely manner (5 weeks into the current se-
mester to schedule for the next semester). The administrative assistants
will sort the preferences in order of the time received and store them in a
formatted file. If an instructor does not respond with specific needs by
the designated deadline, courses will be assigned based on past schedules,
and these courses will have no time preferences.

The course scheduling system will have a database of rooms for each
campus building, number of seats in each room, and special features in
each room such as a pull-down screen, microphones, and TV equipment
for remote broadcasting. It will also have a database of instructors (and
their email addresses) and the courses they have taught over a 5-year
period, the time slots (total minutes) normally allocated for each of the



613Sample Test Plan |

classes taught at the college, and estimated enrollments for the courses.
When the administrative assistant (or chairperson) submits the file of pref-
erences at the end of the fifth week of the semester (to schedule for the
upcoming semester) the system produces a report listing all of the classes
assigned for this semester, the instructors, the class time period, and a
room number. The scheduling algorithm must adhere to the four rules
described previously. Each faculty member is emailed a copy of the report
and also receives a hard copy to confirm the correctness of the schedule
and to address any errors. The schedules from all the departments are
published in the collegewide course schedule for each semester that is
distributed to all students.

Administrative assistants, department chairs, and the registrar can
query the system to retrieve information on course offerings, classrooms,
course time slots, and so on. Chairpersons and administrative assistants
can make changes to the databases associated with their departments.
Course schedules dating back through a 7-year period will also be stored
in the system database, and users can query for this information as well.

The system should be user friendly; all users should be computer
literate. The system should run on a work station with access to a server
and print reports on all types of printers. It will have to interface with an
email facility to collect preferences and to notify instructors.

S y s t e m R e q u i r e m e n t s

The following is an abbreviated description of the project requirements.

C C S - R E Q - 1 . S c h e d u l i n g R e p o r t s

The CCS system should produce a schedule report for each depart-
ment initiated by a request from a departmental chair or administrative
assistant. The schedule should list each course, the course number, in-
structor, lecture times, and room number. Unscheduled courses should be
listed in a separate report along with the reasons—for example, a conflict
with another course, no room with proper capacity. The scheduling al-
gorithm requires information from a database of room numbers for each
department, their capacity, and special features. Databases of courses
from the department catalogs, valid lecture times, and course instructors



614 | Appendix I I

are also part of the system. The departmental schedule report should be
emailed to appropriate faculty; it can be printed and is also saved in a file
for use in printing the collegewide course schedule that is assembled by
the college registrar.

C C S - R E Q - 2 . P r e f e r e n c i n g I n p u t s

The system should accept a file input by the departmental adminis-
trative assistant or chair, listing course numbers offered for the semester,
instructors, expected enrollments, and a set of lecture time preferences.

C C S - R E Q - 3 . Q u e r y i n g

Users should be able to query the system for courses, instructors,
room information, and past preferences. The system should also save
scheduling information over the last 7 years for inspection by users.

C C S - R E 4 . E - m a i l N o t i f i c a t i o n

The system should have the ability to email a scheduling report to
each faculty member in each department.

C C S - R E Q - 5 . U s e r I n t e r f a c e

The system should be menu-driven and easy to learn. A Help facility
is required, and users should get feedback on system activities. The system
should give helpful feedback in the case of user errors.

C C S - R E Q - 6 . P e r f o r m a n c e

Issuing a scheduling report for 20 courses, each with up to 5 prefer-
ences, should take no longer than 1 minute. Queries should take no longer
than 1 minute to retrieve system information, assuming that there are 200
courses listed in the college catalog (not all are offered each semester), 75
instructors (full and part time), 12 departments, and 200 rooms on cam-
pus. Currently there are 12 chairpersons, one registrar, and 24 adminis-
trative assistants. The maximum number of simultaneous users is esti-
mated at 15. Only one person in each department can request a scheduling
run at a given time. Updates to a departmental schedule are allowed up
to the designated completion date. After that date only the registrar can
make any changes.



615Sample Test Plan |

C C S - R E Q - 7 . S e c u r i t y

The system should be secure, and only authorized users be granted
access. There are two levels of users: (i) the college registrar who is the
system administrator, and (ii) the departmental administrative assistants
and chairpersons. The registrar has all system privileges. All users may
generate schedules and formulate queries. In addition, users in each de-
partment can maintain (add, delete, modify) the appropriate data in the
databases associated with their respective department. Users may not alter
information from outside departments. The South Central College reg-
istrar is responsible for adding, deleting, and modifying user records, and
assigning user privileges.

C C S - R E Q - 8 . D a t a b a s e A d m i n i s t r a t i o n

Users should have the ability to view, modify, add, and delete infor-
mation from the system databases appropriate to their departments, and
access level.

C C S - R E Q - 9 . H a r d w a r e a n d S o f t w a r e C o n s t r a i n t s

The CCS System should run on a network of UNIX-based worksta-
tions. A central server will contain the necessary databases and querying
capabilities.



COLLEGE COURSE SCHEDULER

(CCS)

SYSTEM TEST PLAN

for

S O U T H C E N T R A L C O L L E G E

P R E P A R E D B Y

Jane Smith, Test Group Manager

Windy City Development Corporation

J A N U A R Y 1 5 , 2 0 0 1

Contents

1. Test Plan Identifier
2. Introduction
3. Items to be Tested
4. Features to be Tested
5. Approach
6. Pass/Fail Criteria
7. Suspension and Resumption Criteria
8. Test Deliverables
9. Testing Tasks

10. The Testing Environment
11. Responsibilities
12. Staffing and Training Needs
13. Scheduling
14. Risks and Contingencies
15. System Test Costs
16. Approvals



617Sample Test Plan |

1 . T e s t P l a n I d e n t i f i e r

CCS-WCD-2001-4

2 . I n t r o d u c t i o n

The following sections describe the nature of the system under test, the
test objectives, and the scope. A list of related documents is also provided.

2 . 1 . N a t u r e o f t h e P r o j e c t

The College Course Scheduler (CCS) is being developed for the client
organization, South Central College. The system will automate the pro-
cess of course scheduling for the college, a tedious task that previously
has been performed manually by departmental administrative assistants.
Course scheduling is an important task for the college that is performed
every semester to place instructors and students in classrooms that meet
their needs. The client expects that the CCS system will perform the task
more efficiently, accurately, and securely than the current manual system.
It will relieve the chairpersons and administrative assistants from a time-
consuming task and allow them to devote their time to other important
matters that occur before each semester begins.

Delivering a high-quality software system is important to the client,
since they will be depending on the software to implement a major opera-
tion that is vital to the institution. Windy City is a relatively new software
development firm (established 1990), and it is important to us to deliver
a fully functional CCS system on time, within budget, and of a high qual-
ity in terms of functionally, performance, security, and robustness. A very
low rate of failure is our goal.

Windy City’s test process has been assessed at TMM level 3, which
means that we have a dedicated and trained test group, test policies are
in place, we have a test planning process, and we are familiar with basic
testing techniques. We also have the staff, training, and tools in place to
insure that the CCS software will be evaluated effectively with respect to
the required functional and quality attributes.

2 . 2 . S y s t e m T e s t O b j e c t i v e s a n d S c o p e

This test plan describes the environment, activities, tasks, tools, costs,
and schedules for system testing the College Course Scheduler (CCS) sys-



618 | Appendix I I

tem being developed for South Central College by Windy City Develop-
ment Our objective for system testing are to insure that:

• all the required functionalities, of the CCS are in place and are work-
ing correctly according to the client’s requirements;

• the software meets its performance requirements;

• the software is reliable and robust; it can recover gracefully from
failures;

• the software is easy to use and maintain;

• the software is secure;

• it interfaces properly with the required external software and
hardware.

A full set of system tests will be performed including:

functional testing (input of preferences, scheduling with preferences,
scheduling without preferences, inability to schedule, report generation,
querying, database updates, communication links, system administration)

performance testing (response time for queries and reports)

stress testing (maximum number of users and maximum number of sched-
uling transactions)

security testing (login, and access rights).

2 . 3 . R e l a t e d D o c u m e n t s

The following documents are being used as sources of information
for the development of this test plan.

CCS Requirements Document (CCS-REQ-1-2001)
CCS Software Quality Assurance Plan (CCS-SQA-P-1-2001)
Windy City System Test Plan Template (STP-T-5-1995)
CCS Configuration Management Plan (CCS-CMP-1-2001)
Windy City Test Policy and Procedure Document (TPP-2-1995)
CCS Project Management Plan (CCS-SPMP-2-2001)



619Sample Test Plan |

CCS Design Specification Document (CCS-DS-3-2001)
CCS Master Test Plan (CCS-MTP-3-2001)

The following are test-related documents that will be prepared for
the CCS system and can be used as information sources for the system
test planners.

CCS Unit Test Plan (CCS-UTP-4-2001)
CCS Integration Test Plan (CCS-ITP-4-2001)
CCS Acceptance Test Plan (CCS-ATP-5-2001)
CCS Usability Test Plan (CCS-UTP-12-3-2001)

3 . I t e m s t o B e T e s t e d

All of items that constitute the College Course Scheduler (CCS) system
will be tested during the system test to insure that they work together to
implement the client’s requirements. These items are listed below with
their identification number, version number, and source code library.
These items constitute the testable configuration for the CCS software.

N A M E I D E N T I F I E R L I B R A R Y V E R S I O N N U M B E R

main CCS-1 Main_lib 2.3
get_val_input_file CCS-2 Input_lib 1.1
validate_file CCS-3 Input_lib 1.2
validate_rooms CCS-4 Input_lib 1.2
validate-courses CCS-5 Input_lib 1.3
validate_lec_times CCS-6 Input_lib 2.1
get_course_index CCS-7 Input_lib 2.2
get-val_preferences CCS-8 Input_lib 2.2
form_course_record CCS-9 Input_lib 1.3
separate-courses CCS-10 Input_lib 1.4
schedule CCS-11 Input_lib 1.5
get_room_index CCS-11 Input_lib 1.5
sched_ug_prefs CCS-12 Input_lib 2.3
sched_gr_prefs CCS-13 Input_lib 2.4
sched_ug_no_pref CCS-14 Input_lib 2.3
sched_gr_no_prefs CCS-15 Input_lib 1.1
output CCS-16 Output_lib 1.1



620 | Appendix I I

print_schedule CCS-17 Output_lib 2.3
e-mail_schedule CCS-18 Output_lib 1.5
print_no_schedule CCS-19 Output_lib 1.5
query CCS-20 Query_lib 2.1
form_query CCS-21 Query_lib 2.1
database_admin CCS-22 Database_lib 1.1
sys_admin CCS-23 Admin_lib 1.1
login CCS-24 Admin_lib 2.1
select_options CCS-25 Admin_lib 2.1
help CCS-26 Help_lib 2.2

4 . F e a t u r e s t o B e T e s t e d

The following is a list of the features to be tested along with their design
specification identifier.

F E A T U R E

D E S I G N
S P E C I F I C A T I O N I D E N T I F I E R

Scheduling with preferences CCS-DS-3-2001-1
Scheduling without preferences CCS-DS-3-2001-2
Report—printing CCS-DS-3-2001-3
Report—emailing CCS-DS-3-2001-4
Submitting preferences CCS-DS-3-2001-5
Preferences CCS-DS-3-2001-6
Security CCS-DS-3-2001-7
Querying CCS-DS-3-2001-8
Multiple users CCS-DS-3-2001-9
Response-time reports CCS-DS-3-2001-10
Database administration CCS-DS-3-2001-11
Interface CCS-DS-3-2001-12
Help CCS-DS-3-2001-13
System administration CCS-DS-3-2001-14

Configuration and recovery tests will not be performed for this release
due to time constraints. Future releases will undergo such tests. Usability
testing is covered in the CCS-Usability Test Plan (CCS-UTP-12-3-2001).



621Sample Test Plan |

5 . A p p r o a c h

Windy City Software is a TMM level 3 organization. We have a dedicated
and trained testing group, and have the resources and environment nec-
essary to test all software that we develop to insure high quality and
adherence to our clients’ requirements. The College Course Schedule sys-
tem will be tested thoroughly on several levels (refer to related documents
under Section 2.3). System-level tests will be thorough and extensive.
All items will be tested to insure they work together correctly; all fea-
tures and requirements will be tested to insure they meet user needs. A
requirements-to-test tracer will be used to insure all requirements are cov-
ered by at least one test case. Templates for test design and test case
specifications are found in the Windy City Test Policy and Procedure
document TTP-2-1995. The test cases and design specifications, as well
as any test scripts that are prepared, will be saved in a test repository for
use in future releases.

5 . 1 . S o u r c e s o f S a m p l e D o m a i n D a t a a n d T e s t O r a c l e s

The Dean of South Central College will assist in providing typical
scheduling inputs and outputs, rooms, courses, enrollments, and other
necessary college-related information for the test database. Expected us-
age patterns will also be described. Input data from the past six semesters
will be used, and the schedules generated will be compared to the existing
schedules to help in evaluating the system.

5 . 2 . S t a f f

Two test engineers, Prerek Patel and Sally Jordan, will be responsible
for test case design, test execution, and recording of results. They will be
supervised by Jane Smith, test manager, and Jonathan Boyd, lead test
engineer. All have at least 5 years experience in testing similar systems
and have had in-house training in the application of test design techniques
and testing tool usage.

5 . 3 . R e c o r d K e e p i n g

All events observed during execution will be recorded in a test log
that will be associated with each test. All failures will assigned a severity



622 | Appendix I I

level and be recorded in a test incident/problem report. A tally of the
number of the latter reports will be recorded. The formats for test logs
and test incident/problem reports are described in the Windy City Test
Policy and Procedure document, TTP-2-1995. All defects revealed during
system test will be recorded in the defect repository. The number of de-
fects found (by type and severity level) per KLOC in each type of system
test will also be recorded for quality evaluation. Tester productivity will
be monitored using a measure of the number of test cases developed per
week, and the number of test cases executed per week.

5 . 4 . T e s t S t a t u s

System testing will be monitored through weekly test status meetings.
Plots and summary reports will be prepared by Jane Smith and Jonathan
Boyd. The number of requirements covered per week versus the total
number of requirements will be one of the items plotted to track testing
progress. Other items to be plotted include the number of defects of a
specific severity level found per week. Measurements, plots and templates
associated with test status reports are described in the Windy City Test
Policy and Procedures standard document, TTP-2-1995. Testing costs
will be monitored using earned values as described in Windy City Test
Policy and Procedures document, TTP-2-1995.

5 . 5 . T e s t T o o l s

The following tools will be used to support the system testing effort.
All testing personnel involved in this project have been trained and have
experience in using these tools. The role of these tools is described in the
Windy City Test Policy and Procedures document, TTP-2-1995.

Support Tools for System Testing CCS

Configuration management tool
Configuration building tool
Requirements-to-test-tracer
Capture-replay tool/comparator
Defect tracker
Performance testing tool
Load generator



623Sample Test Plan |

5 . 6 . S t o p - T e s t C r i t e r i a

A decision to stop system testing will be based on tracking (i) coverage
of all the requirements, and (ii) the number of open incident/problem
reports. We will consider system test to be completed when all the re-
quirements have been covered by at least one test case, and no inci-
dent/problem reports with associated defect severity levels of 1–3 (cata-
strophic-moderate impact) are outstanding. We accept the risk that the
software may still contain low severity level defects that have a minimal
effect on the users.

5 . 7 . T y p e s o f S y s t e m T e s t s

F U N C T I O N A L T E S T I N G . All functional requirements as described in
the CCS Requirements Document (CCS-REQ-1-2001) will be evaluated.
The following black box test design techniques will be used:

1. equivalence class partitioning and boundary-value analysis (ECP/
BVA);

2. state transition testing.

In general, functional tests will be designed using ECP/BVA to insure that
all classes of legal inputs—for example, correct courses, time preferences,
and instructors—are accepted by the software and that illegal inputs are
rejected. In the case of the latter, the system must remain functional. All
possible classes of system outputs will be exercised and examined; for
example, all types of scheduling reports of various sizes and for represen-
tative departments will be generated and printed. Test cases indicating no
preferences, and those resulting in conflicts or inability to schedule, will
also be designed. The ability to email schedules to faculty members from
representative departments will also be tested. The help facility will be
evaluated with requests for help on inputting preferences, generating
queries, updating departmental databases, and generating a schedule. The
system administration function will be evaluated with respect to adding,
deleting and modifying user information, and proper assignment of user
access rights.



624 | Appendix I I

All effective system states and state transitions will be exercised and
examined; for example, the inputting preferences state, the report gen-
eration state, the entering a new user state. The system state transition
diagram as found in CCS Requirements Document (CCS-REQ-1-2001)
will be used as an information source for test design. Input data from
manual scheduling operations will also serve as a source for designing
test data, and schedules obtained from these manual operations will be
used as oracles to evaluate the system outputs. Test design specifications
and test cases are found in attachments to this test plan.

P E R F O R M A N C E T E S T I N G . The critical performance requirements
are expressed in terms of time required for report generation and response
time for queries. The system will be tested with preferences and course
data from the smallest department—philosophy—and the largest depart-
ment—computer science—to determine report generation time. Queries
will be formulated based on typical inputs supplied by the college dean.
Response times will be recorded. Average numbers of simulated sched-
uling transactions and queries will also be used to evaluate performance
with multiple users.

S E C U R I T Y T E S T I N G . Tests will be run using legal and illegal user
names and passwords to insure that unauthorized users do not have access
to the system, and that each type of user has access to the allowed system
features appropriate for his/her security level. Tests representing the add-
ing, modifying, and deleting of users will also be designed. Testers will
attempt to identify any trap doors that allow unauthorized users to access
the system. This will be implemented by allowing Tom White and John
Li, testers not formally assigned to the test group for this project, to serve
as a “tiger team.” In this capacity they will attempt to “break-into” the
software using any means they devise. All attempts will be documented
and the results logged.

S T R E S S T E S T I N G . Stress testing is important for the CCS system to
uncover race conditions, deadlocks, depletion of resources in unusual or
unplanned patterns, and upsets in the normal operation of the software
system. System limits and threshold values will be exercised. Several de-
partmental users may access the CCS at the same time, placing a heavy



625Sample Test Plan |

load of scheduling transactions and queries on system resources. This is
most likely to occur during the fifth week of each semester, when sched-
uling for the next semester must be done. The average number of users is
estimated to be 15. During stress testing, inputs from 25 users will be
simulated and system behavior observed. Tools will monitor CPU usage,
number of system calls, interrupts, and other system characteristics to
determine if any abnormal events have occurred. System parameters will
be tuned to maximize efficiency.

R E G R E S S I O N T E S T I N G . This is not a type of system test but consti-
tutes a retesting of code when changes are made. Regression testing for
the CCS system will be conducted when changes are made due to defect
repairs. The regression testing will be done by running all of the tests on
the new version of the code that were run on the old version and then
comparing results. A capture-replay tool will be used to run and rerun
the tests where feasible, and its associated comparator will be used to
compare resulting files.

6 . P a s s / F a i l C r i t e r i a

The Windy City Test Policy and Procedure document, TTP-2-1995, de-
scribes a scale of severity levels for faults and failures. The scale ranges
in values from 1 to 4 where 1 is a failure that has a catastrophic effect on
the system/users to a value of 4 which indicates a minimal effect on the
system/user. For the CCS software system a test will be considered as a
pass if the failure observed is rated at a level of 3 or 4. That means that
testing may continue; however all of the failures and associated defects
must be recorded and addressed. Test incident reports and problem/defect
reports are to be completed for all failures observed. All failures should
be forwarded to development and prioritized for subsequent repair, fol-
lowed by regression testing by the test group.

7 . S u s p e n d / R e s u m e C r i t e r i a

Normally testing will be suspended at the end of the work day. All
test-related documents must be submitted to Jane Smith. Testing is re-



626 | Appendix I I

sumed the following work day morning. In addition, testing will be
suspended if:

(i) a failure of severity level 1 or 2 is observed;
(ii) the system is unable to accept a valid input file;
(iii) the system is unable to produce a schedule;
(iv) a hardware failure occurs.

When the defect causing a software failure is repaired, the new ver-
sion of the software will undergo a regression test. If the new version
passes the regression test, then normal testing can resume.

If during system test there is a hardware failure, the tester will notify
the appropriate staff members and resume testing when the repairs are
made, restarting from the beginning of the test set.

8 . T e s t D e l i v e r a b l e s

The following items will be generated by the system test group for this
project. A detailed description of each item is contained in the Windy City
Test Policy and Procedure document, TTP-2-1995.

System test plan (copy to client)
System test design specifications
System test case specifications
System test procedure specifications
System test logs
System test incident reports
System test summary report
Test scripts (from use of the capture-replay tool)
Test data

• input and output files, screens, and reports resulting from func-
tional tests;

• input, and output data from performance and stress tests;

• security test inputs and results;

• query input screens and results.



627Sample Test Plan |

Inputs for all tests are found in attachments to the system test plan. The
test plan and test plan attachments will be placed under the control of
the Windy City Configuration Management System (see CCS Configu-
ration Management Plan, CCS-CMP-1-2001).

9 . T e s t i n g T a s k s

A testing task list is found in an attachment to this system test plan. It
was prepared by developing a work breakdown structure for test-related
tasks required by the CCS project. The attachment lists each testing task
as shown below, its predecessor tasks, special skills needed to carry out
the task, person responsible, effort required, and completion date.

List of Testing Tasks:

• preparing the test plan and attachments;

• preparing the test design specifications;

• preparing the test case specifications;

• interviews with the south Central College Dean to obtain examples
of previous schedules, preferences, and other college-related data
needed to prepare test inputs and to set up the database needed for
testing;

• tracking test transmittal reports;

• preparing test scripts and setting up the tools;

• executing the functional tests and recording results;

• executing the performance and stress tests; recording results;

• executing the security and regression tests; recording results;

• regression testing; recording results;

• transmitting test-related documents to the configuration management
group;

• supervising the testing staff and organizing test-related measurements;



628 | Appendix I I

• preparing for, and attending, test status meetings;

• preparing the test status and test summary reports.

1 0 . T h e T e s t i n g E n v i r o n m e n t

H A R D W A R E R E Q U I R E M E N T S . Five UNIX workstations networked
together; a central server with an Oracle database capability. The test
database must be prepared using South Central College data relating to
departments, courses offered, instructors, rooms, enrollments, and special
needs.

S O F T W A R E T O O L R E Q U I R E M E N T S . To test this system we will use
the capture-replay tool currently in use by the testing group with a com-
parator capability. Software probes developed in-house will be used to
monitor hardware/software system attributes during performance and
stress testing. A load generator will be used to simulate interactions from
multiple users.

1 1 . R e s p o n s i b i l i t i e s

Since our organization is at TMM level 3 we have a dedicated testing
group. The test group members responsible for system testing the College
Course Scheduler system are:

• Jane Smith, test manager

• Jonathan Boyd, lead test engineer.

• Prerek Patel, test engineer

• Sally Jordan, test engineer

• Tom White and John Li are not formally associated with the testing
group for this project, but will assist in security testing.

The two test engineers, Prerek Patel and Sally Jordan, will be respon-
sible for test design specification, test case and test procedure design, test
execution, and recording of results. They will be supervised by Jane Smith,



629Sample Test Plan |

test manager, and Jonathan Boyd, lead test engineer, who are also re-
sponsible for developing the test plan, supporting test case design, man-
aging test-related documents and measurements, managing the test status
meeting, and developing test status reports and the final test summary
report. They will also meet with the college dean to collect the necessary
course data and to identify typical usage scenarios. An attachment de-
scribes in detail the testing responsibilities for these staff members.

The CCS development group is responsible for responding to the test
incident/problem reports. This group will locate, repair defects, and log
defects. They will return the repaired code to the testers for regression
and other required tests. The group also supports testers with the task of
maintaining the defect repository,

1 2 . S t a f f i n g a n d T r a i n i n g N e e d s

Staff members required for the system testing effort are listed in Section
11 of this test plan and in an attachment to this test plan. We are a TMM
level 3 organization. All of our testing staff has had training in the de-
velopment of test design, test case, and test procedure specifications. They
have the necessary training in test tool usage, and also have had experi-
ence in test planning, so no additional training for this project is required.

1 3 . S c h e d u l i n g

Task durations and schedules are described in detail in an attachment to
this test plan. The project should be ready for acceptance test by
XX/YY/0Z. This will allow the system to be installed so that it is ready
for scheduling for the Spring 200Z semester.

1 4 . R i s k s a n d C o n t i n g e n c i e s

1. The college dean is required to travel extensively and may not be
available to the testing group. If the college dean is not available to in-
terface with the test team to provide data for the test database, usage
information, and past schedules, then the assistant dean will be available
to the group and will supply the needed information.



630 | Appendix I I

2. Conflict of staffing responsibilities. Jonathan Boyd, the lead test
engineer, may be required to work on a more urgent project (ABC-51-
17-03) currently in production. Sally Jordan has the experience and train-
ing to serve as a lead test engineer if this circumstance occurs. Sue Chan,
a member of the organizational test group, will replace Sally as a test
engineer.

3. Delays in the testing effort. If the testing schedule is significantly
impacted by high severity level defects, an additional developer will be
assigned to the project to perform fault localization. In addition, Mike
Smith, an experienced tester, has a light assignment during this time pe-
riod and will be available if extra tester power is needed.

1 5 . S y s t e m T e s t C o s t s

Our organization has been assessed at TMM level 3 with respect to its
testing process. This implies that we have a stable and predictable testing
process, a trained staff, and available testing tools. In addition, we also
have an extensive database of past project test costs. The CCS project is
typical of the many applications we have developed in the past, and for
which we have collected relevant test-related data. We estimate that test
costs impact items for the CCS project will be similar to those of past
projects, and we are confident that we can use past approaches/heuristics
to help estimate testing costs for the CCS system. Our confidence is based
on:

• the nature of this project which is not complex (it has no mission- or
safety-critical features);

• the similarity to projects we have successfully developed in the past;

• our relatively stable testing process and highly skilled testing group;

• minimal tool and training costs due to our level of testing maturity.

In the past we have had success in using the COCOMO model to
estimate total costs for this type of project using a set of constants gen-
erated from internal data. We then apply the heuristic developed by our
organization that system test costs for this type of project will be 34.5%



631Sample Test Plan |

of the total cost of the project. In this case, an overall cost estimation for
the entire project has been derived using the COCOMO model as well as
the Delphi method. The two agree within a margin of 5.3 %. The total
cost of the project is estimated to be $ABC. Therefore, the total cost for
the system tests is ABC * .345 dollars.

1 6 . A p p r o v a l s

Jane Smith
Test Manager

S I G N A T U R E D A T E

Chris Padilla
Project Manager

S I G N A T U R E D A T E

Tim Rubin
Software Quality Assurance Manager

S I G N A T U R E D A T E



This page intentionally left blank 



A P P E N D I X I I I

T E S T I N G M A T U R I T Y M O D E L
Part 1:

T H E T M M Q U E S T I O N N A I R E

Part 2:

T M M A C T I V I T I E S , T A S K S , A N D R E S P O N S I B I L I T I E S

This appendix has two parts. Part 1 contains the complete TMM Ques-
tionnaire. Part 2 contains the complete set of Activities, Tasks and Re-
sponsibilities (ATRs) recommended for each level of the TMM.

PART 1 • T H E T M M Q U E S T I O N N A I R E

This part of Appendix III contains the complete contents of the TMM
Questionnaire document, version 2.0. The TMM Questionnaire has eight
sections. The contents of each section are described below.

SECTION 1. Instructions for the respondent.
SECTION 2. Respondent identification and background.
SECTION 3. Organizational background.



634 | Appendix I I I

SECTION 4. The TMM questions. For each TMM level there is:

(i) the set of maturity goals;
(ii) the set of maturity subgoals associated with each matur-

ity goal;
(iii) the set of questions associated with each maturity goal.

Each question has four possible answers as shown in the ques-
tionnaire template form shown above (Table AIII.1). The re-
spondent should answer either YES, NO, DOES NOT APPLY, OR

NOT KNOWN. The respondent can also enter comments relat-
ing to each question in the space provided

SECTION 5. Testing tool questions.
SECTION 6. Testing trends questions.
SECTION 7. Comments from respondents.
SECTION 8. Glossary of terms.

Section 1. Instructions for the Respondent

Please read and answer the following questions carefully using the knowl-
edge and experience gained from working on current projects in your
organization. Many of the technical terms are defined in the glossary
section of this document. If you wish to comment on any of the questions
or qualify your answers, please use the comment space provided. Your
answers will be held in confidence.

Questions Yes No

Does not

apply

Not

known

Comments

TABLE A I I I . 1

Questionnaire template.



635Testing Matur ity Model |

For the maturity goal questions found in Section 4, four possible
choices are offered as follows:

1. YES. Check when a practice is well established and consistently
performed.

2. NO. Check when the practice is not well established or is inconsis-
tently performed.

3. DOES NOT APPLY. Check when you have the required knowledge
of the project or organization, but you believe that the question does
not apply to the project or organization.

4. NOT KNOWN. Check when you are uncertain as to how to an-
swer this question, or you do not have the proper information or
experience.

Only one of the choices for each question should be selected, and all of
the questions should be considered. Please continue on to the remainder
of the questionnaire, and thank you for your help.

Section 2. Respondent Identification and Background

In evaluating the TMM data it will help assessors to have information
about the software engineering background, technical skills, and the cur-
rent duties of each respondent.

1. Respondent Identification

Name
Position
Project Name
Telephone
Email
Date

2. Respondent Background
Which best describes your current position?

Manager
Senior or upper management
Project manager



636 | Appendix I I I

Test manager
Software quality assurance group leader
Software engineering process group leader
Test-related subgroup leader (please specify the name of the
subgroup)
Other (please specify)

Technical Staff
Software engineer
Test engineer
Programmer (developer)
Analyst
Software quality assurance group member
Software engineering process group member
Test-related subgroup member (please specify)
Other (please specify)

3. Current Duties and Responsibilities

Which test-related activities are you actively engaged in (you can
check more than one)?

Test policy and goal development
Test planning
Test case and test procedure design
Test execution
Collection and analysis of test-related measurements
Defect data collection
Maintenance of defect database
Standards development
Reviews and audits
Status tracking
Training
Metrics definition
Hiring and recruiting
User/client communications
Process control
Defect prevention
Technology transfer
Process assessment



637Testing Matur ity Model |

Process improvement
Reliability modeling and engineering
Usability testing
Tool evaluation
Process reuse

4. Have you received any TMM training?

Yes (please describe)
No

5. What is the extent of your experience in the software industry?

Your present organization Number of years
Overall industry experience Number of years
Overall testing experience Number of years

6. Have you participated in other types of software testing appraisals?

Yes (please describe)
No

Section 3. Organizational Background

1. Describe as best you can the type of your organization.

Develops military software
Develops application software
Develops telecommunication software
Software quality assurance/software testing/certification
Other (please describe)

2. Is the majority (greater than 50%) of the software developed for in-
ternal or external use?

Internal External Doesn’t apply

3. How many people are employed in the organization being assessed?

Total number of employees
Number engaged in software development and/or maintenance
Number engaged in software testing



638 | Appendix I I I

4. Please describe the percent of staff engaged in testing as follows:

Full time
Part time
Consultants

5. Are the people involved in process improvement in your organization
well respected with regard to their technical and management skills?
(Please circle one: 1 means no respect and 5 means highly respected.)

1 2 3 4 5

6. Are the responsibilities for test process improvement clearly defined
and supported? (Please circle one: 1 means not defined nor supported,
and 5 means well defined and supported.)

1 2 3 4 5

7. Does the organization under assessment have a software engineering
process group or a similar unit?

Yes No

8. How is the testing group organized? (please select one)

Developers do the testing
Test group within development, report to project manager
Separate test group, report to test manager
Part of Software Quality Assurance group

9. How would you generally characterize the nature of your testing
process?

Ad Hoc
Informal
Somewhat structured
Highly structured

10. How frequently do project managers have to meet the challenges of
changing customer requirements?

Never Rarely Frequently Very frequently



639Testing Matur ity Model |

Section 4. Maturity Goal Questions

Please answer each of the following questions with either a YES, NO,
DOES NOT APPLY, or NOT KNOWN response. Comments may be
entered after each question.

• T M M L e v e l 2 : P h a s e D e f i n i t i o n

MATURITY GOAL 2.1: DEVEL OP TESTING AND

DEB UGGING GOA LS AND POLICIES

The purpose of this goal is to differentiate clearly the processes of testing
and debugging. The goals, tasks, activities, and tools for each must be
identified. Responsibilities for each must be assigned. Policies must be
established by management to accommodate and institutionalize both
processes.

MATURITY SUBGOALS that support this goal are:

2.1.1. An organizationwide committee(s) or group on testing
and debugging is formed and provided with funding and support. The
committee(s) develops, documents, distributes, and supports procedures,
goals, and policies for testing and debugging. The goals, policies, and
procedures, once approved, are put in place and periodically reviewed.

2.1.2. Testing and debugging policies/goals are reflected in
project/test plans.

2.1.3. A basic defect classification scheme is established, and a
basic defect repository is put into place.

2.1.4. Simple testing and debugging measurements are identified
and collected.

QUESTIONS

1. Has a committee(s) on testing and debugging been established?
2. Have policies, goals, activities, and tools for the testing process been

identified, documented, and approved?
3. Have policies, goals, activities and tools for the debugging process

been identified, documented, and approved?



640 | Appendix I I I

4. Is the process of testing defined?
5. Is the process of debugging defined?
6. Have the policy documents on testing been distributed to project

managers and developers (testers)?
7. Have the policy documents on debugging been distributed to project

managers and developers (testers)?
8. Do the software developers (testers) follow a written organizational

policy for testing when test planning?
9. Do the developers follow a written organizational policy for

debugging?
10. Are basic measurements used to determine achievement of testing

goals?
11. Are basic measurements used to determine achievement of debugging

goals?
12. Have the testing policies and goals been developed with inputs from

user/client groups with respect to their needs?
13. Have the debugging policies and goals been developed with input and

feedback from user/client groups with respect to their needs?
14. Has a basic defect classification scheme been developed?
15. Has a defect repository been established?
16. Do developers/testers log defects into the repository on a consistent

basis?
17. Are testing/debugging policies and goals periodically reviewed?

MATURITY GOAL 2.2: INITIATE A TEST

PLANNING PROCESS

The purpose of this goal is to establish a test planning process on an
organizationwide basis. Test planning involves stating test objectives, an-
alyzing risks, outlining strategies, and developing test design specifica-
tions, and test cases. A test plan must also address the allocation of re-
sources, the costs, and the responsibilities for testing on the unit,
integration, system, and acceptance levels.

MATURITY SUBGOALS that support this goal are:

2.2.1. An organization-wide committee, or group on test plan-
ning is formed and provided with funding and support. The committee



641Testing Matur ity Model |

develops, documents, distributes, and supports procedures, goals, and
policies for test planning. The goals, policies and procedures, once ap-
proved are put in place, and periodically reviewed.

2.2.2. Test plan templates for all levels of testing are developed,
recorded and distributed to project managers and developers/testers for
use in organizational projects. Other required tested-related documents
are identified, and prescribed according to organizational policy.

2.2.3. Technical training is available to cover use of test plan
templates and development of test plans.

2.2.4. A procedure is put in place to include user-generated re-
quirements as inputs to the test plan.

2.2.5. Basic planning tools and test measurements are evaluated,
and applied.

QUESTIONS

1. Has an organizationwide test planning committee or group been
established?

2. Is there an organizational policy, and are there procedures for test
planning?

3. Have the policy and procedures been distributed and approved?
4. Is there adequate support and funding for test planning for all

projects?
5. Are test goals/objectives used as a basis for test planning?
6. Have test plan templates been developed and distributed to project

managers?
7. Are there appropriate planning tools available for test planning?
8. Have project managers been trained in the use of templates and plan-

ning tools?
9. Have developers (testers) been trained in the use of templates and

planning tools?
10. Are developers (testers) trained properly to develop test specifica-

tions, test designs, and test cases for the test plan?
11. Are test-related risks considered when developing test plans?
12. Are estimates (time, budget, tools) available from past projects for

use in test planning?
13. Is test planning done at the unit level?



642 | Appendix I I I

14. Is test planning done at the integration level?
15. Is test planning done at the system level?
16. Is test planning done at the acceptance level?
17. Is there a procedure in place for soliciting user/client input for test

planning where appropriate (e.g., in acceptance test planning)?
18. Do developers (testers) have the opportunity to give inputs to the test

plan at all levels?
19. Is the test planning process reviewed on a periodic and/or event-

driven basis?
20. Are other test-related items such as test transmittal reports, test logs,

test incident reports, and test summary reports defined in organiza-
tional documents?

21. Are other test-related items such as test transmittal reports, test logs,
test incident reports, and test summary reports completed for each
project?

22. Does management support interactions between project (test) man-
agers, developers (testers), designers, and analysts to support test
planning?

23. Are basic test measurements specified in the test plan at all levels?
24. Do developers (testers) collect and store basic test-related

measurements?
25. Are the basic test measurements used to ensure that basic testing goals

have been met?

MATURITY GOAL 2.3: INSTITUTIONALIZE BASIC

TESTING TEC HNIQUES AND METHODS

The purpose of this maturity goal is to improve test process capability by
applying basic testing techniques and methods. How and when these tech-
niques and methods are to be applied and any basic tool support for them
should be specified clearly in testing policies and plans. Various basic
techniques and methods that are often used in the testing process are black
box and white box test design strategies, use of a requirements validation
matrix, and the division of execution-based testing into subphases such
as unit, integration, system and acceptance testing. Some testing tools that
support use of these techniques and methods are static and dynamic an-
alyzers, coverage analyzers, test data generators, and error checking tools.



643Testing Matur ity Model |

MATURITY SUBGOALS that support this goal are:

2.3.1. An organizationwide committee, or group on test tech-
nology is formed and provided with funding and support. The committee
studies, evaluates and recommends a set of basic testing techniques and
methods, and a set of simple forms, and tools to support them. It develops
relevant polices, procedures, and documents, and these are distributed.
When approved, they are put in place and periodically reviewed.

2.3.2. Technical training and basic tools are available to support
use of testing techniques and methods.

2.3.3. Software testing is planned and implemented at the unit,
integration, system, and acceptance levels according to policy.

2.3.4. Basic testing strategies (white/black box), techniques and
methods are used organizationwide to design test cases. Interaction be-
tween developers (testers) and other technical staff (e.g., designers, and
requirements analysts) is promoted to identify testability issues, encour-
age development of software representations useful for white/black box
testing methods, and to support multiple levels of testing.

QUESTIONS

1. Has a committee or group been formed to evaluate and recommend
a set of basic testing techniques, methods, and tools?

2. Have the recommendations of the group been documented, distrib-
uted, and approved?

3. Have basic tools and techniques been included in test policies?
4. Have appropriate forms and templates been designed to support basic

testing techniques?
5. Are adequate resources provided by upper management to support

the use of basic testing techniques and methods, as well as basic test-
ing tools?

6. Have developers (testers) been trained to apply the basic tools, forms,
and methods?

7. Are basic testing techniques, and methods applied on an organiza-
tionwide basis?

8. Are basic testing tools applied on an organizationwide basis?
9. Are basic testing techniques and methods reviewed periodically?



644 | Appendix I I I

10. Do testing policy statements include the requirement for multilevel
testing?

11. Is testing planned and implemented at multiple levels (unit, integra-
tion, system, etc.)?

12. Are the basic testing techniques and tools described in policy state-
ments applied at all levels of testing?

13. Are the testing techniques and tools to be applied described in multi-
level test plans?

14. Does upper management support interaction between analysts, de-
signers, and developers (testers) to ensure testing issues are addressed
by these groups?

• T M M L e v e l 3 : I n t e g r a t i o n

MATURITY GOAL 3.1: ESTABLISH A

TEST OR GA NI ZATI ON

The purpose of this maturity goal is to identify and organize a group of
highly skilled people that is responsible for testing. The test group should
be responsible for test planning, test execution and recording, test-related
standards, test metrics, the test database, test reuse, test tracking, and
evaluation. The group should also be responsible for maintaining the de-
fect repository.

MATURITY SUBGOALS that support this goal are:

3.1.1. An organizationwide committee is formed to map out the
structural framework for the test organization or group. Leadership, sup-
port and funding for the test group is provided. Roles, responsibilities,
and career paths are defined for the test group.

3.1.2. An organizationwide test group is established through
task force efforts and its functionality and position in the reporting hi-
erarchy is defined. Well-trained and motivated members are assigned to
the test group. Well-defined user/client, developer, and SQA communi-
cation links with the test group are established. The test group is reviewed
periodically by management.

3.1.3. Training is available to ensure that the test group has the
technical expertise to and apply appropriate testing tools and techniques,
evaluate new tools and techniques, and plan for the testing effort.



645Testing Matur ity Model |

QUESTIONS

1. Is testing recognized as a professional activity by the organization?
2. Has a committee or task force been formed to map out a framework

for a test organization or test group?
3. Is there an organizationwide software test organization responsible

for testing for each project?
4. Is there a career path that members of the test group can follow?
5. Are adequate resources provided for the software test organization?
6. Are members of the software test organization trained in testing

methods, test planning, theory, tools and techniques?
7. Are testers adequately compensated with respect to other software

engineers?
8. Are the roles and responsibilities of the group defined?
9. Are the group’s activities documented and reported to upper

management?
10. Does the organizational software test group coordinate with the SQA

group to enhance test effectiveness and improve software quality with
respect to the user’s requirements?

11. Does the testing group have a communication path with developers
for test planning, test design, and code repair when problems arise?

12. Are client concerns solicited as input to test organization policies?
13. Is there a formal mechanism for tester-user/client interaction?
14. Is the test group periodically reviewed by management?

MATURITY GOAL 3.2: ESTABLISH A

TECHNICAL TRAINING PROGRAM

The purpose of this maturity goal from the viewpoint of the testing group
is to insure that a skilled staff is available to perform testing tasks. The
formal training program is based on a training policy. It calls for speci-
fying training goals and developing specific training plans and materials.
Training classes are available to all staff members. The impact of the
training program on testers is to train them in state-of-the-art testing tech-
niques, methods, and tools. It also prepares testers for test planning, for
tasks involving integration of testing into the software life cycle, for the
review process, and for identifying and prioritizing test-related risks. At
higher TMM levels it prepares testers for test process control, a test mea-



646 | Appendix I I I

surement program, statistical testing, test process action planning, reli-
ability modeling, and other higher-level testing activities.

MATURITY SUBGOALS that support this goal are:

3.2.1. An organizationwide committee or group on technical
training is established with funding and resources. The technical training
committee develops, gains approval for, and distributes the organiza-
tional training policy document. The training policy and program is re-
viewed periodically.

3.2.2. An in-house training group is established and chartered
with leadership, tools, and facilities in place according to policy. The
group develops a training program. Training goals and plans are devel-
oped by the group with input from project/test managers. Training ma-
terials are developed by the group and group members serve as training
instructors.

QUESTIONS

1. Has a committee or group on technical training been established with
funding and support?

2. Are policies and goals relating to technical training documented, dis-
tributed, and approved?

3. Does the organization follow a written organizational policy to meet
its training needs?

4. Has a technical training program been established to improve skills
for the technical staff?

5. Are training plans developed with input from project/test managers?
6. Are adequate resources provided to implement the technical training

program?
7. Does management recommend training courses for technical staff on

a regular basis?
8. Do training group members develop training materials and serve as

instructors for the training courses?
9. Do participants in the test group receive the training necessary for

developing the skills, and acquiring the knowledge required to per-
form their testing tasks?



647Testing Matur ity Model |

10. Are measurements used to determine the quality and effectiveness of
the training program?

11. Are training program activities reviewed on a periodic basis?

MATURITY GOAL 3.3: INTEGRATE TEST ING

INTO THE SOFTWARE LIFE CY CLE

The purpose of this maturity goal is to promote the performance of testing
activities in parallel with other life cycle phase activities starting early in
the software life cycle. A mature organization does not delay testing ac-
tivities until coding is complete. Examples of good practices promoted by
this goal are: master and system test planning are initiated early in the life
cycle at requirements time, and integration and unit test planning are
initiated at detailed design time. A variation of the V-model is used by
managers, testers, and developers to guide integration activities. Re-
sources that support the integration of the testing effort are, for example,
qualified staff, supporting life cycle models, standards and policy docu-
ments, appropriate planning and scheduling.

MATURITY SUBGOALS that support this goal are:

3.3.1. An organizationwide committee, or group on the integra-
tion of testing activities is established and provided with funding and
support. The committee develops, documents, distributes, and supports
procedures, goals, and policies for test integration. The goals, policies and
procedures, once approved, are put in place, and reviewed periodically.

3.3.2. Testing activities are integrated into the software life cycle
using the adopted life cycle model following the written organizational
policy. Project and test planning policies are adjusted to promote integra-
tion of testing. Standards and quality guidelines are developed for test-
related work products produced at each life cycle phase.

3.3.3. Resources and training are provided to support the inte-
gration of testing activities into the software life cycle.

QUESTIONS

1. Has a group or committee been established to support integration of
testing activities?



648 | Appendix I I I

2. Has a software life cycle model that supports integration of testing
activities been adopted?

3. Have testing activities and testing requirements associated with each
life cycle phase been identified?

4. Has an integration policy, and a set of documented procedures based
on the adopted model, been developed, approved, and distributed?

5. Is adequate training provided for the integration of testing effort?
6. Are adequate resources provided for the integration of testing effort?
7. Are the activities for integrating testing into the software life cycle

reviewed on a periodic basis?
8. Have project and test planning procedures been modified to comply

with, and to accommodate, integration activities?
9. Does the each project follow a written organizational policy for the

integration of the testing efforts?
10. Have the test organization and SQA group developed a set of docu-

mented standards for all test work products produced in each life
cycle phase?

11. Is there a policy to handle noncompliance with standards?

MATURITY GOAL 3.4: CONTROL AND

MONITOR T HE TESTING PROCESS

The purpose of this maturity goal is to promote development of a moni-
toring and controlling system for the testing process so that deviations
from the test plans can be detected as soon as possible, and management
is able to take effective actions to correct the deviations. Having this ca-
pability supports a testing process that is more likely to be on time and
within budget. Controlling and monitoring of test also gives visibility to
the testing process, supports testing as a professional activity, and can
lead to higher-quality software products.

MATURITY SUBGOALS that support this goal are:

3.4.1. An organizationwide committee or group on the control-
ling and monitoring of testing is formed and provided with funding and
support. The committee develops, documents, distributes, and supports



649Testing Matur ity Model |

procedures, goals, policies, and measurements for controlling and moni-
toring of testing. The goals, policies, procedures, and measurements, once
approved, are put in place and reviewed periodically.

3.4.2. Test-related measurements for controlling and monitoring
are collected for each project. Test status reporting is performed on a
regular basis for each project according to policy. Contingency plans are
developed, recorded, and documented along with test plans for each proj-
ect for use when status tracking shows that testing deviates significantly
from what was planned.

3.4.3. Training, tools and other resources are made available to
support controlling and monitoring of test.

QUESTIONS

1. Has a committee or group been established to support monitoring
and controlling of test?

2. Is there an organizational policy for monitoring and controlling of
testing?

3. Are tools and training available to support controlling and monitor-
ing of a test?

4. Has a set of basic measurements for tracking test progress been de-
fined and distributed?

5. Do project managers and test managers work together on controlling
and monitoring plans?

6. Does each project follow a written organizational policy for control-
ling and monitoring the testing process?

7. Are test-related contingency plans developed for each project to sup-
port controlling of a test?

8. Does the organization collect and store test tracking and controlling
metrics for each project?

9. Is test status information based on findings from regular status meet-
ings reported to test, project, and upper-level managers on a periodic
basis?

10. Does the test organization, supported by project management, de-
velop contingency plans for test risks?

11. Are test items under control of a configuration management system?
12. Are the activities for controlling and monitoring the testing process

reviewed on a periodic basis?



650 | Appendix I I I

• T M M L e v e l 4 : M a n a g e m e n t a n d M e a s u r e m e n t

MATURITY GOAL 4.1: ESTABLISH AN

ORGANIZATIONWIDE REVIEW PR OG RAM

Reviews are a type of testing technique that can be used for removing
defects from software artifacts. Achieving this maturity goal results in a
review program that helps an organization to identity, catalog, and re-
move defects from software artifacts effectively, and early in the software
life cycle. Reviews also support quality evaluations of software-related
items. Examples of items that can be reviewed are requirements docu-
ments, design documents, test plans, and test case specifications.

MATURITY SUBGOALS that support this goal are:

4.1.1. An organizationwide committee or group focusing on de-
veloping a review program is formed and provided with funding and
support. The committee develops, documents, distributes, and supports
procedures, goals, policies, and measurements for reviews of software
work products resulting from all software life cycle phases. The goals,
policies, procedures, and measurements, once approved, are put in place,
and reviewed periodically

4.1.2. Personnel are trained so that they understand, and follow,
proper review policies, practices, and procedures. They are also trained
in collecting, storing, and applying review measurements.

4.1.3. Software artifacts are reviewed for each project as de-
scribed in the review policy and reflected in the project plan. Review
measurements are collected and applied for improving product and pro-
cess quality.

QUESTIONS

1. Has an organizationwide committee or group on the review process
been established, with funding and resources?

2. Has an organizationwide review policy been developed, distributed,
and approved?

3. Are client concerns reflected in the review policy?
4. Have review procedures, measurements, and reporting systems been

defined, documented, and approved?



651Testing Matur ity Model |

5. Are adequate resources (e.g., funding, review materials, tools) pro-
vided to implement the review program?

6. Are reviewers and review leaders trained?
7. Does each project follow the written organizational policy for per-

forming reviews?
8. Do project plan schedules reflect review needs?
9. Are the reviews planned, and the results reported and documented?

10. Are the software/test work products developed at different phases of
the software life cycle reviewed?

11. Are defects found during reviews stored in a defect repository?
12. Are actions related to defects identified in reviews tracked until they

are resolved?
13. Are review-related measures collected and analyzed?
14. Are measurements relating to software work products collected dur-

ing the reviews?
15. Is the review program evaluated on a periodic basis?

MATURITY GOAL 4.2: ESTABLISH A TEST

MEASUREMENT PROGRAM

The purpose of a test measurement program is to identify, collect, analyze,
and apply measurements to support an organization in determining test
progress, evaluating the quality and effectiveness of its testing process,
assessing the productivity of its testing staff, assessing the results of test
improvement efforts, and evaluating the quality of its software products.
Examples of test-related measurements are test costs, tester productivity,
number of test cases executed, and number of defects detected.

MATURITY SUBGOALS that support this goals are:

4.2.1. An organizationwide committee or group focusing on de-
veloping a test measurement program is formed and provided with fund-
ing and support. The committee develops, documents, distributes, and
supports procedures, goals, policies, and measurements as applied to soft-
ware artifacts and the test process. The goals, policies, procedures, and
measurements, once approved, are put in place and reviewed periodically.

4.2.2. A test measurement program is developed according to
policy with a measurement reporting system. Measurements are collected,



652 | Appendix I I I

stored, and analyzed. They are applied organizationwide to set test/proj-
ect goals and to improve product and test process quality. Test measure-
ments are applied organizationwide to support decision making, project/
test planning, and project/test tracking and monitoring and action
planning.

4.2.3. Training, tools, and other resources are provided to sup-
port the test measurement program.

QUESTIONS

1. Has an organizationwide committee responsible for test measurement
been established with funding and resources?

2. Has an organizationwide test measurement policy been developed,
distributed, and approved?

3. Are client concerns reflected in the measurement policy/plan?
4. Have test measurement procedures and reporting systems been de-

fined, documented, and approved?
5. Have appropriate measurements for each test life cycle phase been

specified and documented?
6. Are adequate resources (e.g., funding, materials, tools) provided to

implement the test measurement program?
7. Is training in measurement identification, collection, and analysis

available for managers and technical staff?
8. Does each project follow the written organizational policy for per-

forming measurements?
9. Is there a test data repository available for use by managers and tech-

nical staff?
10. Are quantitative testing goals set for each project?
11. Are measurements used to track and monitor testing?
12. Has a basic set of software quality attributes and metrics been

defined?
13. Are measures of software quality attributes used to track software

quality during testing?
14. Are test data items used to support action planing for test process

improvement?
15. Is the measurement program evaluated on a periodic basis?



653Testing Matur ity Model |

MATURITY GOAL 4.3: SOFTWARE

QUALITY EVALUATION

The purpose of the software quality evaluation maturity goal is to relate
software quality issues to the adequacy of the testing process, define and
promote use of measurable software quality attributes, and define quality
goals for evaluating software work products. Sample quality attributes
are correctness, efficiency, integrity, usability, maintainability, flexibility,
testability, portability, reusability, and interoperability.

MATURITY SUBGOALS that support this goal are:

4.3.1. An organizationwide committee or group focusing on
software quality evaluation is formed and provided with funding and
support. The committee develops, documents, distributes, and supports
procedures, goals, policies, standards, and measurements for software
quality evaluation. The goals, policies, procedures, standards, and mea-
surements, once approved, are put in place, and reviewed periodically.

4.3.2. Training, tools, and other resources are provided to sup-
port software quality evaluation.

4.3.3. Quality goals are developed for each project according to
policy. The testing process is structured, measured, and evaluated to en-
sure that quality goals are achieved. User/client input is solicited for the
development of quality goals.

QUESTIONS

1. Has an organizationwide committee on software quality evaluation
been established, funded, and supported?

2. Has an organizationwide policy relating to measurement-based soft-
ware quality evaluation been developed and distributed by the com-
mittee and approved?

3. Are client concerns reflect in the quality policy?
4. Has a set of software quality evaluation standards and procedures

been developed, documented, and approved?
5. Are adequate resources (e.g., funding, materials, tools) provided for

quality programs and quality evaluations?
6. Are managers and technical staff trained so that they are able to set

measurable quality goals, develop and understand quality standards,



654 | Appendix I I I

collect quality measurements, and evaluate quality attributes for soft-
ware artifacts?

7. Does each project follow the written organizational policy for eval-
uating software quality?

8. Are quality goals for evaluating software work products set for each
project?

9. Has a set of measurable quality attributes for software products been
specified, verified, distributed, and approved?

10. Are measurable quality goals set for each software product?
11. Is there a formed procedure in place for client input to the software

quality evaluation process for each project?
12. Is the testing process assessed periodically to evaluate its impact on

software quality?
13. Are improvements made in testing and other quality evaluation pro-

cesses to increase the level of software quality?
14. Are the activities for software quality evaluation reviewed on a pe-

riodic basis?

• T M M L e v e l 5 : O p t i m i z a t i o n / D e f e c t
P r e v e n t i o n a n d Q u a l i t y C o n t r o l

MATURITY GOAL 5.1: DEFECT PR EVE NTI O N

The purpose of this maturity goal is encourage an organization to for-
mally classify, log, and analyze its defects. The organization is also en-
couraged to use a combination of defect causal analysis and action plan-
ning to guide process change so that these defects are eliminated from its
future products. Recommended defect prevention activities include defect
recording and tracking, defect causal analysis, action planning, action
implementation and tracking, and training in defect prevention methods.

MATURITY SUBGOALS that support this goal are:

5.1.1. An organizationwide committee or group focusing on de-
fect prevention is formed and provided with funding and support. The
committee develops, documents, distributes, and supports procedures,
goals, policies, standards, and measurements for defect prevention. The
goals, policies, procedures, standards, and measurements, once approved,
are put in place and reviewed periodically.



655Testing Matur ity Model |

5.1.2. Training, tools, and other resources are provided to sup-
port defect prevention activities.

5.1.3. Defect prevention teams are established according to pol-
icy, with management support. Responsibilities are assigned to the defect
prevention teams. The teams ensure that defects injected/removed are
identified and recorded for each life cycle phase, a causal analysis pro-
cedure is established to identify the root causes of defects, and that action
plans are developed through the interaction of managers, developers, and
testers to prevent identified defects from reoccurring. These plans are
tracked, and process changes occur as a result of success in pilot projects.

QUESTIONS

1. Has an organizationwide committee or group on defect prevention
been established with funding and support?

2. Have organizationwide policies, programs, and procedures to sup-
port defect prevention been developed and distributed by the com-
mittee and approved?

3. Are client concerns reflect in the defect prevention policy?
4. Are adequate resources (e.g., funding, materials, tools) provided for

defect prevention activities?
5. Are managers and technical staff trained in defect prevention

activities?
6. Have defect prevention teams been established (members can be part

of development, testing, SQA, SEPG groups)?
7. Does each project follow the written organizational policy for defect

prevention?
8. Are defect prevention activities planned?
9. For each life cycle phase, are all injected/removed defects classified

and formally recorded in a defect repository?
10. Once identified, are common causes of defects analyzed and elimi-

nated systematically?
11. Are specific action plans developed to prevent defects from recurring?
12. Are defect prevention actions measured and tracked to insure prog-

ress and to evaluate effectiveness?
13. Are effective defect prevention actions implemented across the or-

ganization in the form of documented process changes?
14. Are defect prevention activities/programs reviewed periodically?



656 | Appendix I I I

MATURITY GOAL 5.2: QUALITY CONTROL

The purpose of this maturity goal is to develop a comprehensive set of
quality control procedures and practices that support the release of high-
quality software that fully meets the customer’s requirements. Achieve-
ment of this goal allows an organization to incorporate advanced mea-
surements, techniques, and tools to improve the effectiveness of its testing
process, reduce software defects, improve software reliability, and in-
crease usability. Quality control activities call for automated tools to sup-
port the running and rerunning of test cases and defect collection and
analysis. Statistical techniques and usage profiles are used to support test-
ing efforts and achievement of quality goals. Levels of confidence can be
established that indicate the likelihood that the software is fault-free. The
software is tested for usability. Quantitative criteria are used to determine
when to stop testing. These quantitative criteria can be based on, for
example, reaching a certain level of reliability or trustworthiness, or when
the number of defects/unit time at a selected severity rating arrives at a
certain level.

MATURITY SUBGOALS that support this goal are:

5.2.1. An organizationwide committee or group focusing on
quality control is formed and provided with funding and support. The
committee develops and updates documents, and distributes and supports
procedures, goals, policies, standards, and measurements for quality con-
trol. The goals, policies, procedures, standards, and measurements, once
approved, are put in place, and periodically reviewed

5.2.2. The software test and the SQA groups identify suitable
software attributes and establish qualitative and quantitative quality goals
for software products with user/client input according to policy. These
goals are included in test plans. Testing tools and techniques are used to
determine if quality goals have been met. Quantifiable criteria are used
for making stop-test decisions.

5.2.3. The test group and related groups are trained and assigned
responsibilities for use of statistical methods and other quality-related
software evaluation activities such as usability testing. The test or related
group interacts with users/clients to gather inputs for usage modeling and
usability testing.



657Testing Matur ity Model |

QUESTIONS

1. Has an organizationwide committee focused on quality control been
established with funding and support?

2. Have organizationwide policies, programs, and procedures to sup-
port software quality control been developed, distributed, and
approved?

3. Are client concerns reflect in the software quality control policies?
4. Are adequate resources (e.g., funding, materials, laboratories, tools)

provided for quality control activities?
5. Are managers and technical staff trained in quality control activities?
6. Are statistical methods used during testing for evaluating software

quality?
7. Are quantitative and qualitative quality goals for software products

identified by the software test group and the SQA group with input
from users/clients?

8. Are the quality goals incorporated into test plans?
9. Are quality-related attributes and measurements identified and

documented?
10. Is user/client input collected for usage modeling?
11. Has responsibility for usability testing been assigned?
12. Is the software evaluated carefully for usability with respect to user

needs?
13. Is there a mechanism for user participation in usability testing?
14. Is user feedback applied to make improvements in the software under

development?
15. Are quantitative criteria for stop-test decisions specified in test plans?
16. Are the quality control activities reviewed periodically?

MATURITY GOAL 5.3: TEST

PROCESS OPTIMIZATION

The purpose of this maturity goal is to promote continuous test process
improvement and test process reuse. An organization is encouraged to
identify testing practices that need to be improved, to implement the im-
provements, and to track improvement progress. It is also encouraged to
apply process control activities to testing, to continually evaluate new test-
related tools and technologies for adaptation, and to support technology
transfer. Finally, an organization is encouraged to identify high-quality



658 | Appendix I I I

testing subprocesses, store them in a Process Asset Library, and tailor
them for reuse in future projects.

MATURITY SUBGOALS that support this goal are:

5.3.1. An organizationwide group focused on test process im-
provement is chartered and provided with funding and support. It has
continuing oversight responsibilities for test process issues which include
test process reuse, test process control, test process assessment and im-
provement, and technology transfer. It provides leadership for test process
improvement efforts. The group develops and updates documents, and
distributes and supports procedures, goals, policies, standards, and mea-
surements for test process improvement activities. The goals, policies, pro-
cedures, standards, and measurements once approved are put in place,
and periodically reviewed.

5.3.2. Training is available for management and technical staff
in the areas of action planning, test process assessment, test process con-
trol, test process reuse, and technology transfer.

5.3.3. The test process undergoes periodic evaluation according
to policy, and action plans are implemented to make improvements. New
tools and techniques are continuously being evaluated and integrated.

5.3.4. High-quality test process components are recognized as
assets and are stored and reused organizationwide.

QUESTIONS

1. Has a group or task force focused on test process improvement been
established, with funding and support?

2. Have organizationwide policies, programs, and procedures to sup-
port test process assessment, improvement, and reuse been developed,
distributed, and approved?

3. Have organizationwide policies, programs, and procedures to sup-
port test process control been developed, distributed and, approved?

4. Have organizationwide policies, programs, and procedures to sup-
port technology transfer been developed, distributed, and approved?

5. Are adequate resources (e.g., funding, materials, tools) provided for
technology transfer?



659Testing Matur ity Model |

6. Are adequate resources (e.g., funding, materials, tools) provided for
test process control?

7. Are adequate resources (e.g., funding, materials, tools) provided for
test process assessment, improvement, and reuse?

8. Are managers and technical staff trained in process control?
9. Are mangers and technical staff trained in test process assessment,

improvement, and reuse?
10. Are managers and technical staff trained in technology transfer?
11. Has a Process Asset Library (PAL) been established?
12. Are test processes in the PAL tailored and reused in subsequent

projects?
13. Are testing tools continually being evaluated for use by the testing

group?
14. Is there a procedure for adaptation/integration of new tools and tech-

nologies into the testing process (technology transfer)?
15. Is the test process assessed periodically?
16. Do results from an assessment yield improvement actions?
17. Do successful improvement actions lead to changes in the organiza-

tional test process, associated documents, and standards?
18. Are measurements defined for test process control?
19. Are test process control activities performed periodically resulting in

adjustments to the testing process?
20. Is the technology transfer program reviewed periodically?
21. Is the test process assessment and improvement program reviewed

periodically?
22. Is the test process control program reviewed periodically?
23. Is the test process reuse program reviewed periodically?

Section 5. Testing Tools Questions

Assessors should note that the testing tool questions have no formal im-
pact on the ranking that results from the TMM ranking process. This
section of the TMM Questionnaire is useful for assessors to gain further
insight into the current state of an organization’s testing process. Answers
to these questions are also useful when assembling tools for the Testers’



660 | Appendix I I I

Workbench. For each of the tool types listed below the respondent should
decide whether they are applied “never,” “rarely,” “often,” or “always.”

I. TEST RESOURCE MANAGEMENT TOOLS

1. Configuration managers (monitor and control the effects of changes
throughout development and maintenance and preserve the integrity
of developed and released versions).

2. Project management tools (help project/managers plan, schedule, and
track the development, testing, and maintenance of systems).

3. Test planners (assist developers/testers/managers in planning and de-
fining acceptance, system, integration, and unit-level tests).

II. REQUIREMENTS AND DESIGN TEST SUPPORT TOOLS

1. Requirements and specification analyzers (evaluate specifications for
consistency, completeness, and conformance to established specifi-
cation standards).

2. System/prototype simulators (merge analysis and design activities
with testing).

3. Requirements tracers (reduce the work effort of tracing requirements
to associated design information, source code, and test cases for large
projects).

III. IMPLEMENTATION AND MAINTENANCE TEST SUPPORT
TOOLS

1. Compilers.
2. Source code static analyzers (examine source code without executing

it).

• Auditors (analyze code to ensure conformance to establish rules
and standards).

• Complexity measurers (compute metrics from the source code to
determine various complexity attributes associated with the
source code or designs written in a program design language).

• Cross referencing tools (provide referencing between various
entities).

• Size measurers (count source lines of code, SLOC).



661Testing Matur ity Model |

• Structure checkers (identify structural anomalies and develop
graphical or textual representations of the code).

• Syntax and semantics analyzers (identify type conflicts in calling
arguments of separately compiled subroutines).

3. Test preparation tools (support preparation of test data or test case
information)

• Data extractors (build test data from existing databases or test
sets).

• Requirements-based test case generators (help developers evalu-
ate requirements by building test cases from requirements written
following the rules of the tool’s formal specification language).

• Test data generators (support development of test inputs that are
formatted or can be formatted readily in the required files).

4. Test execution tools (dynamically analyze the software being tested).

• Assertion analyzers (instrument the code with logical expressions
that specify conditions or relations among the program vari-
ables).

• Capture replay tools (automatically record test inputs/outputs us-
ing capture scripts, replay the tests using playback scripts. Useful
for retesting when changes are made.)

• Coverage/frequency analyzers (assess the degree of coverage of test
cases with respect to executed statements, branches, paths, or
modules).

• Debuggers (not strictly a testing tool; these support the location
of defects revealed during testing).

• Emulators (may be used in place of missing or unavailable system
components and usually operate at the real-time speed of the
components being emulated).

• Network analyzers (analyze the traffic on the network to identify
problem areas and conditions as well as allow simulation of the
activities of multiple terminals).

• Performance/timing analyzers (monitor timing characteristics of
software components or entire systems).



662 | Appendix I I I

• Run-time error checkers (monitor programs for memory refer-
encing, memory leaking, or memory allocation errors).

• Simulators (are used in place of missing or unavailable system
components).

• Status displayers/session documents (provide test status infor-
mation and record selected information about a test run).

• Test execution managers (automate various functions of setting
up test runs, performing a variety of tests, and cleaning up after
a test to reset the system).

5. Test evaluators (perform time-consuming and error-prone functions).

• Comparators (compare entities with each other after a software
test and note the differences).

• Data reducers and analyzers (convert data to a form that can be
interpreted more readily and can sometimes perform various sta-
tistical analyses on the data).

• Defect/change trackers (keep track of defect information and gen-
erate defect reports).

Section 6. Testing Trends Questions

As in the case of the testing tool use questions, the testing trend questions
are designed to provide a broader view of the testing process to assessors.
They play no formal role in a TMM ranking. Assessors can use the re-
sponses as they see fit to assist in the assessment process.

1. From your perspective, what are the major strengths of the testing
process in your organization today?

2. From your perspective, what are the major weakness of the testing
process in your organization today?

3. What changes has the organization made to improve the testing pro-
cess over the last 2–5 years?

4. How would you rate the overall effectiveness of the testing process
today compared to 2 years ago? Please select one of the following
choices: same, improved, greatly improved, little improved, worse,
don’t know.



663Testing Matur ity Model |

5. Compare the fraction of time, and resources allocated for testing now
and 2 years ago. Please select one of the following choices: same,
largely increased, largely decreased, about the same, don’t know.

6. Compare the current number of full-time testers in the organization
to the number available 2 years ago. Please select one of the following
choices: same, increased, decreased, don’t know.

7. Compare the current number of part-time testers in the organization
to the number available 2 years ago. Please select one of the following
choices: same, increased, decreased, don’t know.

8. From your perspective, over the last 2 years has communication be-
tween testers, developers, and managers: improved, stayed the same,
gotten worse, don’t know?

9. From your perspective has management addressed the needs of test-
ers/developers? Yes, no, to some extent, don’t know.

Section 7. Comments from Respondents

This section is reserved for a respondent to comment on the nature of the
TMM Questionnaire itself. Respondents may comment on any aspect of
the questionnaire, for example, on the clarity of the questions, the orga-
nization of the questions, the completeness, and usability of the docu-
ment. Comments provide useful feedback for questionnaire maintainers
who can then consider appropriate changes. Respondents may use the
blank section provided below and/or add supplemental pages with their
comments.

Section 8. Glossary of Terms

Below is a description of many of the terms used in the TMM Question-
naire to assist in understanding, and answering the TMM questions. Ref-
erences in the descriptions relate to the IEEE Standard Glossary of Soft-
ware Engineering Terminology, IEEE Std. 610.12–1990.

acceptance testing. Formal testing conducted to determine whether a sys-
tem satisfies specified acceptance criteria and to enable the customer to
determine whether to accept the system. [IEEE-STD-610.12–1990]



664 | Appendix I I I

activity. Any step taken or function performed, both mental and physical,
toward achieving some objective. Activities include all the work that man-
agers and technical staff do to perform project and organizational tasks.

appraisal. A generic term used in the software engineering domain to refer
to either software process assessments or software capability evaluations.
Any software engineering process or subprocess can undergo an appraisal
or evaluation.

artifact. An object or item produced or shaped by human workmanship.
As referred to in model-based process appraisals, artifacts are the prod-
ucts resulting from enacting a process. Some examples of software devel-
opment process artifacts are software designs, code, and test cases.

assessment. See test process assessment.

baseline. (1) A specification or product that has been reviewed formally
and agreed upon, which thereafter serves as the basis for further devel-
opment and can be changed only through formal change control pro-
cedures. (2) Baselines plus approved changes from those baselines
constitute the correct configuration identification for the item. [IEEE-
STD-610.12–1990]

black-box testing. A basic testing strategy that considers a functional de-
sign specification to design test cases without regard to the internal pro-
gram structure. This strategy supports testing the product against the end-
user external specifications.

capture/replay tool. A test tool that records test inputs and outcomes (e.g.,
screens) and provides facilities for subsequent re-execution or replay of
the test.

commitment. A pact that is freely assumed, visible, and expected to be
kept by all parties.

configuration management. A process that requires technical and admin-
istrative expertise to identify and document the functional and physical
characteristics of a configuration item, control changes to those charac-
teristics, record and report change processing and implementation status,
and verify compliance with specified requirements. Configuration items



665Testing Matur ity Model |

can be, for example, units of code, test sets, specifications, and test plans.
[IEEE-STD-610.12–1990]

consensus. A method of decision making that allows team members to
develop a common basis of understanding and to develop a general agree-
ment concerning a decision.

customer (client). The individual or organization responsible for accept-
ing the product and authorizing payment to the developing organization.

debugging. Debugging, or fault, localization, is the process of (1) locating
the fault or defect, (2) repairing the code, and 3. retesting the code.

defect. A flaw in a system or system component that causes the system
or component to fail to perform its required function. A defect, if en-
countered during execution, may cause a failure of the system.

defect prevention. The activities involved in identifying defects or poten-
tial defects and preventing them from being introduced into future
products.

developer. A technically skilled software professional who is involved in
the definition, design, implementation, evaluation, and maintenance of a
software system.

emulator. Hardware, software, or firmware that performs the tasks of a
specified hardware component.

end user. The individual or group who will use the system for its intended
operational purpose when it is deployed in its environment.

event-driven review/activity. A review or activity whose implementation is
based on the occurrence of an event within the project.

formal review. A formal meeting at which a product is presented to the
end user, customer, or other interested parties for comment, evaluation,
and approval. It can also be a meeting to present/discuss management and
technical activities, or a meeting to discuss the status of a project.

goal. (1) A statement of intent, or (2) a statement of an accomplishment
that an individual or an organization wants to achieve.

infrastructure. The underlying framework of an organization including
organizational structures, policies, standards, training, facilities, and
tools, which support its ongoing processes.



666 | Appendix I I I

institutionalization. The building of self-sustaining infrastructure and cul-
ture that support methods, practices, and procedures that enable a mode
of doing business, even after those who originally built the infrastructure
are gone.

integration testing. An orderly progression of testing in which individual
software elements, hardware elements, or both are combined and tested
until the entire system has been integrated.

manager. A role that encompasses providing technical and administrative
direction and control to individuals performing tasks or activities within
the manager’s area of responsibility. The traditional functions of a man-
ager include planning, scheduling, organizing, staffing, directing, and con-
trolling work within an area of responsibility. There may be several levels
of managers in an organization depending on the type of hierarchical
structure in place.

maturity level. A well-defined evolutionary plateau or stage for a process
supported by a set of goals and practices which when implemented de-
scribe the state of the process.

measure. An empirical objective assignment of a number (or symbol) to
an entity to characterize a particular attribute.

method. A reasonably complete set of rules and criteria that establish a
precise and repeatable way of performing a task and arriving at a desired
result.

organization. A unit within a company, or the entire company itself. An
organization has specific responsibilities, staff, and a reporting structure.
All projects within an organization usually share common top-level man-
agement and common policies.

periodic review/activity. A review or activity that occurs at specified, reg-
ular time intervals.

policy. A high-level statement of principle or course of action that is used
to govern a set of activities in an organization.

procedure. A means or technique whereby the performance of a task or
process is assured. The procedure may involve several organizational ele-



667Testing Matur ity Model |

ments, and its documentation may include some combination of function
statements, steps, and/or operating plans. The documentation defines
what should be performed, how it should be performed, and who is ac-
countable for the results.

project. An undertaking requiring concerted effort that is focused on de-
veloping and/or maintaining a specific product. The product may include
hardware, software, and other components. Typically a project has its
own management, funding, cost accounting, and delivery schedule.

project manager. The person with total business responsibility for a proj-
ect. The individual who directs, controls, administers, plans, and regulates
the development of a software system or hardware/software system. The
project manager is the individual ultimately responsible to the customer.

quality. (1) The degree to which a system, component, or process meets
specified requirements. (2) The degree to which a system, component,
or process meets customer or user needs or expectations. [IEEE-STD-
610.12–1990]

regression testing. The process of retesting software that has been modi-
fied to insure that no defects have been introduced by the modification,
and that the software is still able to meet its specification.

resource. The physical, human, and economic means needed to support
a process, policy, procedure, goal, or program; for example, training ma-
terials, hardware and software tools, standards documents, staff mem-
bers, and travel funds.

review. A group meeting whose purpose is to evaluate a software artifact
or a set of software artifacts.

risk. Possibility of suffering loss.

risk management. An approach to problem analysis that weighs risks in
a situation by identifying the risks, their probabilities of occurrence, and
their impact, to give a more accurate understanding of potential losses
and how to avoid them. Risk management includes risk identification,
analysis, prioritization, and control.



668 | Appendix I I I

role. A unit of defined responsibilities that may be assumed by one or
more individuals.

senior manager. A management role at a high level in an organization
whose primary focus is the long-term vitality of the organization, rather
than short-term project and contractual concerns and pressures.

simulator. A device, data processing system, or computer program that
represents certain features of the behavior of a physical or abstract system.

software life cycle. The period of time that begins when a software prod-
uct is conceived and ends when the software is no longer available for
use. The software life cycle typically includes a concept phase, require-
ment phase, design phase, implementation phase, testing phase, installa-
tion and checkout phase, operation and maintenance phase, and, some-
times, a retirement phase. [IEEE-STD-610.12–1990]

software process. The set of methods, practices, standards, documents,
activities, policies, and procedures that software engineers use to develop
and maintain a software system, and its associated artifacts, such as proj-
ect and test plans, design documents, code, and manuals.

software quality assurance. (1) A planned and systematic pattern of all
actions necessary to provide adequate confidence that a software work
product conforms to established technical requirements. (2) A set of ac-
tivities designed to evaluate the process by which software work products
are developed and/or maintained. [IEEE-STD-610.12–1990]

software tester. See tester.

software work product. Any artifact created as part of defining, maintain-
ing, or using a software product. This includes design documents, test
plans, user manuals, computer code, and associated documentation. Soft-
ware work products may, or may not, be intended for delivery to a cus-
tomer or end user.

standard. Mandatory requirements employed and enforced to prescribe
a disciplined uniform approach to software development. [IEEE-STD-
610.12–1990]

system testing. The process of testing an integrated hardware and soft-
ware system to verify that the system meets its specified requirements.



669Testing Matur ity Model |

technical requirements. Those requirements that describe what the soft-
ware must do and its operational constraints. Examples of technical
requirements include functional, performance, interface, and quality
requirements.

test case. A test-related item that which contains the following infor-
mation: (1) A set of test inputs. These are data items received from an
external source by the code-under-test. The external source can be hard-
ware, software, or human. (2) Execution conditions. These are conditions
required for running the test, for example a certain state of a data base,
or a configuration of a hardware device. (3) Expected outputs. These are
the results to be produced by the code-under-test.

tester. A technically skilled professional who is involved in the testing
and evaluation of a software system, and in the evaluation and improve-
ment of the testing process.

testing. (1) A group of procedures carried out to evaluate some aspect of
a piece of software. (2) A process used for revealing defects in software
and for establishing that the software has attained a specified degree of
quality with respect to selected attributes.

testing maturity questionnaire. A set of questions that supports an assess-
ment team in determining the testing maturity level of an organization. It
is concerned with the implementation of important software testing prac-
tices in a software organization.

test manager. The person with total business responsibility for testing and
evaluating a software product. The individual who directs, controls, ad-
ministers, plans, and regulates the evaluation of a software system or
hardware/software system. The test manager works with the project man-
ager to ensure the system is of the highest quality and meets the customers
requirements.

test process assessment. An appraisal by a trained team of software/test/
SQA professionals to determine the state of an organization’s current
testing process, to determine the high-priority testing process-related is-
sues facing an organization, and to obtain the organizational support for
test process improvement.



670 | Appendix I I I

test tools. The software and/or hardware systems, or other instruments,
that are used to measure and evaluate a software artifact.

test work product. Any artifact created as part of testing process. Exam-
ples are test plans, test cases specifications, test procedures, and test
documents.

unit testing. Aggregate of technical activities involved in demonstrating
that an individual software unit has been implemented correctly, that the
code and the design of a unit are consistent, and that the unit design is
correct.

V-model. A framework to describe the software development life cycle
activities from requirement specification to maintenance. (The Modified
V Model includes test development and execution activities.)

validation. The process of evaluating a software system or component
during, or at the end of, the development cycle to evaluate whether it
meets the customers requirements. [IEEE-STD-610.12–1990]

verification. The process of evaluating a software system or compo-
nent to determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase. [IEEE-STD-
610.12–1990]

white-box testing. A basic testing strategy that requires knowledge of the
internal structure of a program to design test cases.

PART 2 • T M M A C T I V I T I E S , T A S K S , A N D
R E S P O N S I B I L I T I E S ( A T R s )

This part of Appendix III contains the complete set of activities, tasks,
and responsibilities (ATRs) for the three critical views as described in the
TMM. The section is organized by TMM level, then by the maturity goals
within each level, and finally by the three critical views. For each TMM
level there is:

(i) A statement of each maturity goal;
(ii) ATRs for managers;



671Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

(iii) ATRs for developers/testers;
(iv) ATRs for users/clients.

• T M M L e v e l 2 : P h a s e D e f i n i t i o n

MATURITY GOAL 2.1: DEVEL OP TESTING AND

DEB UGGING GOA LS AND POLICIES

Recall that at TMM level 2 there is no requirement for a dedicated testing
group, so ATRs are formally assigned to developers only. If an organi-
zation does have a group of test specialists, then the developer ATRs can
be transferred to this group.

ATRs FOR MANAGERS (UPPER, AND

PROJECT MANAGEMENT)

• Provide leadership, adequate resources, and funding to form the com-
mittee (team or task force) on testing and debugging. The committee
makeup is managerial, with technical staff serving as comembers.

• Make available any pre-existing or sample testing/debugging policies
and goals.

• Assume a leadership role in testing/debugging policy development.

• Support the recommendations and policies of the committee by:

—distributing testing/debugging goal/policy documents to project
managers, developers/testers, and other interested staff, and solic-
iting feedback from these groups;

—appointing a permanent team to oversee compliance and policy
change-making;

• Ensure necessary training, education, and tools to carry out defined
testing/debugging goals and policies are made available.

• Promote the cultural changes needed to implement the testing/debug-
ging policies.



672 | Appendix I I I

• Assign responsibilities for testing and debugging.

• Encourage input/feedback from key users/client groups for testing/
debugging policies.

• Ensure that there is support for development of a simple defect clas-
sification scheme and a defect repository. The classification scheme
and repository should be available for all project personnel to study
and access.

• Ensure that developers (testers) are familiar with the defect classifi-
cation scheme and record defects occurring for each project in the
repository.

• Periodically review testing and debugging goals and policies.

ATRs FOR DEVELOPERS

• Work with management to develop testing and debugging policies
and goals.

• Participate in the team that oversees testing/debugging policy com-
pliance and change management.

• Become familiar with the approved set of testing/debugging goals and
policies, keeping up-to-date with revisions and making suggestions
for changes when appropriate.

• Set testing goals for each project at each level of test that reflect or-
ganizational testing goals and policies.

• Develop test plans that are in compliance with testing policy.

• Carry out testing activities that are in compliance with organizational
policies.

• Work with project managers to develop a defect classification scheme
and defect repository.

• Record defects occurring in each project in the defect repository.

• Participate in periodic reviews of testing/debugging policies and
goals.



673Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

ATRs FOR USERS/CLIENTS

• Users/clients give input/feedback on testing and debugging goals and
policies when solicited by management. (These groups play an indi-
rect role in the formation of an organization’s testing/debugging goals
and polices since these goals and policies reflect the organization’s
efforts to ensure customer/client/user satisfaction. Feedback from
these groups should be encouraged by management and SQA. In gen-
eral, the needs of its customers and the overall marketplace will have
an impact on the nature of an organization’s testing/debugging goals
and policies.)

MATURITY GOAL 2.2: INITIATE A

TEST PLANNING PROCESS

ATRs FOR MANAGERS

• Provide leadership, funding, and resources to an organizationwide
test planning committee.

• Ensure that test planning policy statements are distributed and
approved.

• Promote cultural changes to support test planning.

• Ensure that the testing policy statement, quality standards, and test
plan templates support test planning with commitments of resources,
tools, and training.

• Ensure that the testing policy statement contains a formal mechanism
for user/client input to the test planning process, especially for accep-
tance testing. (At higher TMM levels this will also include usability
test planning.)

• Ensure that all projects are in compliance with the test planning
policy.

• Ensure that test plan templates are applied uniformly for all projects.

• Ensure that all developers (testers) complete all the necessary post-
test documents such as test logs and test incident reports.



674 | Appendix I I I

• Ensure that test plans are prepared for all levels of testing: unit, in-
tegration, system, and acceptance.

• Participate in training classes for test planning, use of test plan tem-
plates, identifying/estimating test risks, planning tools (this applies to
project managers and test managers when there is a test group).

• Select appropriate test planning tools.

• Prepare multilevel test plans for each project with inputs and support
from developers. (This applies to project managers and test managers
when there is a test group.) Project/test managers use the organiza-
tional test plan templates as a guide for preparing test plans. Test risks
are identified, and simple measurements are selected and included in
the test plan to ensure testing goals have been met. Defect data from
past projects are used where appropriate to assist in test planning.)

• Ensure that developers (testers) prepare test plan attachments such as
test cases and test procedures.

• Ensure that auxiliary test documents are prepared such as test trans-
mittal reports and test logs.

• Review test plans with developers (testers).

• Ensure that all developers (testers) complete all the necessary post-
test documents such as test logs and test incident reports.

• Prepare a test summary report (project/test managers).

• Promote interactions with developers (testers) and clients to develop
acceptance test plans, and use cases and/or any other descriptions of
typical user/computer interactions.

• Periodically review test planning policies with technical staff.

ATRs FOR DEVELOPERS

• Participate as members of the test planning committee.

• Attend training classes for test planning, for using planning tools and
templates, and for identifying test risks.

• Assist the project (test) manager in determining test goals, test risks,
and test costs for planning at all levels of testing.



675Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Assist the project (test) manager in selecting test methods, procedures,
and tools.

• Develop test case specifications, test procedure specifications, and
other test-related documents.

• Work with analysts and designers to ensure that testability issues are
addressed during the requirements and design phases to support test
planning and test design.

• Collect simple test-related measures to ensure testing goals have been
achieved.

• Complete all the necessary pre- and post-test documents such as test
transmittal reports, test incident reports, and test logs.

• Work with clients to develop use cases and/or any other descriptions
of typical user/computer interaction and acceptance test plans.

• Participate in reviews of test planning policies.

ATRs FOR USERS/CLIENTS

• Articulate requirements clearly.

• Supply input and consensus to the acceptance test plan. The required
functional and performance-related attributes that are expected by
the client/users should be specified clearly and quantitatively if
possible.

• Provide input for the development of use cases and/or any other de-
scriptions of typical user/computer interaction.

MATURITY GOAL 2.3: INSTITUTIONALIZE BASIC

TESTING TEC HNIQUES AND METHODS

ATRs FOR MANAGERS

• Provide leadership, support, and funding to a committee or group
responsible for identifying, evaluating, and recommending basic test-
ing techniques, methods, and tools.



676 | Appendix I I I

• Ensure that the group’s recommendations are documented, distrib-
uted, and approved.

• Ensure that an organization’s policies and standards are designed to
promote the institutionalization of black/white box test design meth-
ods.

• Ensure that testing policies and standards require multilevel testing.

• Ensure developers (testers) acquire the needed education and training
to understand and apply black and white box testing methods, and
to develop test cases, test procedures, test logs, and test incident
reports.

• Ensure that developers (testers) have the needed education and train-
ing to perform testing at multiple levels.

• Provide resources to support use of the black/white box testing meth-
ods such as tools and templates.

• Encourage cooperation among developer (testers), requirements an-
alysts, and designers on testing issues.

• Ensure that test plans include use of black/white box test design meth-
ods.

• Ensure that multilevels of testing are covered in the test plans.

• Promote cultural changes needed to support organizationwide appli-
cation of basic testing techniques and tools.

• Promote cultural changes needed to support multilevel testing.

• Allocate adequate time and resources to design and execute the black/
white box tests, multilevel tests, and analyze the test results.

• Adjust project schedules so that multilevel testing can be performed
adequately.

• Provide visibility for successful application of testing techniques and
methods.

• Periodically review basic testing techniques and methods and tools.



677Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

ATRs FOR DEVELOPERS

• Participate as members of a committee responsible for evaluating and
recommending testing techniques, method, and tools.

• Attend classes and training sessions, read materials, acquire tools,
work with knowledgeable colleagues, and gain hands-on experience
in the application of white box and black box test design methods.

• Attend classes and training sessions, read materials, acquire tools,
work with knowledgeable colleagues, and gain hands-on experience
testing at the unit, integration, system, and acceptance levels.

• Ensure that a balance of test approaches is used for test case design
at all levels of testing.

• Design test cases, test specifications, and test procedures based on
knowledge of testing strategies, techniques, and methods.

• Set up software/hardware environment necessary to execute tests.
Shutdown facilities when tests are completed.

• Execute test cases at all levels of testing.

• Record test-related data.

• Record defect-related data.

• Interact with specifers and designers to review their representations
of the software. Representations include input/output specifications,
pseudo code, state diagrams, and control flow graphs which are rich
sources for test case development. These representations are vital for
designing white/black-based box test cases.

• Refer to defect repository to learn about past defects for similar proj-
ects to help design proper tests.

• Support (project/test) management to ensure that multilevel testing
and use of black/white box testing techniques are a part of organi-
zational policies, are incorporated into test plans, and are applied
throughout the organization

• Work with project (test) managers to ensure there is time and re-
sources to test at all levels.



678 | Appendix I I I

• Mentor colleagues who wish to acquire the necessary background
and experience to perform multilevel testing.

• Work with users/clients to develop the use cases and/or any other
descriptions of typical user/computer interaction and acceptance cri-
teria necessary for the multilevel tests.

• Work with users/clients at acceptance test time to ensure problems
are resolved to their satisfaction.

• Participate in periodic reviews of basis testing techniques and
methods.

ATRs FOR USERS/CLIENTS

• Provide liaison staff to interact with development (testing) staff on
test-related issues.

• Work with analysts so that system requirements are complete, clear,
and testable.

• Participate in acceptance and/or alpha and beta testing.

• Provide feedback and problem reports promptly so that problems can
be addressed during acceptance test (and installation test).

• Participate in use case development (and usage profiles at higher lev-
els of the TMM).

• T M M L e v e l 3 : I n t e g r a t i o n

MATURITY GOAL 3.1: ESTABLISH A

TEST OR GA NI ZATI ON

ATRs FOR MANAGERS

• Provide leadership, resources and funding to a committee defining
the structural framework of the test organization.

• Ensure that the role and responsibilities of the test organization are
stated in the testing policy statement.



679Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Ensure that client concerns are reflected in the test organization
policy.

• Ensure that any needed changes to support a test organization are
incorporated in the organizational reporting structure.

• Establish standards, requirements, compensation levels, responsibili-
ties, and career paths for the test professionals.

• Support necessary cultural changes needed to put into place a test
organization.

• Provide resources, staff, and funding for the test organization.

• Ensure cooperation among developers, test specialists, and the SQA
organization.

• Recruit and hire test specialists and test managers.

• Evaluate and supervise testing personnel.

• Periodically initiate actions to assess the maturity, effectiveness, and
performance of the test organization.

• Support education and training of test group members.

• Support cultural changes needed to sustain a test organization.

• Monitor the performance of the test group.

• Support test organization growth and test process improvement
efforts.

• Encourage, and provide communication pathways for tester–client
interaction.

• Promote successes that result from the work of the testing
organization.

ATRs FOR TESTERS

• Serve as members of the test organization committee.

• Be aware of the tasks, responsibilities, and career paths of the test
specialist.



680 | Appendix I I I

• Keep current with respect to new testing techniques, methods, and
tools.

• Keep current on test planning techniques, and risk management.

• Work with analysts, designers, developers, project managers, and
SQA staff to plan for testing, and to develop quality software
products.

• Work with clients on issues such as acceptance test planning, use cases
(or the equivalent), and usage profile (where appropriate).

• Work with project/test managers on test planning and monitoring of
test efforts.

• Work with project/test managers to identify and prioritize test risks.

• Design test cases, test procedures, and execute tests.

• Prepare pre- and post-test documents.

• Collect, analyze, and apply test-related measurements.

• Contribute to test policy making.

• Maintain the test repository.

• Maintain the defect repository.

• Recruit new staff members.

• Mentor new test staff members.

• Work to establish product and process standards.

• Evaluate and apply new testing techniques and tools.

• Participate in technical reviews.

• Contribute to test process evaluation and improvement.

• Participate in periodic reviews of the test organization.

ATRs FOR USERS/CLIENTS

• Express their concerns and needs to management on testing issues
and the test organization when solicited.



681Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Work with testers on items such as acceptance test planning, instal-
lation test planning, use cases (or the equivalent), and usage profiles
(where appropriate).

MATURITY GOAL 3.2: ESTABLISH A

TECHNICAL TRAINING PROGRAM

ATRs FOR MANAGERS

• Provide leadership, funding, and support to a technical training pro-
gram committee.

• Develop an organizational policy for training with input from tech-
nical staff and project/test managers. Obtain approval and distribute
to all relevant parties.

• Promote development of a technical training program by providing
funding for the program, staff, resources, training materials, tools,
and laboratories.

• Recruit and hire qualified staff for the training organization.

• Ensure that training plans are developed to support training needs
and goals for all projects.

• Monitor and review the training program with technical staff to eval-
uate its effectiveness and to identify areas for improvement.

• Promote the cultural changes needed to support a training program.

• Provide visibility for the training program.

• Promote successes that result from the training program.

• Recommend staff members for training sessions.

ATRs FOR TESTERS

• Participate as members of the technical training program committee.

• Attend training sessions to improve their testing skills and
capabilities.



682 | Appendix I I I

• Apply newly acquired knowledge and skills to organizational
projects.

• Request the development of new training sessions to acquire needed
skills.

• Identify those in the testing group that could benefit from training.

• Participate in periodic reviews of the training program.

ATRs FOR USERS/CLIENTS

• If organizational policy permits, attend training sessions to pro-
mote participation in specific areas such as technical reviews, ac-
ceptance test planning, and development of use cases (or equivalent
representations).

MATURITY GOAL 3.3: INTEGRATE TEST ING

INTO THE SOFTWARE LIFE CY CLE

ATRs FOR MANAGERS

• Provide leadership, resources, and support to a committee focused on
test integration activities and models.

• Review, approve, and adopt (with input from testers and other tech-
nical staff) a test integration model (the V-model is an example of
such a model).

• Ensure that integration of testing activities is a part of the testing
policy and standards documents.

• Provide training to support integration activities.

• Ensure that the integration of testing activities is applied throughout
the organization for all projects.

• Ensure that all testers are trained to carry out integrated testing
activities.

• Promote cultural changes needed for the integration activities.

• Monitor and review the integrated testing activities and deliverables,
evaluate them, and propose improvements if needed.



683Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Work with testers to develop standards for test work products that
result from each life cycle phase.

• Ensure that work product standards are upheld.

• Promote successes of the integration efforts.

ATRs FOR TESTERS

• Serve on the committee dedicated to review, approve, and institute a
test activities integration model and associated procedures.

• Attend training sessions to prepare for the integration of test
activities.

• Plan the integrated test activities (test planning policies may require
modification).

• Apply the documented integrated testing activities for each project.

• Perform the required test activities throughout the software life cycle
as specified in the approved model, the organizational policy state-
ment, and standards documents.

• Prepare all test deliverables that are required for each of the integrated
testing activities.

• Work with management and SQA to develop standards for test de-
liverables and work products.

• Work with analysts, designers, developers, clients, on testing issues
at designated life cycle phases.

• Ensure that each test work products/deliverable meets organizational
standards.

• Participate in periodic reviews of integration activities.

ATRs FOR USERS/CLIENTS

• Provide consensus and support for integrated testing activities and
early test planning. For example, provide support for acceptance test



684 | Appendix I I I

planning, use case (or equivalent representations), and usage profile
development during the requirements and specifications phases.

MATURITY GOAL 3.4: CONTROL AND

MONITOR T HE TESTING PROCESS

ATRs FOR MANAGERS

• Provide leadership, resources, and funding to a committee or group
on test process controlling and monitoring.

• Ensure that testing policy statements are modified so that mechanisms
to accomplish controlling and monitoring of testing are described in
detail.

• Promote cooperation between project and test managers for plan-
ning, monitoring, and controlling activities.

• Promote cultural changes needed for implementation of controlling
and monitoring activities.

• Promote sharing of tools, and techniques between project and test
managers for monitoring and controlling.

• Ensure that controlling and monitoring activities are part of each test
plan.

• Ensure that adequate funding, training, tools, and resources are given
to support controlling and monitoring activities.

• Assign responsibilities for controlling and monitoring.

• Support identification and selection of controlling/monitoring mea-
surements.

• Participate in status and audit meetings, contribute to problem-
solving sessions, and support follow-up for corrective actions.

• Periodically review the controlling and monitoring system.

• Promote successes that result from controlling and monitoring
activities.

The following ATRs are assigned primarily to test managers.

• Serve on the committee to develop controlling and monitoring poli-
cies for testing.



685Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Develop test plans with appropriate schedules and resources set aside
for controlling and monitoring.

• Cooperate with project managers to prepare contingency plans to
cover risk-related areas of test.

• Select appropriate measurements to guide controlling and monitoring
of tests.

• Ensure all appropriate test documents are prepared such as test logs
and test incident reports.

• Collect and analyze test-related measurements, and present reports
to appropriate management and staff.

• Set up periodic test status meetings, lead discussions, and present
progress reports.

• Initiate and follow-up corrective actions when testing is off track.

• Assign responsibilities to testers for corrective actions that address
test-related problems.

• Follow up and report on corrective actions taken.

• Support the installation of a configuration management system and
play a role on the change control board.

• Prepare and present the test summary report.

• Participate in periodic reviews of the controlling and monitoring
system.

ATRs FOR TESTERS

• Attend training sessions on controlling and monitoring (includes
training on configuration management).

• Work with test managers to plan for controlling and monitoring of
tests.

• Work with test managers to select appropriate measurements for con-
trolling and monitoring.

• Work with project/test managers to develop contingency plans.



686 | Appendix I I I

• Collect and analyze test measurements.

• Participate in test status meetings.

• Complete follow-up activities for corrective actions.

• Prepare test-related documents such as test logs and test incident
reports.

• Contribute to a test summary report.

• Ensure that test items are under the control of a configuration man-
agement system.

• Serve as members of the change control board.

• Participate in periodic reviews of the controlling and monitoring
system.

ATRs FOR USERS/CLIENTS

• Attend special test milestone meetings when appropriate. If the soft-
ware is being developed for a specific client, the development orga-
nization may invite a user/client group to attend a test milestone meet-
ing to show progress.

• Contribute necessary data for to post-test evaluations when appro-
priate. If an organization is measuring test-effectiveness using post-
release problem reports, the users/clients will need to complete prob-
lem reports and insure they are returned to the proper personnel in
the development organization.

• T M M L e v e l 4 : M a n a g e m e n t a n d M e a s u r e m e n t

MATURITY GOAL 4.1: ESTABLISH AN

ORGANIZATIONWIDE REVIEW PR OG RAM

ATRs FOR MANAGERS

• Provide leadership, resources, and funding to a review program
committee.



687Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Ensure that a review policy is developed, documented, approved, and
available for management and technical staff.

• Provide training and resources for the review program.

• Promote cultural changes necessary to implement the review
program.

• Ensure that the review requirements for the selected software items
are followed.

• Upper-level managers and project/test managers work together to en-
sure that project/test plans provide time and resources for reviewing
project deliverables.

• Ensure that review measurements are identified, collected, and ap-
plied for review process improvements.

• Ensure that defects identified during reviews are logged.

• Ensue that defects identified during reviews are processed and that
corrections are carried through.

• Ensure that review data is referred to for project/test planning.

• Evaluate the review program periodically and support improvements
where needed.

• Promote the successes of the review program.

ATRs FOR TESTERS

• Participate as members of the committee to develop review policies
and plans.

• Attend review training sessions.

• Serve as review leaders, review instructors, and review participants
as prescribed in the review policy statements.

• Ensure that review follow-up work is completed as described in the
review policy and review plans.



688 | Appendix I I I

• Work with SQA to identify classes and severity levels for review-
related defects.

• Store and analyze review defect data.

• Collect review-related measurements.

• Work with SQA staff to develop checklists and other forms to sup-
port reviews.

• Refer to current and past review defect data to support test planning
and test design.

• Participate in periodic evaluations of the review program.

ATRs FOR USERS/CLIENTS

• Attend review training sessions where appropriate.

• Attend review sessions as prescribed in the review policy. (For ex-
ample, attendance at requirements, acceptance test plan, and user
manual reviews are vital to ensure software quality and satisfaction
of user needs and requirements.)

MATURITY GOAL 4.2: ESTABLISH A

TEST MEA SUR EMENT PROGRA M

ATRs FOR MANAGERS

• Provide leadership, resources, and funding for a test measurement
program committee.

• Ensure that a measurement program/policy is developed, docu-
mented, approved, and available for management and technical staff.

• Provide training and resources for the measurement program.

• Ensure that effective test process and product measurements are
identified.

• Review the selected measurements periodically, and add, modify, or
delete measurements when deemed appropriate.



689Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Assign responsibilities for defining, collecting, storing (test data re-
pository), analyzing, and applying the measurement data. Decide
when and where the data are to be applied, and by whom.

• Ensure that test plans include appropriate measurements so that the
testing process can support achievement of software product quality
goals.

• Work together with other managers (upper-level managers, project/
test managers) to ensure that project/test plans provide time and re-
sources for collecting product and process measurements.

• Ensure that project/process/test data is referred to for project/test
planning, and to support the development of test and project goals.

• Ensure that measurement data is used to monitor, control, and im-
prove the testing process (test managers).

• Apply the measurement data to develop appropriate action plans
when measurements (and supporting assessments) indicate the testing
process needs to be changed and improved (test managers).

• Work with clients to gather inputs on software quality attributes that
are of importance to them.

• Apply product data collected during testing to evaluate and improve
product quality.

• Review/evaluate the measurement program periodically and support
improvements where needed.

• Promote successes that result from the measurement program.

• Promote the cultural changes needed for a successful measurement
program.

ATRs FOR TESTERS

• Participate in the committee involved in measurement program plan-
ning and policy making.

• Assist in selecting measurement tools and methods,



690 | Appendix I I I

• Assist in identifying product-related quality attributes and metrics.

• Assist in identifying test process-related attributes and metrics.

• Attend measurement training classes.

• Develop and maintain the test measurement database (and defect
repository).

• Collect product and test process data during all levels of testing.

• Support data analysis and application of results.

• Support use of appropriate measures for test process evaluation and
improvement.

• Provide input to managers and SQA staff from measurement data for
each product with respect to its quality attributes.

• Support achievement of quality goals and requirements for each
project.

• Participate in periodic reviews of the measurement program.

ATRs FOR USERS/CLIENTS

• Give consensus on quality attributes for products.

MATURITY GOAL 4.3: SOFTWARE QUALITY

EVALUATION

ATRs FOR MANAGERS

• Provide leadership, resources, and funding to a committee on soft-
ware quality evaluation.

• Ensure that software quality evaluation policies, procedures, forms,
and standards are developed, distributed, and approved.

• Ensure that a full set of software quality attributes and metrics is
developed, distributed, and approved.



691Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Promote cultural changes needed to implement software quality eval-
uation activities.

• Ensure that each project follows the documented software quality
evaluation procedures.

• Ensure that quantitative quality goals are set for each project.

• Ensure the quality goals are met for each project.

• Provide funding, training, tools, and other resources to support soft-
ware quality evaluation.

• Periodically review software quality evaluation policies, standards,
metrics, and procedures with technical staff.

• Periodically review/assess the testing process to ensure that it supports
evaluation of quality attributes and achievement of quality goals.

• Ensure there are mechanisms in place for client input in setting quality
goals for projects.

• Ensure that client input is solicited to identify key quality attributes.

• Promote successes that result from software quality evaluation
activities.

ATRs FOR TESTERS

• Attend software quality evaluation training classes.

• Participate in development of policies, procedures, forms, and stan-
dards for software quality evaluation.

• Participate in identification and application of software quality at-
tributes and metrics.

• Work with project managers, test managers, and clients to identify
quality attributes, metrics, and quality goals relevant to each project.

• Collect measurements of software quality attributes during testing
and other quality evaluation procedures.

• Participate in software quality metrics validation procedures.



692 | Appendix I I I

• Use software quality measurements and analysis techniques to eval-
uate the quality of the emerging software artifacts.

• Participate in testing process assessments and evaluation procedures
to ensure that testing gives strong support for quality evaluation and
achievement of quality goals.

• Participate in reviews of software quality evaluation standards and
procedures.

• Support achievement of quality goals and requirements for each
project.

ATRs FOR USERS/CLIENTS

• Give consensus on quality attributes for products.

• Provide input and approval for the quality requirements and goals
that are important to them with respect to the software being devel-
oped. These appear in the requirements document.

• Provide inputs during acceptance tests to ensure that quality require-
ments are met.

• T M M L e v e l 5 : O p t i m i z a t i o n / D e f e c t
P r e v e n t i o n a n d Q u a l i t y C o n t r o l

MATURITY GOAL 5.1: DEFECT PR EVE NTI O N

ATRs FOR MANAGERS

• Provide leadership, resources, and funding to a committee focused
on the development of documented defect prevention policies, pro-
cedure, and programs.

• Ensure that defect prevention documents are distributed and
approved.

• Assign responsibilities for detect prevention activities.



693Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Ensure that training, tools and other resources are available for defect
prevention activities.

• Promote the cultural changes needed for success of defect prevention
activities.

• Promote visibility for successful defect prevention actions.

• Ensure that process changes that result from defect prevention activ-
ities are incorporated into documented policies and standards.

• Participate, and serve as leaders, in defect prevention activities such
as action planning and monitoring. Lead project kick-off meetings.

• Select pilot projects to implement action plans for defect prevention.

• Promote discussion and distribution of lists of common defects and
process change information to project team members.

• Promote the inclusion of defect prevention activities as part of the
project/test plans

• Review the defect prevention program periodically.

ATRs FOR TESTERS

• Serves as members of the defect prevention policy committee.

• Attend training classes in defect prevention methods and activities.

• Collect and store update defect data from all life cycle phases.

• Serve as members of the defect causal analysis and defect prevention
teams.

• Supply input for the development of defect prevention polices and
procedures.

• Participate in action planning for defect prevention especially where
applied to the test process.

• Serve as members of pilot project teams that implement action plans
for defect prevention.



694 | Appendix I I I

• Track and monitor changes in the test process that result from defect
prevention activities.

• Ensure that test process changes that result from successful defect
prevention actions are documented and followed.

• Support cultural changes necessary for defect prevention program
success.

• Participate in reviews of the defect prevention program.

ATRs FOR USERS/CLIENTS

• Report defects and problems in operating software so these can be
entered into the defect data base for defect tracking and causal
analysis.

MATURITY GOAL 5.2: QUALITY CONTROL

ATRs FOR MANAGERS

• Provide leadership, resources, and funding for the committee focusing
on development of documented quality control policies, procedure,
and programs.

• Ensure that quality control-related documents are distributed and ap-
proved.

• Assign responsibilities for quality control activities.

• Ensure that training, tools, laboratories, and other resources are
available for quality control activities.

• Promote the cultural changes needed for success of quality control
activities.

• Promote visibility for successful quality control actions.

• Ensure that qualitative and quantitative quality goals are set for all
projects, and are included in requirements documents, test plans, and
project plans.



695Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Ensure that project and test plans allocate sufficient time and re-
sources for software quality control activities.

• Ensure that there is a mechanism for user/client input to usage
modeling.

• Plan for reliability and usability testing.

• Promote the development of usability standards.

• Assign responsibilities for statistical testing and usability testing. (The
test and SQA groups may be assigned these responsibilities after the
necessary training. As an alternative, management may decide to sup-
port the establishment of specialized groups in reliability and usability
engineering. Hiring such a group of specialists may be called for be-
cause of the nature of software products under development, and
because of the needs of the customer base.)

• Ensure that stop-test decisions are based on quantitative criteria, and
include these in test plans.

• Monitor testing and other quality-related activities to ensure that
software quality goals for each project are met, and that customers
needs are satisfied.

• Periodically review the software quality control program.

ATRs FOR TESTERS

If an organization decides to hire reliability and usability engineering spe-
cialists then testers may have a supporting, rather then leading, role in
the following ATRs.

• Participate as members of the committee on quality control.

• Attend training classes in quality control; includes training in statis-
tical testing, development of usage profiles, and usability testing.

• Develop and maintain operational profiles with inputs and feedback
from user groups.

• Develop a hierarchy of severity levels for faults and failures.



696 | Appendix I I I

• Support planning for statistical testing.

• Perform statistical testing, and analyze results.

• Understand and apply reliability models.

• Collect and store quality-related measurements, for example, from
reliability and usability tests. (These can be used to set standards for
future projects.)

• Support the development of quantitative stop-test criteria and collect
measurements to support their application.

• Design and execute tests to measure attributes such as correctness,
portability, reliability, usability, confidence, availability, and trust-
worthiness.

• Support usability test planning.

• Identity user groups for usability testing.

• Design usability tests.

• Support set up of usability testing laboratories.

• Monitor, record, analyze, and report the results of usability tests.

• Solicit user feedback from usability tests, and ensure that follow-up
work is completed.

• Assist in the development usability standards for software products.

ATRs FOR USERS/CLIENTS

• Participate in development of qualitative and quantitative quality re-
quirements for the projects they are involved in.

• Participate in development of an operational profile.

• Participate in usability testing by using the evolving software to carry
out typical tasks and giving feedback to the testing team. It is impor-
tant for users to state their opinions regarding the strengths and weak-
nesses of the developing software system.



697Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

MATURITY GOAL 5.3: TEST PROCESS

OPTIMIZATION

ATRs FOR MANAGERS

• Ensure that a group or task force (SEPG/TPG) responsible for test
process improvement is established, chartered, supported, funded,
and trained. Take a leadership position in the group.

• Ensure that documented test process control policies, procedures, and
programs are developed, distributed, and approved.

• Ensure that documented test process assessment and improvement
procedures and programs are developed, distributed, and approved.

• Ensure that documented technology transfer policies, procedures, and
programs are developed, distributed, and approved.

• Ensure that documented test process reuse policies, procedures, and
programs are developed, distributed, and approved.

• Assign responsibilities for test process control.

• Assign responsibilities for technology transfer.

• Assign responsibilities for test process reuse.

• Assign responsibilities for test process assessment.

• Ensure that training, tools, laboratories, and other resources are avail-
able for test process control, reuse, assessment, and improvement.

• Promote the cultural changes needed for success of test process con-
trol, reuse, assessment, and improvement activities.

• Promote the cultural changes needed for success of technology trans-
fer activities.

• Promote visibility for successful actions in test process reuse, control,
and improvement.

• Select and provide support for pilot projects that are involved in pro-
cess control implementation, process assessment and improvement,
and trial technologies.



698 | Appendix I I I

• Keep abreast of current tools and technologies to support test process
optimization.

• Support periodic test process assessments with the TMM.

• Oversee test process improvement activities that result from TMM
assessments.

• Support development and maintenance of both a Process Asset Li-
brary and reuse of process assets.

• Identify reusable processes for inclusion in the Process Asset Library.

• Tailor processes retrieved from the PAL and apply to new projects
(test managers).

• Develop control charts, identify process variations and causes, and
prepare reports (test managers).

• Periodically review the test process reuse, control, assessment and
improvement programs.

• Periodically review the technology transfer program.

ATRs FOR TESTERS

• Serve as members of an SEPG/TPG.

• Assist in developing policies, plans, standards, and other documents
related to process control, reuse, assessment and improvement, and
technology transfer.

• Attend training classes in test process control, reuse, assessment, and
improvement.

• Attend training classes in technology transfer.

• Keep abreast of current tools and technologies to support test process
optimization and identify promising candidates to managers and the
SEPG/TPG team.

• Evaluate new tools and technologies and provide feedback to
management.

• Serve as members of test process assessment teams.



699Part 2: TMM Activ it ies, Tasks, and Responsibi l i t ies (ATRs) |

• Serve as members of action planning teams.

• Participate in pilot projects for process change and technology
transfer.

• Collect measurement data from projects under study by SEPG/TPG.

• Assist in the development of control charts, identify process varia-
tions and causes, and prepare reports.

• Help to identify process assets, support, and maintain the Process
Asset Library.

• Support integration of process changes and approved new
technologies.

• Participate in reviews of the test process control, reuse, assessment,
improvement and technology transfer programs.

ATRs FOR USERS/CLIENTS

Users/clients do not play any significant role in support of this maturity
goal.



This page intentionally left blank 



I N D E X

A

Acceptance test, 133, 135, 139, 163,
176–178

Action database, 457–458
Action plan template, 573
Action planning, 452–453, 555–556
Action team, 454–457, 555
Actions, monitoring, 457–459
Activities, tasks and responsibilities,

10–11, 540
for TMM level 2, 671–678
for TMM level 3, 678–686
for TMM level 4, 686–692
for TMM level 5, 682–699
see also Manager vie; Developer/tester

view; User/client view
Algorithmic and processing defects, 47, 48
Alpha testing, 176, 178
American Society for Quality (ASQ), 253
Anticomposition property, 122

Antidecomposition property, 122
Antiextensionality property, 121
Applicability property, 120
Assertion checkers, 495–496
Assertions, 87
Assessment usability testing, 427
Attribute specification format template,

369–371
Auditors, 490
Availability, 410–411
Axioms, test-related, 118–124

B

Basis set, 110
Baseline, 293
Beta testing, 176, 178
Black box test design, 64–86
Bottom-up integration, 153–155
Boundary value analysis, 72–73



702 | Index

Bounds checkers: see Run time error
checkers

Branch adequate, 99
Branch coverage, 99–105
Bugs: see Defects

C

Capability Maturity Model (CMM), 5–6,
9–10, 539, 540, 542, 564, 566, 567,
568, 570

Capture-reply tools, 483–485
Career paths for testers, 250–252
CAST, 470
Cause-and-effect graphing, 78–82
Certification, 88
Change control, 293–294
Checkpoint system, 175
Classes (as units) 137, 142–148
Classes (objects) testing of, 137, 142–148
Classes, retesting of, 146–148
Cleanroom software engineering, 407
Cluster (of classes), 158
Clusters in integration test, 158, 161
COCOMO model, 210–211
Code checkers, 490
Code comprehension tools, 490–491
Code documentation defects, 50
Coding defects, 48–51
Code review, 329–330

checklist, 331, 332
Coin problem, 51–57
Commercial-Off-the-Shelf Components

(COTS), 86–87
Communicativeness, 424
Comparators, 484–485
Comparison test, 429

Compatibility, 366
Completeness, 365
Completion criteria (for test), 289–292
Complexity: see Cyclomatic complexity
Complexity measurers, 487
Complexity property, 123
Condition coverage, 106–108
Confidence level, 422–423
Configuration audits, 295
Configuration building tools, 473
Configuration management, 292–296
Configuration items, 293
Configuration management tools,

481–482
Configuration status reports, 295
Configuration testing, 171–172
Continuous process improvement models,

543–545
Control charts, 511–512
Control flow graphs, 101–103, 105
Control limits, 511–512
Control, logic and sequence defects, 47, 49
Correctability, 365
Correctness, 24, 365, 382
Cost driver, 210–213
Cost of testing, 208–216
Coverage, 101–108
Coverage analyzers, 477–478
Criteria for test completion, 289–292
Critical views, 11, 540
Cross reference tools, 478
Customer profile, 410–402
Cyclomatic complexity, 108–109

D

Data defects, 47
Data flow defects, 49



703Index |

Data flow testing, 111–115
Debugging, 8
Debugging policy, 195–196
Debugging tools, 472
Decision coverage, 103–108
Decision table, 82
Defect causal analysis, 447, 450–454
Defect causal analysis meetings,

451–454
Defect causal analysis report, 454
Defect data (sample of), 448
Defect, examples of: see Coin problem
Defect hypotheses, 41
Defect prevention (benefits of), 459–460
Defect prevention (analysis), 439–444
Defect prevention program, 444–447
Defect record, 362, 384, 445–446
Defect removal leverage (DRL) 281, 338,

378
Defect repository (catalog) 43, 57–58,

362, 363, 384
Defects (bugs, faults), 20

classes 42–51,
coding defects, 48–51
design defects, 46–48
requirements and specification

defects, 44–46
testing defects, 51

origins of, 39–41
Defect trackers, 485–487
Definition-use path, 112–113
Degree of satisfaction, 559
Design defects, 46–48
Design review, 328–329
Determining TMM level, 560–561
Developer/tester view, 57–58, 89–91,

124–127, 183, 228–229, 258–259,

260, 261, 299, 344–345, 388–389,
434–435, 461, 499–500, 534, 546

Discriminant, 408–409
Drivers, 148–150

E

Ease of learning, 424
Earned value, 91, 287–288
Efficiency, 382
EIA/IS-731 model, 545
Emulators, 491
Engineering, 3
Equivalence class partitioning, 67–77
Equivalence class partitioning, example

73–77
Error guessing, 85–86
Errors, 20
Exhaustive testing, 66
Expandability, 365
Exploratory usability testing, 426–427
Extended/Modified V-model, 15, 340, 341
External interface description defects, 48

F

Failures, 20
Fault localization, 8
Fault model, 42
Faults, 20

See also Defects
Fault seeding, 291, 292
Feature, 45
Feature defects, 45
Feature interaction defects, 46
Finite state machine, 82
Fishbone diagrams, 449–450, 454–455



704 | Index

Function (as a unit), 135–138
Functional description defects, 45
Functional profile, 403–404
Functional testing, 166–167

G

General multiple change property,
121–122

Glossary of terms (for TMM), 663–670
Goals, 190–191
Goal/Questions/Metrics (GQM), 270
Graphs of test trends, 269, 287

H

Hypothesis, 41

I

IEEE Standard Classification for Software
Anomalies, 43

Inadequate empty set, 121
Incident reports, 223–224
Independent path, 109–110
Initialization defects, 49
Inspections, 308–310
Integrated Capability Maturity Model

(CMMI), 545, 564, 568, 570
Integration of test, 253–257
Integration strategies

for classes, 158–159
for procedures/functions, 153–157

Integration test, 152–163
design, 159–162
planning, 162–163

Integrity, 24

Interactive debugging tools, 472–473
Interoperability, 24, 366
Ishikawa diagrams, 449
ISO 9000 models, 567, 571
ISO/IEC 12207 model, 564, 566, 571
ISO/IEC 15504 model, 566

L

Levels of testing, 133–137
Line of code counters, 473
Load, 165
Load generators, 487
Loop testing, 115

M

Maintainability, 24, 365, 383
Manager view, 91, 182–183, 226–227,

229, 258, 259, 260, 297, 343–344,
387–388, 434, 460–461, 499–500,
546

Master test plan, 198, 199, 534
Maturity goal ranking, 560
Maturity goals: see TMM maturity goals
Maturity subgoal ranking, 560
Measure, 353
Measurement, 353
Measurement collection form, 358, 359
Measurement database, 360–362
Measurement program (for test), 354–364
Measurement team, 358–357
Measurements and milestones for test,

266–271
Measurements for:

monitoring errors, faults, failures,
277–278



705Index |

monitoring testing costs, 276–277
monitoring test effectiveness, 278–283
monitoring testing status, 271–274
monitoring tester productivity, 275–276
TMM level 1, 373–375
TMM level 2, 375–377
TMM level 3, 377–380
TMM level 4, 381–383
TMM level 5, 383–386

Methods, as a unit, 137–138
Metric, 24, 353
Milestones, 197, 267–268
Milestone meeting, 284
Module interface description defects, 48
Module interface defects, 50
Monotonicity property, 120–121
Mutation adequate, 116–118
Mutation testing, 116–118

N

Network analyzers, 491
Non-exhaustive applicability property, 120

O

Objects testing of: see Classes
Operability, 424
Operational profile, 399–401, 404–407
Oracle: see Test oracle

P

Pareto diagram, 447–449
Pass/fail criteria, 203, 625
Paths, 108–111
Performance testing, 167–169
Performance testing, tools, 491

Personal review, 340–343
Phase yield, 338–339
Plan (definition), 197
Policy, 192
Policy statement, 193–196
Portability, 24
Post condition, 52
Precondition, 52
Primes, 102, 103
Principle (definition), 26
Procedure (as a unit), 135–138
Process (definition), 4
Process and engineering disciplines, 230
Process asset library, 495, 528

support tools, 495
Process control, 509–518
Process engineering, 504–509
Process improvement group: see Software

engineering process group
Process improvement model

representations, 543–545
Process optimization: see Test process

optimization
Process reuse, 526–533
Process reuse procedures, 531–533
Process variations, 509–512
Program primes, 102, 103
Project (test) controlling, 264–265
Project (test) monitoring, 264
Project (test) planning tools, 476–477
Process reuse, 526–533

Q

Quality: see Software quality
Quality Assurance Institute (QAI), 253
Quality attribute, 353



706 | Index

Quality circles, 449
Quality control, 397–399, 504–509
Quality costs, 395–397
Quality factor, 354, 365
Quality requirement, 354
Quality subfactor, 354, 365–366
Quality metric, 24
Quantitative process control: see Process

control

R

Random testing, 66–67
Rating the maturity goals, 560
Rating the maturity subgoals, 560
Recovery testing, 175–176
Regression testing, 176
Reliability, 24

See also Software reliability
Reliability models (application), 417–422
Renaming property, 122–123
Requirements defects, 44–46
Requirements recorders, 482–483
Requirements review, 326–328
Requirements-to-test tracers, 483
Requirements verifiers, 483
Reusability, 383
Review checklists, 324–333
Review goals, 304–305, 315
Review metrics, 337–340
Review plans, 314–316
Review policies, 313–314
Review procedures, 320
Review program, 311–313
Review reports, 333, 337
Review rework, 310
Review team, 317–320

Review team size, 317
Review time, 317
Review training, 320–324
Review types, 307–311
Reviews, 25, 304
Risk management for test, 207
Run time error checkers, 477

S

Sample test plan project, 611–615
Sample test plan, 611–631
Scheduling (for test), 206, 629
Security, 365
Security testing, 172–175
Self check: see Personal review
Simulators, 491
Software configuration management,

292–296
Software development process, 4–6
Software engineering process group

(SEPG), 513, 518–523
Software engineering profession of, 1–4
Software quality, 23, 367–369, 394
Software quality assurance group (SQA),

25, 394
Software quality evaluation, 364–372,

369–372
Software quality metrics methodology,

367–369
Software reliability, 410–414
Software testing principles, 26–34
SPICE model, 5, 545, 549, 566
Staged process improvement models,

543–545
State, 82
Statement adequate, 99



707Index |

Statement coverage, 99–105
property, 123–124

State table, 85
State transition

graph, 84
testing, 82–85

Statistical process control (applications of),
516–518

Statistical testing, 407–410
Status meetings (for test), 283–288
Status reports, 283–286
Stop test criteria, 289–292, 414–422
Stress testing, 169–171
Stubs, 148–150
Suspend and resume criteria, 204,

625–626
System mode profile, 402–403
System test, 163–176
System test types, 163–166, 623–625

T

Team Training Data Recording Template,
562–563

Technical training program, 247–250
Technology transfer, 523–526
Template for reusable processes, 529–531
Testability, 365, 383
Test adequacy criteria, 98–101
Test adequacy criteria ordering, 188–119
Test bed, 23
Test case design

defects, 51
specifications, 218–220
strategies, 61–65, 97–98

Test cases, 21–22
Test completion criteria, 289–292

Test costs, 208–216
Test data generators, 496
Test design specification, 217–218
Test defects, 51
Test engineer, 247
Test group, 240–242

structure of, 242–246
Test harness, 148–150

defects, 51
generators, 491

Test incident report, 223–224
Test item transmittal report, 221
Test lead, 246
Test log, 222–223
Test manager, 246
Test management tools, 492, 496
Test measurement program (need for),
349–353
Test milestone meetings, 284
Test oracle, 23
Test organization, 244–245
Test plan attachments, 216

test case specifications, 218–220
test design specifications, 217–218
test procedure specifications, 220–221

Test plan components, 200–216, 611,
616–630

approach, 202–203, 621–625
costs, 208–216, 630
deliverables, 204, 626–627
environment, 205, 628
features, 202, 620
identifier, 200, 617
items, 201, 619–610
pass/fail criteria, 203, 625
responsibilities, 206, 628–629
risks and contingencies, 207, 629–630



708 | Index

scheduling, 206, 629
staffing and training, 206, 629
suspend/resume criteria, 204, 625–626
test tasks, 205, 627–628

Test plan introduction, 617, 619
Test plan review, 330–333

checklist, 333
Test planning, 197–216
Test preparation support tools, 477
Test principles, 26–34
Test procedure specification, 220–221
Test process control, 512–516
Test process group (TPG): see Software

engineering process group
Test process optimization, 518–523
Test process profile, 554
Test-related references, 587–610
Test scripting tools, 495

See also Capture-reply tools
Test scripts, 484
Test specialist, 235–240

skills, 237–240
Test status meeting, 283–288
Test summary report, 224
Test team (group) hierarchy, 245–247,

250–252
Test team: see Test group
Tester certification, 252
Tester view: see Developer/tester view
Testers (test specialists), 3–4, 33, 235–240,

251
Testers’ Workbench

evaluating tools for, 467–470
goals, 465–467
See also Tools for testing

Testing (definition), 7, 22, 303
Testing (as a) process, 6–8

Testing goals, 191–192
Testing Maturity Model, 8–16, 192–195,

537–538
approach to model development,

538–543
human factors and, 576–581
industrial applications of, 569–583
level structure, 11–16, 545–548
maturity goals, 12–16, 474–494
maturity levels, 12–16, 474–494,

545–549
questionnaire, 556–558, 633–670
ranking procedure, 558–562, Appendix

III
relationship to other models, 563–569

Tiger team, 174
TMM assessment model, 548–562

assessment procedure, 551–556
assessment report, 553–565
forms and tools, 562–563
model components, 549–562
questionnaire, 556–558, 633–670
questionnaire template, 634
ranking procedure, 558–562
sample test process profile, 554
studies, lessons learned, 581–583
team selection and training, 549–551

TMM level 1
maturity goals, 12

TMM level 2
maturity goals, 12–13, 474–475, 639,

640, 642
maturity subgoals, 639, 640, 643

TMM level 3
maturity goals, 14, 478–480, 644, 645,

647, 648
maturity subgoals, 644, 646, 647, 648



709Index |

TMM level 4
maturity goals, 14–15, 487–489, 650,

651, 653
maturity subgoals, 650, 651, 653

TMM level 5
maturity goals, 16, 492–494, 654, 656,

657
maturity subgoals, 654, 656, 658

TMM, other process assessment models,
563–569

Tools for testing, 155–157
categories, 470–472
evaluation of, 467–470
at TMM level 1, 472–474
at TMM level 2, 475–478
at TMM level 3, 480–487
at TMM level 4, 489–492
at TMM level 5, 494–497
See also Tester’s Workbench; Top-down

integration
Top down integration, 155–157
Traceability Matrix (assessments), 563
Training program, 247, 250
Trustworthiness, 411
Typographical defects, 49

U

Understandability, 424
Unit, 137–138
Unit test, 137–152

object-oriented issues, 142–148
designing, 141–142
planning, 139–141

preparing for, 138–139
reporting, 150–152

Usability, 24, 424
Usability measurements, 430–433
Usability measurement tools, 497
Usability testing, 424–433
Usage profile, 87
Usage model, 406–407
Use case

example, 181
role in testing, 179–181
recorders, 482

User/client view, 91, 183–184, 228, 229,
259, 260, 299–300, 345, 389, 435,
461, 500, 546

User profile, 402

V

V-model, 254–255
Validation, 6
Validation usability testing, 427–429
Variables

defined, 111
used, 112

Verification, 6

W

Walkthroughs, 310–311
Web testing tools, 492
White box test design strategy, 64–65,

97–98, 101–118
Work breakdown structure, 214, 215, 216


	Practical Software Testing
	CONTENTS
	Preface
	1 INTRODUCTION TO TESTING AS AN ENGINEERING ACTIVITY
	1.0 The Evolving Profession of Software Engineering
	1.1 The Role of Process in Software Quality
	1.2 Testing as a Process
	1.3 Overview of the Testing Maturity Model (TMM)
	1.3.1 TMM Levels

	List of Key Terms
	Exercises
	References

	2 TESTING FUNDAMENTALS
	2.0 Introduction
	2.1 Basic Definitions
	2.2 Software Testing Principles
	2.3 The Tester's Role in a Software Development Organization
	List of Key Terms
	Exercises
	References

	3 DEFECTS, HYPOTHESES, AND TESTS
	3.0 Origins of Defects
	3.1 Defect Classes, the Defect Repository, and Test Design
	3.1.1 Requirements and Specification Defects
	3.1.2 Design Defects
	3.1.3 Coding Defects
	3.1.4 Testing Defects

	3.2 Defect Examples: The Coin Problem
	3.3 Developer/Tester Support for Developing a Defect Repository
	List of Key Terms
	Exercises
	References

	4 STRATEGIES AND METHODS FOR TEST CASE DESIGN I
	4.0 Introduction to Testing Design Strategies
	4.1 The Smart Tester
	4.2 Test Case Design Strategies
	4.3 Using the Black Box Approach to Test Case Design
	4.4 Random Testing
	4.5 Equivalence Class Partitioning
	4.6 Boundary Value Analysis
	4.7 An Example of the Application of Equivalence Class Partitioning and Boundary Value Analysis
	4.8 Other Black Box Test Design Approaches
	4.8.1 Cause-and-Effect Graphing
	4.8.2 State Transition Testing
	4.8.3 Error Guessing

	4.9 Black Box Testing and Commercial Off-the-Shelf Components (COTS)
	4.10 Black Box Methods and TMM Level 2 Maturity Goals
	List of Key Terms
	Exercises
	References

	5 STRATEGIES AND METHODS FOR TEST CASE DESIGN II
	5.0 Using the White Box Approach to Test Design
	5.1 Test Adequacy Criteria
	5.2 Coverage and Control Flow Graphs
	5.3 Covering Code Logic
	5.4 Paths: Their Role in White Box–Based Test Design
	5.5 Additional White Box Test Design Approaches
	5.5.1 Data Flow and White Box Test Design
	5.5.2 Loop Testing
	5.5.3 Mutation Testing

	5.6 Evaluating Test Adequacy Criteria
	5.7 White Box Testing Methods and the TMM
	List of Key Terms
	Exercises
	References

	6 LEVELS OF TESTING
	6.0 The Need for Levels of Testing
	6.0.1 Levels of Testing and Software Development Paradigms

	6.1 Unit Test: Functions, Procedures, Classes, and Methods as Units
	6.2 Unit Test: The Need for Preparation
	6.3 Unit Test Planning
	6.4 Designing the Unit Tests
	6.5 The Class as a Testable Unit: Special Considerations
	6.6 The Test Harness
	6.7 Running the Unit Tests and Recording Results
	6.8 Integration Test: Goals
	6.9 Integration Strategies for Procedures and Functions
	6.10 Integration Strategies for Classes
	6.11 Designing Integration Tests
	6.12 Integration Test Planning
	6.13 System Test: The Different Types
	6.13.1 Functional Testing
	6.13.2 Performance Testing
	6.13.3 Stress Testing
	6.13.4 Configuration Testing
	6.13.5 Security Testing
	6.13.6 Recovery Testing

	6.14 Regression Testing
	6.15 Alpha, Beta, and Acceptance Tests
	6.16 Summary Statement on Testing Levels
	6.17 The Special Role of Use Cases
	6.18 Levels of Testing and the TMM
	List of Key Terms
	Exercises
	References

	7 TEST GOALS, P O L I C I E S , PLANS, AND DOCUMENTATION
	7.0 Introductory Concepts
	7.1 Testing and Debugging Goals and Policies
	7.2 Test Planning
	7.3 Test Plan Components
	7.4 Test Plan Attachments
	7.4.1 Test Design Specifications
	7.4.2 Test Case Specifications
	7.4.3 Test Procedure Specifications

	7.5 Locating Test Items: The Test Transmittal Report
	7.6 Reporting Test Results
	7.7 The Role of the Three Critical Groups in Test Planning and Policy Development
	7.8 Process and the Engineering Disciplines: The Role of the Individual as a Process Facilitator
	List of Key Terms
	Exercises
	References

	8 THE TEST ORGANIZATION
	8.0 Introducing the Test Specialist
	8.1 Skills Needed by a Test Specialist
	8.2 Building a Testing Group
	8.3 The Structure of the Testing Group
	8.4 The Technical Training Program
	8.5 Career Paths for Testers: An Industry Example
	8.6 Tester Certification
	8.7 Integrating Testing Activities in the Software Life Cycle
	8.8 The Test Organization, Technical Training Program, and Test Integration: Support from the Three Critical Views
	Exercises
	References

	9 CONTROLLING AND MONITORING THE TESTING PROCESS
	9.0 Defining Terms
	9.1 Measurements and Milestones for Controlling and Monitoring
	9.1.1 Measurements for Monitoring Testing Status
	9.1.2 Measurements for Monitoring Tester Productivity
	9.1.3 Measurements for Monitoring Testing Costs
	9.1.4 Measurements for Monitoring Errors, Faults and Failures
	9.1.5 Monitoring Test Effectiveness

	9.2 Status Meetings, Reports, and Control Issues
	9.3 Criteria for Test Completion
	9.4 Software Configuration Management
	9.5 Controlling and Monitoring: Three Critical Views
	List of Key Terms
	Exercises
	References

	10 REVIEWS AS A TESTING A C T I V I T Y
	10.0 Expanding the Testing Activity Umbrella
	10.1 Types of Reviews
	10.1.1 Inspections as a Type of Technical Review
	10.1.2 Walkthroughs as a Type of Technical Review

	10.2 Developing a Review Program
	10.3 The Need for Review Policies
	10.4 Components of Review Plans
	10.4.1 Review Goals
	10.4.2 Preconditions and Items to be Reviewed
	10.4.3 Roles, Participants, Team Size, and Time Requirements
	10.4.4 Review Procedures
	10.4.5 Review Training
	10.4.6 Review Checklists

	10.5 Reporting Review Results
	10.6 Review, Rework, and Follow-Up
	10.7 Review Metrics
	10.8 Support from the Extended/Modified V-Model
	10.9 The Self-Check or Personal Review
	10.10 Reviews and the TMM Critical Views
	List of Key Terms
	Exercises
	References

	11 A MEASUREMENT PROGRAM TO SUPPORT PRODUCT AND PROCESS QUALITY
	11.0 The Need for a Formal Test Measurement Program
	11.1 Some Measurement-Related Definitions
	11.2 Initiating a Measurement Program
	11.3 Software Quality Evaluation
	11.4 Measurement and TMM Levels
	11.4.1 Measurements for TMM Level 1
	11.4.2 Measurements for TMM Level 2
	11.4.3 Measurements for TMM Level 3
	11.4.4 Measurements for TMM Level 4
	11.4.5 Measurements for TMM Level 5

	11.5 A Test Measurement Program, Software Quality Valuations and the Three Critical Views
	List of Key Terms
	Exercises
	References

	12 EVALUATING SOFTWARE Q U A L I T Y : A QUANTITATIVE APPROACH
	12.0 Review of Quality Concepts
	12.1 Quality Costs
	12.2 What Is Quality Control?
	12.3 The Role of Operational Profiles and Usage Models in Quality Control
	12.4 Support for Quality Control: Statistical Testing
	12.5 Software Reliability
	12.5.1 Measurements for Software Reliability

	12.6 Reliability, Quality Control, and Stop-Test Decisions
	12.6.1 Applying Reliability Models

	12.7 Confidence Levels and Quality Control
	12.8 Usability Testing and Quality Control
	12.9 An Approach to Usability Testing
	12.9.1 Exploratory Usability Testing
	12.9.2 Assessment Usability Testing
	12.9.3 Validation Usability Testing
	12.9.4 Comparison Test
	12.9.5 Usability Testing: Resource Requirements
	12.9.6 Usability Tests and Measurements

	12.10 Software Quality Control and the Three Critical Views
	List of Key Terms
	Exercises
	References

	13 DEFECT ANALYSIS AND PREVENTION
	13.0 Processes and Defects
	13.1 History of Defect Analysis and Prevention
	13.2 Necessary Support for a Defect Prevention Program
	13.3 Techniques for Defect Analysis
	13.4 Defect Causal Analysis
	13.5 The Action Team: Making Process Changes
	13.6 Monitoring Actions and Process Changes
	13.7 Benefits of a Defect Prevention Program
	13.8 Defect Prevention and the Three Critical Views
	Exercises
	References

	14 THE TESTERS' WORKBENCH
	14.0 Goals for the Testers' Workbench
	14.1 Evaluating Testing Tools for the Workbench
	14.2 Tool Categories
	14.2.1 Maturity Goals for TMM Level 1-Initial
	14.2.2 Tools for TMM Level 1
	14.2.3 TMM Level 2: Maturity Goals for Phase Definition
	14.2.4 Tools for Phase Definition
	14.2.5 TMM Level 3: Maturity Goals for Integration
	14.2.6 Tools for Integration
	14.2.7 TMM Level 4: Maturity Goals for Management and Measurement
	14.2.8 Tools for Management and Measurement
	14.2.9 TMM Level 5: Maturity Goals for Optimization/Defect Prevention/Quality Control
	14.2.10 Tools for Optimization/Defect Prevention/Quality Control

	14.3 The Testers' Workbench and the Three Critical Views
	Exercises
	References

	15 PROCESS CONTROL AND OPTIMIZATION
	15.0 TMM Maturity Goals: Support for a Quality Testing Process
	15.1 Process Engineering and Quality Control
	15.2 Fundamentals of Quantitative Process Control
	15.3 Activities for Quantitative Test Process Control
	15.4 Examples of the Application of Statistical Process Control
	15.5 Test Process Optimization: The Role of a Process Improvemen Group
	15.6 Technology Transfer
	15.7 Process Reuse
	15.7.1 Templates for Reusable Processes
	15.7.2 Procedures for Process Reuse

	15.8 Activities, Tasks and Responsibilities for Test Proces Control and Optimization
	Exercises
	References

	16 THE TESTING MATURITY MODEL AND TEST PROCESS ASSESSMEN
	16.0 The Need for a Testing Maturity Model
	16.1 Approach to Model Development
	16.2 Process Improvement Model Representation
	16.3 The TMM Structure: The Testing Maturity Levels
	16.4 The TMM Assessment Model: Design Approach
	16.5 The TMM Assessment Model Components
	16.5.1 Assessment Team Selection and Training
	16.5.2 The Assessment Procedure
	16.5.3 The TMM Assessment Questionnaire

	16.6 The TMM Ranking Procedure
	16.7 Forms and Tools for Assessment Support
	16.8 Relationship of the TMM to Other Process Improvement Models
	16.9 Industrial Applications of the TMM
	16.9.1 TMM Application I: Evaluating the Usability of the TMM Questionnaire
	16.9.2 TMM Application II: Identifying Test Problem Areas and Risks
	16.9.3 TMM Application III: Software Test Consulting
	16.9.4 TMM Application IV: Role of Human Factors in Process Assessment
	16.9.5 Lessons Learned from the TMM Studies

	References

	APPENDIX I : TEST-RELATED REFERENCES
	APPENDIX I I : SAMPLE TEST PLAN
	APPENDIX I I I : TESTING MATURITY MODEL
	Part 1: The TMM Questionnaire
	Section 1. Instructions for the Respondent
	Section 2. Respondent Identification and Background
	Section 3. Organizational Background
	Section 4. The TMM Questions
	Section 5. Testing Tool Questions
	Section 6. Testing Trends Questions
	Section 7. Comments from Respondents
	Section 8. Glossary of TMM-Related Terms

	Part 2: TMM Activities, Tasks and Responsibilities
	Index

